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Abstract

The critical first step in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)–associated (CRISPR–Cas) protein-mediated
gene editing is recognizing a preferred protospacer adjacent motif (PAM) on target DNAs by the protein’s PAM-interacting amino acids
(PIAAs). Thus, accurate computational modeling of PAM recognition is useful in assisting CRISPR–Cas engineering to relax or tighten
PAM requirements for subsequent applications. Here, we describe a universal computational protein design framework (UniDesign) for
designing protein–nucleic acid interactions. As a proof of concept, we applied UniDesign to decode the PAM–PIAA interactions for eight
Cas9 and two Cas12a proteins. We show that, given native PIAAs, the UniDesign-predicted PAMs are largely identical to the natural
PAMs of all Cas proteins. In turn, given natural PAMs, the computationally redesigned PIAA residues largely recapitulated the native
PIAAs (74% and 86% in terms of identity and similarity, respectively). These results demonstrate that UniDesign faithfully captures the
mutual preference between natural PAMs and native PIAAs, suggesting it is a useful tool for engineering CRISPR–Cas and other nucleic
acid-interacting proteins. UniDesign is open-sourced at https://github.com/tommyhuangthu/UniDesign.
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INTRODUCTION
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)–associated (CRISPR–Cas) protein-mediated genome
editing shows great promise in biotechnology and medicine [1–
5]. However, the specific recognition of protospacer adjacent
motifs (PAMs) before DNA cleavage limits the target range of
Cas nucleases [6]. For instance, the most widely used SpCas9
from Streptococcus pyogenes recognizes an NGG (N is A/C/G/T)
PAM, allowing it to target about 1/8 (1/4 × 1/4 × 2 DNA strands)
human genomic sequences. Engineering the PAM requirement
of a CRISPR–Cas protein has immediate applications [7–10].
For example, relaxing the PAM requirement (e.g. from NGG to
NGN) would increase the overall targetable sequences, whereas
tightening the PAM requirement (e.g. from NGG to AGG) would
increase editing specificity and reduce off-target edits [6].

Directed evolution and structure-guided engineering are the
two prevalent strategies to engineer the PAM preference of

CRISPR–Cas proteins. In recent years, the latter has gained more
popularity and success along with the increased number of solved
Cas protein structures. Most of these efforts, however, are limited
to utilizing the structural biology knowledge to identify key PAM-
interacting amino acids (PIAAs) for mutagenesis engineering.

By contrast, computational protein design (CPD) approaches
make use of protein structures as a basis to interrogate the effects
of mutagenesis with advanced computer algorithms [11–13] and
at a higher level to de novo design a protein sequence with desired
function [14, 15]. CPD methods have been widely used in pro-
tein engineering and yielded proteins with improved functional
characteristics [16–20]. However, the powerful CPD methods were
rarely adapted to engineer Cas proteins to modify their PAM
requirements. The COMET workflow is by far the only computa-
tional approach to model PAM recognition [21]. COMET provided a
computational interpretation to the KKH variant of Staphylococcus
aureus Cas9 (SaCas9), which was obtained by directed evolution
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that relaxes the PAM from NNGRRT into NNNRRT [10], followed
by COMET-guided design of two new variants SaCas9-NR and
SaCas9-RL, both with a relaxed PAM of NNGRRN [21]. COMET
leveraged molecular dynamics (MD) simulations and free-energy
perturbation (FEP) to calculate mutation-induced binding free
energy change, which was subsequently correlated with PAM
recognition [21]. One caveat of COMET is that both MD and FEP
are computation-intensive and resource-inefficient, limiting their
large-scale application and adaptation.

We previously developed two CPD methods, namely EvoDesign
and EvoEF2, for monomer protein design and protein–protein
interaction (PPI) design [22, 23]. EvoDesign is an evolution-based
approach that combines the evolutionary profile [represented
as the position-specific scoring matrix (PSSM)] derived from
multiple structure/sequence alignment (MSSA) with a physics-
based energy function (EvoEF) for protein sequence design [22]. In
some cases, the PSSM term may be less reliable due to insufficient
structure analogs obtained, whereas the accuracy of EvoEF by
itself is moderate for de novo protein design [23]. To increase
the physical energy function’s accuracy, we developed EvoEF2
by introducing a few statistical energy terms into EvoEF and reop-
timized all the energy weights through extensive de novo sequence
design [23]. EvoEF is a linear combination of five weighted energy
terms, including van der Waals, hydrogen bonding, electrostatics,
solvation and reference energy, and optimized by maximizing
the accuracy of predicting the thermodynamic changes upon
mutations [22]. Compared with EvoEF, EvoEF2 includes four
extra knowledge-based terms, i.e. disulfide bonding, amino acid
propensity, Ramachandran and rotamer frequency. Benchmark
results showed that all nine terms are important to EvoEF2’s
high accuracy, and overall, EvoEF2 improved the sequence design
accuracy by about two folds relative to EvoEF [23]. We have
successfully used these two methods to design novel protein and
peptide binders [24, 25].

Unlike COMET, which relies on resource-heavy algorithms
(e.g. MD and FEP), the EvoDesign and EvoEF2 methods comprise
resource-friendly components: a rotamer library for efficient
amino-acid conformation sampling, an efficient energy function
for protein sequence scoring, and a fast optimization algorithm
for searching low-energy designer sequences [23, 26, 27]. With
more approximations, these two methods are much faster than
MD-based approaches yet still very accurate, making them
particularly appropriate to efficiently explore the vast sequence
space, such as those of the CRISPR–Cas proteins.

Here we report the development of a universal CPD framework
(UniDesign) that is built on EvoDesign and EvoEF2 by adding a new
capacity to model and design the protein–nucleic acid interaction
(PNI), a functionality that is necessary yet underdeveloped for
engineering CRISPR–Cas protein’s PAM preference. Our detailed
computational analyses show that UniDesign captures the ‘self-
consistency’ between PIAAs and PAMs satisfactorily, and provides
computational explanation at the molecular and energetic levels,
thus suggesting the potential application of UniDesign in assisting
CRISPR–Cas protein engineering.

METHODS
Cas structures collection and preprocessing
The Protein Data Bank (PDB) files for eight Cas9 and two
Cas12a proteins were downloaded from Research Collaboratory
for Structural Bioinformatics (RCSB) PDB [28]. Ions and water
molecules were removed except for 5AXW, 5CZZ, 5B43, 5XUS and
6JDV, in which PAM-interacting water molecules were retained.

Specifically, HOH1202, HOH1217, HOH1227, HOH201, HOH202
and HOH203 were kept in 5AXW. HOH1207, HOH1233, HOH201,
HOH202, HOH203 and HOH204 were reserved in 5CZZ. HOH21 was
retained in 5B43. HOH36, HOH65, HOH119, HOH122 and HOH124
was retained in 5XUS. HOH1201 was retained in 6JDV. The missing
amino-acid side chains were added using the ‘RepairStructure’
command in UniDesign, and sidechain steric clashes were
reduced using the UniDesign ‘Minimization’ command.

Atomic parameters and topologies for
nucleotides
The amino-acid atomic parameters and topologies in EvoEF2
[and the UniDesign energy function (UniEF)] are adapted from
the united-atom force field CHARMM19 [29]. However, there are
no parameters and topologies for nucleotides in CHARMM19.
We took nucleotide topologies from the all-atom CHARMM36
force field [30] but removed all nonpolar hydrogen atoms. To be
consistent with nucleotide nomenclature in PDB, the nucleotides
were renamed as DA, DC, DG and DT for DNA, and A, C, G
and U for RNA in the UniEF energy function. The nucleotide
atoms were parameterized based on their similarity to atoms
in amino acid chemical groups. Our previous study demonstrated
the good performance of CHARMM19-based EvoEF2 on protein
sequence design with a good balance of accuracy and speed
[23], rationalizing the development of UniEF using CHARMM19-
like parameters and topologies. The UniEF atomic parameters
and residue topologies can be found at https://github.com/
tommyhuangthu/UniDesign/blob/master/library/toppar/param_
charmm19_lk.prm and https://github.com/tommyhuangthu/
UniDesign/blob/master/library/toppar/top_polh19.inp, respec-
tively.

UniEF and modification to the hydrogen-bonding
energy term
UniEF inherits the EvoEF2 energy function for protein design [23].
UniEF is the linear combination of nine energy terms:

EUniEF = EVDW +EELEC +EHB +EDESOLV +ESS +EAAPP +ERAMA +EROT −EREF

(1)

Here, EVDW, EELEC, EHB, EDESOLV and ESS represents the total weighted
van der Waals, electrostatic, hydrogen-bonding, de-solvation and
disulfide-bonding interaction, respectively; these terms are calcu-
lated as the weighted sum of pairwise atomic interaction energy.
EAAPP, ERAMA and EROT represents the weighted term for calcu-
lating amino acid propensity, the Ramachandran term, and the
term for modeling rotamer frequency in the rotamer library,
respectively; these terms are dependent on protein backbone
geometry and are calculated as the sum of residue- or rotamer-
wise energy. Finally, EREF, namely protein reference energy, models
the energy of a protein in the unfolded state and is roughly
calculated as the sum of amino acid reference energy. Our previ-
ous work described the energy weight optimization procedure in
detail [23].

Compared to EvoEF2, we updated the hydrogen-bonding energy
term in UniEF to modeling water-mediated hydrogen bonds, which
are commonly seen in biological systems. For a regular hydrogen-
bonding interaction, EHB (D, H, A, B) is defined by four atoms: the
hydrogen atom (H), the hydrogen acceptor (A), the hydrogen donor
(D) and the base atom to which A is attached (B). EHB (D, H, A, B) is
a linear combination of three terms that depend on the distance
between H and A (dHA), the angle between D, H and A (θDHA) and
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the angle between H, A and B (ϕHAB):

EHB (D, H, A, B) = wdHA E
(
dHA

) + wθDHA E (θDHA) + wϕHAB E (ϕHAB) (2)

where:
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0, otherwise
E (θDHA) = −cos4 (θDHA) , if θDHA ≥ 90◦

E (ϕHAB) =

⎧⎪⎪⎪⎨
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−cos4 (ϕHAB − 150◦) ,
ϕHAB ≥ 90◦ for BBHB and for sp2 in SBHB or SSHB
− cos4 (ϕHAB − 135◦) ,
ϕHAB ≥ 90◦ for sp3 in SBHB or SSHB

(3)

wdHA , wθDHA and wϕHAB are weights for the three terms. The optimal
distance between H and A, dopt, is set to 1.9 Å. Additionally,
dmin = 1.4 Å and dmax = 3.0 Å are the lower and upper bounds
of the distance between the hydrogen–acceptor pair. The optimal
ϕHAB value is set to either 150◦ or 135◦, depending on the acceptor
hybridization (sp2 or sp3) and the locations of the donor and
acceptor atoms (BBHB: backbone–backbone hydrogen bond;
SBHB: sidechain–backbone hydrogen bond; SSHB: sidechain–
sidechain hydrogen bond).

Water molecules can be hydrogen bond donors, acceptors, or
both. In UniDesign, the water hydrogen atoms are not explicitly
modeled due to the difficulty to determine their positions. Water-
mediated hydrogen bonding interactions are treated in three
cases:

Case 1: the hydrogen bond acceptor (A) is water while the donor
is normal. In this case, the base atom B does not exist, and hence
ϕHAB related terms in Equations (2) and (3) are omitted. The other
terms are the same.

Case 2: the hydrogen bond donor (D) is water while the accep-
tor is normal. In this case, the hydrogen atom (H) is omitted,
and EHB (D, A, B) is used to calculate water-mediated hydrogen-
bonding energy.

EHB (D, A, B) = wdDA E
(
dDA

) + wϕDAB E (ϕDAB) (4)

where:
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0, otherwise

E (ϕDAB) =

⎧⎪⎪⎪⎨
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−cos4 (ϕDAB − 150◦) ,
ϕDAB ≥ 90◦ for BBHB and for sp2 in SBHB or SSHB
− cos4 (ϕDAB − 135◦) ,
ϕDAB ≥ 90◦ for sp3 in SBHB or SSHB

(5)

The optimal distance between D and A, dDA,opt, is set to 2.8 Å.
The minimum and maximum distances for considering a water-
mediated hydrogen bond are: dDA,min = 2.3 Å and dDA,max =
3.9 Å.

Case 3: both D and A are water. In this case, H and A do not
exist, and only the E

(
dDA

)
term in Equations (4) and (5) is used to

calculate water-mediated hydrogen bonding energy.

Generation of PAM variant models with
UniDesign
The ‘BuildMutant’ command, implemented in EvoEF2 to build
amino-acid mutant models, was extended to build models for
nucleotide mutations in UniDesign. When mutating a nucleotide,
the torsional angle centered on the bond that connects the back-
bone and sidechain is kept unchanged, and the coordinates of
sidechain atoms are calculated based on the nucleotide topol-
ogy described above. For instance, for the DA → DC mutation,
the value of the torsional angle O4’–C1’–N1–C2 in nucleotide
DC will be taken from that of O4’–C1’–N9–C4 in nucleotide DA.
For a double-stranded DNA, if one nucleotide is mutated on
one strand, the paired nucleotide on the other strand will be
automatically mutated to ensure reverse complementarity. Below
is the command line to build PAM mutants using 4UN3 as an
example:

path_to_UniDesign/UniDesign –command=BuildMutant –
pdb=4UN3.pdb –mutant_file=mutants.txt

The ‘mutants.txt’ file contains one or more lines like ‘tD5a,gD6a,
gD7a;’ Each line ended with ‘;’ represents one mutant for which
mutations are separated by ‘,’. In this example, the TGG PAM will
be mutated into AAA. All other PAM variants can be built similarly.

Computational repacking and redesign of PIAAs
The ‘ProteinDesign’ command in UniDesign was used to repack
or redesign the PIAA residues. Below is the command line using
4UN3 as an example:

path_to_UniDesign/UniDesign –command=ProteinDesign –
ppint –pdb=4UN3.pdb –design_chains=B –resfile=RESFILE
_4UN3_UniDesign.txt

The ‘–ppint’ option specifies a PPI or PNI design task, which is
equally treated in the prototype UniDesign. The ‘–design_chains=B’
option means that design is carried out on chain B, i.e. the
SpCas9 protein chain. The residues to be repacked and/or
redesigned were controlled using a restraint file (RESFILE) named
‘RESFILE_4UN3_UniDesign.txt’. The RESFILE format is explained
in detail at https://github.com/tommyhuangthu/UniDesign/blob/
master/manual.docx.

As a comparison to UniDesign, the Rosetta FixBB protocol (ver-
sion 3.15) [31, 32] was also applied to redesign PIAA residues for
each native Cas protein and its related PAM variants generated by
UniDesign. Below is the command line using 4UN3 as an example:

path_to_rosetta/main/source/bin/fixbb.static.linuxgccrelease
-in:file:s 4UN3.pdb -in:file:fullatom -resfile RESFILE_4UN3_
Rosetta.txt -nstruct 1

Similar to that in UniDesign, the residues to be redesigned were
restricted by a RESFILE following Rosetta’s syntax.

RESULTS
UniDesign for protein–nucleic acid interaction
modeling and design
EvoDesign and EvoEF2 lack the capacity for PNI design or other
functional protein design tasks like protein–ligand interaction
(PLI) design and enzyme design since they cannot model non-
protein molecules. To overcome these limitations, we have devel-
oped a universal CPD approach named UniDesign to deal with
these four kinds of functional protein design tasks (i.e. PPI, PNI,
PLI and enzyme design) (Figure 1A).

UniDesign inherits the overall methodology of EvoEF2 while
adopting the evolutionary component of EvoDesign. Figure 1B
illustrates the pipeline for PNI design. First, design sites of

https://github.com/tommyhuangthu/UniDesign/blob/master/manual.docx
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Figure 1. The UniDesign workflow for protein–nucleic acid interaction (PNI) design. (A) UniDesign can work for protein–protein interaction design,
protein–ligand interaction design, enzyme design and PNI design. (B) The UniDesign pipeline for PNI design comprises four stages (denoted as i, ii, iii
and iv).

interest can be defined based on the input PNI complex structure.
Second, UniDesign searches for structure analogs to the scaffold
protein and constructs a PSSM using the MSSA obtained from the
pairwise structure alignment. Third, building on the PNI scaffold,
UniDesign performs sequence redesign for the predefined design
sites, using a composite energy function by combining the EPSSM

and EUniEF energy terms, where UniEF is an energy function
extended from EvoEF2 [23] and is used to model the physical
interactions between protein and nucleic acid (see Methods). An
efficient simulated annealing Monte Carlo (SAMC) simulation
procedure is employed to search the sequence space. Finally, after
the SAMC simulation, the sequence with the lowest total energy is
taken as the best design. Due to SAMC’s stochasticity, the lowest-
energy designs from multiple independent simulations will be
collected for analysis. In UniDesign, the evolutionary module is
set as optional; UniEF alone is used for design when evolution is
disabled.

Summary of CRISPR–Cas proteins in this study
We selected eight CRISPR–Cas9 proteins, namely SpCas9, SaCas9,
St1Cas9, FnCas9, Nme1Cas9, Nme2Cas9, CdCas9 and AceCas9,
and two CRISPR–Cas12a proteins, namely AsCas12a and LbCas12a

(Table 1), to study their PAM recognition because (1) their experi-
mentally determined consensus PAMs are consistent in different
studies, providing a ground truth to computational modeling; (2)
their Cas/gRNA (guide RNA)/DNA complex structures are avail-
able with PDB PAM being a part of the consensus PAMs (Table 1)
[PAM sequence is 5′ to 3′ on the non-target strand (NTS)]. The
‘consensus’ PAMs refer to the preferred PAMs that are associated
with high cleavage efficiency.

For SpCas9, two structures determined at different resolu-
tions, which represent the catalytically inactive and active states,
respectively, were chosen (PDB ID: 4UN3 and 5F9R). For SaCas9,
two structures (5AXW and 5CZZ) with different PDB PAMs were
considered. One structure was used for each of the remaining six
Cas9 and two Cas12a proteins (i.e. FnCas9, Nme1Cas9, Nme2Cas9,
CdCas9, St1Cas9, AceCas9, AsCas12a and LbCas12a). We did not
consider the minimal Cas9 from Campylobacter jejuni (CjCas9, 984
amino acids) because its PAM determined in different studies are
not consistent [33–36].

Protein structures provide direct insights to understand how
Cas amino acids recognize PAMs. Based on the degree of homology
between Cas9 proteins and the presence/absence of an additional
Cas protein besides Cas1, Cas2 and Cas9, the type II CRISPR–Cas9
systems are subdivided into three subtypes (II-A, II-B and II-C) [37].
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Table 1. PAMs for eight Cas9 and two Cas12a proteins

Cas Type Species Length Consensus PAM PDB (resolution) PDB PAM

SpCas9 II-A Streptococcus pyogenes 1368 NGG 4UN3 (2.59 Å)
5F9R (3.40 Å)

TGG
TGG

SaCas9 II-A Staphylococcus aureus 1053 NNGRRT 5AXW (2.70 Å)
5CZZ (2.60 Å)

TTGGGT
TTGAAT

St1Cas9 II-A Streptococcus thermophilus 1121 NNRGAA 6M0W (2.76 Å) AAAGAA
FnCas9 II-B Francisella novicida 1629 NGG 5B2O (1.70 Å) TGG
Nme1Cas9 II-C Neisseria meningitidis 1082 NNNNGATT 6JDV (3.10 Å) ATATGATT
Nme2Cas9 II-C Neisseria meningitidis 1082 NNNNCC 6JE3 (2.93 Å) AGGCCC
CdCas9 II-C Corynebacterium diphtheriae 1084 NNRHHHY 6JOO (2.90 Å) GGGTAAT
AceCas9 II-C Acidothermus cellulolyticus 1138 NNNCC 6WBR (2.91 Å) ATACC
AsCas12a V-A Acidaminococcus sp. 1307 TTTV 5B43 (2.80 Å) TTTA
LbCas12a V-A Lachnospiraceae bacterium ND2006 1228 TTTV 5XUS (2.50 Å) TTTA

Below we summarize the PAM-involved interactions in the order
of II-A, II-B and II-C Cas9 proteins, followed by the two Cas12a
proteins.

In the two structures of the type II-A SpCas9 [38, 39], whose PAM
preference is NGG, it is noted that while the second G and third
G of the PDB PAM form bidentate hydrogen bonds with Arg1333
and Arg1335, respectively, the first T does not form direct contacts
with amino acids (Figure 2A and B).

Similarly, in the two structures of the type II-A SaCas9
(Figure 2C and D) [40], which has a PAM preference of NNGRRT,
the first two T’s of the PDB PAM do not form direct interactions or
water-mediated interactions with amino acids, whereas the third
G forms bidentate hydrogen bonds with Arg1015, the fourth G or
A forms one hydrogen bond with Asn985, the fifth G or A forms
two water-mediated hydrogen bonds with Asn985 and Asn986,
respectively, and the sixth T forms a hydrogen bond with Arg991.
Besides, Asn986 forms a water-mediated hydrogen bond with the
phosphate oxygen atoms of the fifth G or A.

In the structure of the type II-A St1Cas9 (Figure 2E) [41], whose
PAM preference is NNRGAA, the third A forms bidentate hydrogen
bonds with Gln1084, which is positioned by Glu1057. The fourth
G forms two hydrogen bonds with Lys1086. The fifth A and the
T in pair with the sixth A form van der Waals interactions with
Met1049.

FnCas9, a type II-B Cas9 protein, was reported to recognize both
NGG and NGA with a much higher preference for NGG [42]. In
the structure of FnCas9 (Figure 2F), the second G forms coplanar
bidentate hydrogen bonds with Arg1585. The third G or A can form
distorted bidentate hydrogen bonds or a single hydrogen bond
with Arg1556.

Nme1Cas9 and Nme2Cas9 are type II-C Cas9 proteins in which
both DNA strands are involved in PAM recognition [43]. Nme1Cas9
was reported to recognize promiscuous PAMs with a consensus
on NNNNGATT [44–46]. Nme2Cas9 has a PAM preference for
NNNNCC [47]. In the structure of Nme1Cas9 (Figure 2G) [43], the
fifth G forms two hydrogen bonds with His1024. The sixth A forms
one hydrogen bond with Thr1027, whereas its paired T can form
a water-mediated hydrogen bond with Thr1027. The seventh and
eighth T’s of PAM do not have contact with amino acids, but the
paired A’s on the target strand (TS) form one and two hydrogen
bonds with Asn1029 and Gln981, respectively. In the structure of
Nme2Cas9 (Figure 2H) [43], the fifth C forms a hydrogen bond with
Asp1028. The sixth C does not form contact with amino acids but
the paired G forms bidentate hydrogen bonds with Arg1033.

CdCas9 is another type II-C Cas9 protein with a PAM preference
for NNRHHHY [48]. In its reported structure (Figure 2I) [48], the

third G forms a hydrogen bond with Arg1017. The fourth to
seventh PAM nucleotides (TAAT) do not form any hydrogen bond
with amino acids. The fourth T and the fifth–sixth A’s paired
partners (two T’s) form van der Waals contacts with Phe1011,
Pro1043, Leu1046 and Lys1015. The seventh T’s paired A forms a
hydrogen bond with Lys1015.

In the structure of the type II-C AceCas9 (Figure 2J) [49], whose
PAM preference is NNNCC, the fourth C forms a hydrogen bond
with Glu1044, which is positioned by Arg1091, and the paired G
forms a hydrogen bond with Arg1088. The fifth C’s paired G on
the TS forms bidentate hydrogen bonds with Arg1091.

Compared to the Cas9 proteins, which usually recognize G-rich
PAMs, the type V-A Cas12a proteins usually prefer T-rich PAMs [37,
50]. Both AsCas12a and LbCas12a prefer a canonical PAM of TTTV
(V = A, G or C) [50–52]. In the structure of AsCas12a (Figure 2K)
[53], the first T is surrounded by the side-chain methyl groups of
Thr167 and Thr539, whereas the paired A forms a hydrogen bond
with the side chain of Lys607. The second T forms a van der Waals
interaction with the side-chain methyl group of Thr167, whereas
the paired A forms hydrogen bonds with Lys607 and Lys548,
respectively. The third T forms a hydrogen bond with Lys607,
whereas the nucleobase and deoxyribose moieties of the paired A
form van der Waals interactions with the side chain of Lys607 and
Pro599/Met604, respectively. The fourth A and its paired T do not
form base-specific contacts with the Cas12a protein, consistent
with the lack of specificity at the fourth position of the TTTV PAM.

In the structure of LbCas12a (Figure 2L) [52], the first T forms
van der Waals contacts with the side chains of Thr149 and Gln529,
whereas the paired A forms a hydrogen bond with Lys595. The 5-
methyl group of the second T is in the vicinity of the side-chain
methyl group of Thr149, whereas the paired A forms hydrogen
bonds with Lys595 and Lys538. The third T forms a hydrogen bond
with Lys595, whereas the paired A forms a hydrogen bond with
Tyr542. Similar to that in AsCas12a, the fourth A and its paired
T do not form base-specific contacts with the protein, supporting
the overall lack of specificity at the fourth position.

In sum, these reported CRISPR–Cas structures provide direct
visual clues to the key interactions, commonly through hydrogen
bonds or van der Waals forces, between PIAAs and PAMs.

Computational modeling reveals that native
PIAAs prefer consensus PAMs
We proceeded to develop a CPD method to study the interac-
tion between the CRISPR–Cas protein’s PIAAs and their preferred
PAMs on the target DNAs. We defined the amino acids that are
in direct contact (<4.5 Å) with the side chains of PAMs or the
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Figure 2. Visualization of the interactions between PAM nucleotides and PAM-recognizing amino acids. (A) 4UN3 (SpCas9) with TGG PAM; (B) 5F9R
(SpCas9) with TGG PAM; (C) 5AXW (SaCas9) with TTGGGT PAM; (D) 5CZZ (SaCas9) with TTGAAT PAM; (E) 6M0W (St1Cas9) with AAAGAA PAM; (F) 5B2O
(FnCas9) with TGG PAM; (G) 6JDV (Nme1Cas9) with ATATGATT PAM; (H) 6JE3 (Nme2Cas9) with AGGCCC PAM; (I) 6JOO (CdCas9) with GGGTAAT PAM; (J)
6WBR (AceCas9) with ATACC PAM; (K) 5B43 (AsCas12a) with TTTA PAM and (L) 5XUS (LbCas12a) with TTTA PAM. Nucleotides on nontarget and target
strands are shown as yellow and magenta sticks, respectively; nontarget-stranded nucleotides are marked with asterisks. Amino acids are shown in
green sticks. Hydrogen bonds are shown as green dashed lines.

paired nucleotides as PIAAs (Supplementary Table 1). Of note,
PIAAs defined by this simple rule contained all PAM-recognizing
residues described in the above section.

For each PDB, its PAM nucleotides were mutated to generate all
4L PAM variants, where L is PAM length. For example, the consen-
sus PAM of SpCas9 is NGG, and we generated all 64 (= 43) variants
from AAA to TTT. The number of variants increases exponentially

as L grows. Too many structures need to be generated for very long
PAMs, e.g. 16 384 and 65 536 structures for CdCas9 and Nme1Cas9
that have seven and eight PAM nucleotides, respectively. Thus,
only the last six PAM positions were varied if L> 6, resulting in
a handleable maximum of 4096 structures (this is reasonable
because the first two nucleotides form no contact with amino
acids in CdCas9 or Nme1Cas9). When PAM nucleotides on NTS

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
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were mutated, the paired nucleotides on TS were correspondingly
substituted to ensure complementarity.

We first computationally examined the preference of native
Cas proteins for all PAM variants. This is to validate whether
UniDesign can recapitulate such PAM preference for each of the
ten Cas proteins. To do this, we used UniDesign to repack the
PIAAs in the Cas/gRNA/DNA complex model of each PAM variant
and calculate the total binding energy. The ‘total energy’ repre-
sents the energy of the entire system including protein, gRNA,
DNA and water molecules (if applicable). The ‘binding energy’
refers to the interaction between protein/gRNA and DNA, which
is important to PAM recognition.

We reasoned that the binding energy is a good indicator for
quantifying to what extent a Cas protein prefers a PAM (lower
binding energy indicates a higher preference). Interestingly, for
each Cas, the energy associated with variants with consensus
PAMs distributed in a relatively narrow window to the minimum
binding energy (Emin

bind) and/or the minimum total energy (Emin
tot )

(Figure 3). Through structure inspection, we noticed that some
variants scored low binding energy at the cost of high total energy
(LbHt) because of inter-residue steric clashes. Mathematically, we
defined a PAM as LbHt if its associated total energy is greater than
a threshold (δEtot) of the minimum total energy (Emin

tot ). Because the
PNI interactions between these LbHt PAMs and the corresponding
Cas9s may not be physically stable/feasible, we filtered them out
for subsequent computations.

Only PAM variants that satisfy Ebind ≤ Emin
bind + δEbind and

Etot ≤ Emin
tot + δEtot were subjected to sequence logo analysis

using WebLogo [54] with appropriate δEbind and δEtot parame-
ters; Emin

bind and Emin
tot were yielded from UniDesign calculations

(Supplementary Table 2). For comparison, sequence logos were
also plotted with Ebind ≤ Emin

bind + δEbind or Etot ≤ Emin
tot + δEtot

(Supplementary Figures 1 and 2).
For both SpCas9 structures, the computationally determined

preferred PAMs are NGG (Figure 4A and B), consistent with the
experimentally determined NGG consensus.

For both SaCas9 structures, the computationally determined
PAM preference is NNGRR[T > G] (Figure 4C and D), also matching
the experimental consensus NNGRRT and the report that the
sixth position tolerates other nucleotides albeit it prefers T most
[55, 56].

For St1Cas9, the UniDesign computed PAM is NNR[G ≈ C][C ≈ A]
A (Figure 4E), covering the experimentally determined consensus
NNRGAA [41]. In the computational model with a UniDesign
suggested PAM ATACCA, the fourth C- and the fifth C-paired
G’s formed hydrogen bonds with Ser1082 and K1086, respec-
tively. Of note, the conformations of Ser1082 and K1086 in our
UniDesign modeling by using the ATACCA PAM were quite dif-
ferent from those in the reported PDB model with a PAM of
AAAGAA.

For FnCas9, UniDesign obtains a computational preference for
the NG[G > A] PAM (Figure 4F), consistent with the experimentally
determined PAM NG[G > A] [42].

For Nme1Cas9, the UniDesign-computed preferred PAM is
NNNTGATT (Figure 4G), which is a subset of the experimentally
determined consensus NNNNGATT [44–46, 57]. UniDesign
modeling computationally confirmed that Nme1Cas9 prefers
only G at the fifth position. Further, UniDesign predicted T, C
and C as the second favorable nucleotides at the sixth to eighth
positions, respectively. Besides, UniDesign suggested NNNNGACT,
NNNNGCTT, NNNNGTCT and NNNNGTTT as alternative PAMs
for Nem1Cas9 (Figure 4G), which corroborates with the findings
by Amrani et al [44]. We note that there is a discrepancy at the

fourth PAM position where UniDesign favors T and A but the
experimental studies do not indicate any preference. Interestingly,
when the restraint on total energy was removed (e.g. δEtot = 1000)
in UniDesign, the preference at the fourth PAM position is
gone and the modeled consensus PAM becomes NNNNGNNT
(Supplementary Figure 1), the same as reported by Esvelt et al. in
their study [57] (see Table 1 in the ref.).

For Nme2Cas9, the UniDesign-modeled PAM is N[G/C/A]N[T/C]
CC with dominating C’s at the fifth and sixth positions (Figure 4H),
largely consistent with the experimental PAM NNNNCC [43, 47].
UniDesign modeling suggests that the second position prefers
equally G, C and A but not T, in part due to the steric clashes
between the 5-methyl group on T and Lys1044. Besides, compu-
tational modeling suggests that the fourth position prefers T or C
probably because the paired A or G on the TS can form a potential
hydrogen bond with Tyr1035.

For CdCas9, the UniDesign-modeled PAM is NTATAAY
(Figure 4I), a subset of the experimental consensus NNRHHHY
[48]. Computational modeling indicates that the third position
prefers A > C ≈ G but not T, compared to the preference for
G ≈ A > C but not T determined experimentally [48]. The most
discrepancy takes place at the second PAM position, where
computation suggests a preference of T > G while experimental
assay shows that all nucleotides are acceptable with a slight
preference of G over others [48].

For AceCas9, UniDesign predicted the PAM preference as
NTNCC (Figure 4J), similar to the experimentally determined
PAM NNNCC [49]. Computational modeling shows that the fourth
and fifth positions strongly prefer C’s while the second position
marginally favors T.

For AsCas12a, the UniDesign predicted consensus PAM
sequence is [T ≈ C][T ≈ C]TV (Figure 4K), covering the experimen-
tally determined TTTV PAM. Interestingly, it has been shown that
besides the TTTV PAM, AsCas12a also recognizes non-canonical
C-containing PAMs, especially when the C nucleotides appear at
the first two positions [52].

For LbCas12a, the UniDesign preferred consensus PAM is
T[T ≈ C][T ≈ C][A ≈ G ≈ T], largely recapitulating the experimen-
tally confirmed TTTV PAM. In addition to the canonical TTTV
PAM, previous experimental studies showed that the second and
third positions tolerate the C nucleotides very well [50, 52], and as
shown, these characteristics were successfully recapitulated by
UniDesign.

Compared with the sequence logos with Etot ≤ Emin
tot +δEtot alone,

the plots with Ebind ≤ Emin
bind + δEbind alone better recapitulated those

with both Ebind ≤ Emin
bind + δEbind and Etot ≤ Emin

tot + δEtot (Figure 4, Sup-
plementary Figures 1 and 2), suggesting that UniDesign binding
energy is a better indicator than total energy for PAM preference
modeling.

In sum, the computationally predicted consensus PAM pro-
files by UniDesign largely recapitulated the experimentally deter-
mined consensus PAMs (Figure 4 and Table 1). Our data demon-
strate that UniDesign is a useful tool to quantitatively interrogate
the molecular level integrations between the native PIAAs and
different PAM variants.

Computational redesign of Cas proteins reveals
that PDB PAMs prefer native PIAAs
On the other hand, we ask the question if the native PIAAs are the
most preferred amino acids by PDB PAMs and more generally, the
consensus PAMs. We first used UniDesign to redesign the PIAAs
for each Cas protein with a fixed PDB PAM. In the redesign process,
the evolutionary module was disabled and only UniEF was used

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
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Table 2. Recapitulation of PAM-interacting amino acids by UniDesign with PDB PAMs

Cas PDB Redesigned PIAA residue types Recovery Similarity

SpCas9 4UN3 K1107K, E1219E, R1333R, R1335R 4/4 4/4
5F9R K1107K, E1219E, R1333R, R1335R 4/4 4/4

SaCas9 5AXW N985N, N986N, L989L, R991R, R1002K, R1015R 5/6 6/6
5CZZ N985N, N986N, L989H, R991R, R1002K, R1015R 4/6 5/6

St1Cas9 6M0W F673Y, T1048T, M1049Q, Y1055Y, S1082S, Q1084Q, K1086Q 4/7 5/7
FnCas9 5B2O R1241R, E1449N, D1472D, S1473S, R1474R, S1555S, R1556R, R1585R, Y1586Y 8/9 8/9
Nme1Cas9 6JDV Q981Q, H1024H, T1027S, N1029T, E1048E, G1049G 4/6 5/6
Nme2Cas9 6JE3 K843K, D1028E, R1033R, Y1035W, K1044K 3/5 5/5
CdCas9 6JOO I47R, K818K, F1011F, K1015Q, R1017R, R1042K, P1043E, L1046L 4/8 5/8
AceCas9 6WBR R55R, E1044E, R1048R, R1088R, R1091R 5/5 5/5
AsCas12a 5B43 T167S, T539Q, K548R, P599P, K603K, M604M, K607K 4/7 6/7
LbCas12a 5XUS T149T, Q529Q, K538K, Y542Y, P587P, K591Q, M592M, K595K 7/8 7/8
Total N/A N/A 48(47)/65 56(55)/65

Only one scaffold for SpCas9 and SaCas9 was counted for calculating the total recovery and similarity rates. The values outside and inside the parentheses
were obtained with scaffold 5AXW or 5CZZ counted, respectively.

for energy calculation. The results are summarized in Table 2 and
described below.

All PIAAs for SpCas9 (4UN3 and 5F9R) and AceCas9 (6WBR)
were successfully recovered. UniDesign confirmed that the native
PIAAs in both Cas9s led to the lowest energy scores.

For SaCas9, four PIAAs, i.e. Asn985, Asn986, Arg991 and Arg1015
were chosen as native types, whereas Arg1002 was designed into
the physiochemically similar Lys on both scaffolds (5AXW and
5CZZ). An extra mutation, i.e. L989 → H, was chosen on 5CZZ.

For St1Cas9 (6M0W), four out of seven native PIAAs, i.e.
Thr1048, Tyr1055, Ser1082, Gln1084 and one physiochemically
similar mutation F673 → Y were suggested by UniDesign.
Computational modeling suggested that the mutation M1049 → Q
formed a 2.9 Å hydrogen bond with the PAM’s sixth A, and
K1086 → Q formed two hydrogen bonds (3.0 and 3.2 Å, respec-
tively) with the fourth G of PAM, whereas in the experimental
structure, the native Lys1086 also forms two hydrogen bonds (2.8
and 2.4 Å, respectively) with the PAM’s fourth G.

For FnCas9 (5B2O), eight out of nine native PIAAs were picked
by UniDesign, except residue Glu1449. UniDesign suggested Asn
for this position.

For Nme1Cas9 (6JDV), four out of the six native PIAAs were
recapitulated by UniDesign. At the other two PIAAs (Thr1027 and
Asn1029), UniDesign suggested Ser and Thr, respectively, both of
which do not change amino-acid polarity.

Of the five native PIAAs in Nme2Cas9 (6JE3), three were reca-
pitulated by UniDesign; the two differences were at D1028 → E
and Y1035 → W, where UniDesign suggested residues with similar
properties.

For CdCas9 (6JOO), four of the eight native PIAAs were sug-
gested by UniDesign. For the other four PIAAs, UniDesign sug-
gested Lys instead of the native Arg at position 1042, Gln instead
of the native Lys at position 1015 and Arg instead of the native
Ile at position 47. The UniDesign suggested Arg47 is located at a
solvent-exposed position that can form π–π stacking interaction
with PAM nucleotide G1.

For AsCas12a (5B43), four out of the seven native PIAAs were
recovered by UniDesign. The remaining three mutations were
T167 → S, T539 → Q and K548 → R, two of which chose similar
amino acids through UniDesign modeling.

For LbCas12a (5XUS), only one of the eight native PIAAs was
missed, i.e. K591 → Q. Structure shows that K591 protrudes into
the bulky solvent and does not form any contact with the PAM

nucleotides. Thus, this residue can be difficult to predict due to
fewer geometrical restraints.

Overall, 48/65 (74%) native PIAAs from all eight Cas9s were
recapitulated by UniDesign. Considering the similarity of the
amino acids (e.g. R ↔ K, F ↔ Y ↔ W, D ↔ E and S ↔ T), 56/65
(86%) of the PIAAs could be regarded as recovered (see Table 2).
Such high recapitulation rates indicate that PDB PAMs show a high
preference for native or native-like PIAAs and that UniDesign is
a reliable tool to predict PIAAs given a fixed PAM.

UniDesign analysis suggests that native PIAAs
are overall sufficient for consensus PAMs and
that in some cases PIAAs need to change to
accommodate different PAM sequences
For practical reasons, not all the PAMs will be used in structural
biology experiments to determine their integrations with the
PIAAs. In this regard, a CPD method, such as UniDesign, serves
as an alternative to structural biology experiments to scan all
consensus PAMs and provide computational insights into their
interactions with the PIAAs. In particular, we wonder if, for each
different PAM (e.g. AGG versus CGG), a different combination of
PIAAs will be required for favorable Cas–DNA binding to achieve
high gene-editing efficiency.

Here for each Cas structure, the models bearing all possible
consensus PAM variants were used as a scaffold to interrogate
the effects of mutations of the PIAAs on the energy scores in
UniDesign. The results from different PAM variants were com-
bined for sequence logo analysis. For instance, four PAM variants
of SpCas9 (PAM: NGG) with AGG, CGG, GGG or TGG PAMs were
used for PIAA redesign individually. Similarly, 64 (= 4 × 4 × 2 × 2)
PAM variants for SaCas9 (PAM: NNGRRT) were fed into UniDesign
to redesign the corresponding PIAAs.

The UniDesign results were then used to generate sequence
logo plots. It is shown that in general, for most Cas proteins,
especially SpCas9, SaCas9, FnCas9, Nme1Cas9 and LbCas12a,
all or a very high ratio of native PIAAs were computationally
recapitulated based on the UniDesign computed energy scores,
indicating that native or native-like PIAAs are overall sufficient
for all consensus PAM variants (Figure 5). Compared with the
PIAAs recapitulation results with PDB PAMs (Table 2), identical
design results were obtained for SpCas9 (Figure 5A and B),
SaCas9 (Figure 5C and D), Nme1Cas9 (Figure 5G) and AsCas12a
(Figure 5K) with non-PDB, consensus PAMs.
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Figure 3. UniDesign computed total versus binding energy for all PAM variants on different Cas protein scaffolds. (A) 4UN3 (SpCas9); (B) 5F9R (SpCas9);
(C) 5AXW (SaCas9); (D) 5CZZ (SaCas9); (E) 6M0W (St1Cas9); (F) 5B2O (FnCas9); (G) 6JDV (Nme1Cas9); (H) 6JE3 (Nme2Cas9); (I) 6JOO (CdCas9); (J) 6WBR
(AceCas9); (K) 5B43 (AsCas12a) and (L) 5XUS (LbCas12a). The variants with consensus PAMs are colored in red while the others are in gray. UEU, UniDesign
energy units.

Figure 4. UniDesign predicted consensus PAMs for native Cas proteins. (A) 4UN3 (SpCas9); (B) 5F9R (SpCas9); (C) 5AXW (SaCas9); (D) 5CZZ (SaCas9); (E)
6M0W (St1Cas9); (F) 5B2O (FnCas9); (G) 6JDV (Nme1Cas9); (H) 6JE3 (Nme2Cas9); (I) 6JOO (CdCas9); (J) 6WBR (AceCas9); (K) 5B43 (AsCas12a) and (L) 5XUS
(LbCas12a). Note that for Nme1Cas9 and CdCas9, the first two and one positions were excluded from PAM variant generation, respectively, and the ‘-’
symbols were manually added at these positions for plotting sequence logos.
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Figure 5. UniDesign predicted PAM-interacting amino acids based on consensus PAM-bearing Cas protein variants. (A) 4UN3 (SpCas9) with four
consensus PAM variants; (B) 5F9R (SpCas9) with four consensus PAM variants; (C) 5AXW (SaCas9) with 64 consensus PAM variants; (D) 5CZZ (SaCas9)
with 64 consensus PAM variants; (E) 6M0W (St1Cas9) with 32 consensus PAM variants; (F) 5B2O (FnCas9) with four consensus PAM variants; (G) 6JDV
(Nme1Cas9) with 16 consensus PAM variants; (H) 6JE3 (Nme2Cas9) with 256 consensus PAM variants; (I) 6JOO (CdCas9) with 432 consensus PAM variants;
(J) 6WBR (AceCas9) with 64 consensus PAM variants; (K) 5B43 (AsCas12a) with three consensus PAM variants and (L) 5XUS (LbCas12a) with three
consensus PAM variants. Note that 16 and 432 consensus PAM variants were obtained for Nme1Cas9 and CdCas9 because their first two or one PAM
positions were not varied, respectively.

It should also be noted that for some Cas proteins, e.g. Nme2Cas9
(Figure 5H), CdCas9 (Figure 5I), AceCas9 (Figure 5J) and LbCas12a
(Figure 5L), UniDesign suggested specific PIAAs changes upon
PAM variations although native or native-like amino acids were
still dominating at most positions. This means that native PIAAs
may not always best fit all PAMs equally even though they are
still considered consensus PAMs.

Collectively, these results indicate that, although non-PDB, con-
sensus PAMs still highly prefer native or native-like PIAAs, a
single sequence of PIAAs may not tolerate all consensus PAM
variants equally, thus suggesting mutation studies on PIAAs to
accommodate different PAM variations. UniDesign can serve as
a useful computational tool for this purpose.

Comparison with Rosetta on redesigning PIAA
residues
As a comparison, we carried out the same PIAA redesign study
with Rosetta [31, 32], another widely used CPD method, based on
either PDB PAMs or more generally, the non-PDB, consensus PAMs.
The results showed that building on PDB PAMs, Rosetta predicted
only 19/65 (29%) or 22/65 (34%) of the PIAA residues in terms
of amino acid identity or similarity (Supplementary Table 3),
much lower than those achieved by UniDesign (Table 2). Similar
to its poor performance in recovering native PIAAs with PDB

PAMs, Rosetta also largely failed to recapitulate the native or
native-like PIAAs given the non-PDB, canonical PAM variants
(Supplementary Figure 3). Regarding computation speed, the
two programs, UniDesign and Rosetta, were similarly fast
on the PIAA redesign tasks, with UniDesign slightly faster
(Supplementary Table 4).

DISCUSSION
Understanding the PAM recognition process at the structural
biology level is critical to engineering CRISPR–Cas proteins toward
relaxed or altered PAM requirements, which have direct impacts
on their applications in biotechnology and medicine. To this end,
current studies are typically conducted as follows: first, deter-
mining the consensus PAMs; second, solving the Cas/gRNA/DNA
complex structure(s) to elucidate Cas–PAM interactions; and third,
structure-guided engineering of PAM requirement. In the second
stage, the DNA substrate usually contained the most preferred
PAM (e.g. PDB PAM as defined in this study). Despite these useful
and insightful studies, a comprehensive and quantitative under-
standing of the relationship between a Cas protein and its consen-
sus PAMs is still missing, hindering the systematic computational
design of Cas variants with modified PAM requirements. To our
knowledge, COMET is the only computational workflow designed

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad133#supplementary-data
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for CRISPR–Cas PAM engineering to date [21]. But this method
has not been widely used at least partially because it is highly
resource-costing.

In this study, we aim to develop a universal, easy-to-use
CPD approach to model PNI accurately and efficiently. To test
UniDesign’s effectiveness, we used it to model PAM recognition
for eight Cas9 and two Cas12a proteins. We noted that, given
native PIAAs, the whole Cas/gRNA/DNA system with a consensus
PAM, in general, had relatively lower predicted UniDesign binding
energy (and total energy) (Figure 3), suggesting that PIAAs have
a preference for consensus PAMs. This is consistent with experi-
ments that the Cas protein initiates DNA interrogation through
specific recognition of preferred PAMs [58, 59]. By setting δEbind and
δEtot thresholds appropriately, we found that the predicted low-
energy PAM variants to a large extent recapitulated the preferred
consensus PAM profiles as determined by experiments (Figure 4).
Also, we showed that the UniDesign binding energy (together
with δEbind) was a better descriptor for PAM preference than
the total energy (together with δEtot) (Figure 4, Supplementary
Figures 1 and 2). Conversely, we noted that, given PDB PAMs or
consensus PAMs, computational redesign of PIAAs by UniDesign
largely recapitulated the naturally occurring amino acids at these
positions (Table 2 and Figure 5), suggesting that consensus PAMs
also strongly favor native PIAA residues. Thus, computational
modeling of the Cas–PAM recognition by the UniDesign reveals the
inherent mutual preference between consensus PAMs and native
PIAAs resulting from long-time evolution. It should be noted that
although the UniEF was trained only on protein monomers and
PPIs, the Cas–PAM recognition modeling results suggested that
the prototype UniDesign generally works on PNIs.

Another point we would like to discuss is how to use UniDesign
to engineer Cas proteins with relaxed or altered PAMs. Based on
the above analysis, we speculate that sufficient binding interac-
tion between the Cas protein and the PAM is a prerequisite for
DNA interrogation initiation. As a consequence, the UniDesign
binding and total energy of Cas/gRNA/DNA with PDB PAM and
native PIAAs can be used as a reference/baseline. When PAM is
altered (even though it is still a consensus PAM), native PIAAs
may not fit the modified PAM best, resulting in a binding loss
(e.g. reduced binding energy). Thus, the PIAA residues may need
to be redesigned to accommodate the changed PAM, and mean-
while, other PAM-surrounding amino acids may also need to be
redesigned to enhance nonspecific interactions between Cas and
PAM to make up for the lost binding affinity. UniDesign can
automate this design process to generate variants for further
analysis. Also, it should be noted that UniDesign requires only
minimal computational resources and can run efficiently on a
personal computer and different operating systems. For instance,
for the PIAA redesign tasks of each Cas ortholog, only a sin-
gle CPU (Intel(R) Xeon(R) Gold 6140 CPU @ 2.30 GHz) with a
768 MB memory was used by UniDesign, and the average com-
putation time ranged from about 3 to 6 s, depending on a Cas
protein’s length and the number of PIAA residues to be calculated
(Supplementary Table 4).

We also want to point out some possible limitations of
UniDesign and this study. First, the PAM variant modeling and
PIAA repacking/redesign are based on fixed protein and/or nucleic
acid backbone(s). Certain variations of PAMs or PIAAs may result
in large backbone conformational changes that are not captured
by UniDesign, which may have an unexpected impact on PAM
modeling and Cas protein engineering. One possible solution is to
combine UniDesign with MD approaches by using UniDesign to
narrow down a list of the most promising Cas variants followed

by MD simulations to elucidate their effects on desired functions.
Second, we note that there are some variations between the
experimentally determined PAMs and the UniDesign predicted
consensus PAMs. For instance, there is a discrepancy at the
fourth PAM position of Nme1Cas9 between the experimental
data (e.g. N) and predicted results (e.g. T and A). One possible
reason is that we used the polar-hydrogen CHARMM19 force field
in UniEF/UniDesign to achieve a very high computation speed,
but its accuracy may not be as good as the all-atom force fields
such as AMBER [60] or CHARMM36 [30]. We are incorporating
these force fields into UniDesign and will benchmark them in the
follow-up studies.

In sum, we report UniDesign as a universal CPD approach for
PNI modeling and design. We demonstrate UniDesign’s effective-
ness by applying it to decode Cas–PAM recognition quantitatively
for eight Cas9 and two Cas12a proteins. This work represents the
first systematic computational modeling on PAM recognition that
can provide new insights for PAM engineering. We expect that
UniDesign will serve as an important tool for CRISPR–Cas protein
engineering in the field.

Key Points

• We report UniDesign as a new universal computational
protein design (CPD) framework for protein–nucleic acid
interaction modeling and design.

• UniDesign is the first systematic CPD method for engi-
neering CRISPR–Cas protein’s PAM requirements and
achieved good performance on diverse Cas proteins.

• UniDesign accurately modeled the mutual preference
between natural PAMs and native PAM-interacting
amino acids caused by long-term evolution.

• UniDesign is fully open-sourced, computationally effi-
cient and inexpensive, and can run on personal comput-
ers and different operating systems.
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