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Abstract

Single-cell omics data are growing at an unprecedented rate, whereas effective integration of them remains challenging due to different
sequencing methods, quality, and expression pattern of each omics data. In this study, we propose a universal framework for the
integration of single-cell multi-omics data based on graph convolutional network (GCN-SC). Among the multiple single-cell data, GCN-
SC usually selects one data with the largest number of cells as the reference and the rest as the query dataset. It utilizes mutual nearest
neighbor algorithm to identify cell-pairs, which provide connections between cells both within and across the reference and query
datasets. A GCN algorithm further takes the mixed graph constructed from these cell-pairs to adjust count matrices from the query
datasets. Finally, dimension reduction is performed by using non-negative matrix factorization before visualization. By applying GCN-
SC on six datasets, we show that GCN-SC can effectively integrate sequencing data from multiple single-cell sequencing technologies,
species or different omics, which outperforms the state-of-the-art methods, including Seurat, LIGER, GLUER and Pamona.
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Introduction
Recent single-cell sequencing technology has been developed
rapidly, covering multiple levels of omics data such as genomics,
transcriptomics, epigenomics, proteomics, metabolomics and
spatial transcriptomics, etc. Each omics data has unique
advantages and provides high-resolution molecular profiles
at the cellular level. Among them, single-cell ribonucleic acid
sequencing (scRNA-seq) that enables transcriptome profiling of
thousands or even millions of cells at the single-cell level [1],
has been the most widely used to dissect cellular heterogeneity
using RNA expression. It is powerful to identify different cell
populations and study cell–cell communications [2, 3]. Single-cell
assay for transposase-accessible chromatin with high throughput
sequencing (scATAC-seq) is an extensively used method for
measurement of genome-wide chromatin open regions [4].
As transcriptional regulatory elements are enriched in the
open chromatin regions, scATAC-seq could provide additional
information related to gene expression compared to scRNA-seq
[5]. In addition to scATAC-seq, many other technologies have

also been developed to measure chromatin accessibility [6–9],
deoxyribonucleic acid (DNA) methylation [10, 11], and cell surface
protein abundance [12]. Each technology of single-cell omics data
might capture the unique molecular features of the cells and
harbor the information at different layers of gene expression.

Gene expression involves a variety of regulatory mechanisms,
such as transcription and post-transcription regulation, transla-
tion, and post-translation regulation and so on. Therefore, inte-
gration of multi-omics data can establish linkages between data
across modalities, providing more comprehensive insights into
the gene expression regulation. Indeed, multi-omics analysis is
increasingly applied on varies aspects of biology studies, including
microbiology, regulatory genomics, pathogen biology and cancer
biology. Integrating single-cell multi-omics data are able to unveil
the interaction across two or more types of omics data, which
obtain more comprehensive characterization of molecular fea-
tures in each cell [13]. For instance, integration of single-cell tran-
scriptomic and epigenomic data can be used to study the effect
of epigenetic genome changes on gene expression. Furthermore,
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due to high frequency of dropout in single-cell transcriptomic
data, effectively integrating it with epigenomics data is useful to
determine cell identity [14–17]. Thus, integration of sequencing
data from multiple omics has become an urgent need for single-
cell studies.

The choice of anchor is important for omics data integration
because the correct anchor is more conducive to establish the
connection between different data modalities. To date, there are
mainly three types of methods based on the selection of anchors
for single-cell multi-omics data integration: vertical, horizon-
tal and diagonal-based methods [14, 18]. The horizontal-based
methods identify cell-pairs between datasets based on common
gene sets, and the vertical-based methods find cell-pairs between
datasets based on the common cell sets, and the diagonal meth-
ods conduct integration without common genes or cells datasets.
Some commonly used omics data integration algorithms such as
Seurat [19], LIGER [20], Harmony [21] and GLUER [22] are all diag-
onal methods. To integrate two single-cell sequencing data, one
reference and one query, Seurat performs joint dimension reduc-
tion on both datasets using canonical correlation analysis and
further identifies cell-pairs between these two datasets by search-
ing mutual nearest neighbors (MNN) [23] on the shared low-
dimension representation. The identified cell-pairs are used for
further integration analysis. LIGER first employs integrative non-
negative matrix factorization (iNMF) to get a low-dimensional
space of cellular features. Then, the maximum factor loading
matrix is obtained by iNMF. Finally, each cell is assigned a label
and a shared factor neighborhood map is constructed to integrate
the multi-omics data. GLUER maps cells to low-dimension repre-
sentations using iNMF and identifies cell-pairs using MNN. Finally,
cell-pairs are used for integration by searching nonlinear mapping
relationships between two datasets through neural networks. Har-
mony groups single cells into multiple clusters through soft clus-
tering. Then data integration is performed with the aid of linear
correspondences between classes computed from specific cluster
centers in each cluster. Pamona [24] and SCIM [25] are vertical-
based methods for integrating single-cell multi-omics datasets.
Pamona is a partial manifold alignment algorithm for hetero-
geneous single-cell multi-omics data integration based on the
foundation of partial-GW framework. Firstly, a weighted k-nearest
neighbor (KNN) [26] graph is constructed using the reference and
query datasets. Then the geodesic distances of cells within the
same dataset are computed to link the reference data and query
data through common cells. Finally, cells in the reference and
query datasets are aligned in a common low-dimensional space.
SCIM uses the autoencoder [27] to encoder the reference and
query datasets to the shared low-dimensional space. Then, use
KNN to find the corresponding relationship between the reference
and query in the shared low-dimensional space.

Although various integration algorithms have been proposed,
the differences in sequencing methods, quality and expression
patterns of single-cell multi-omics data are still the challenges
for the integration [8, 28–30]. The current methods are mainly
confronting two problems. On one hand, they only consider the
cells relationship between the reference and query datasets but
ignore the relationship among cells within each dataset. On the
other hand, since most single cell sequencing techniques are
still cell-destructive, multiple datasets of same or different omics
often have unpaired cells.

To overcome these two bottlenecks, we propose GCN-SC, a
novel framework for single-cell sequencing data integration based
on GCN [31]. The main advantage of GCN is that it can handle
data with incomplete spatial relationships with the power of

convolutional networks. Unlike other machine-learning models,
GCN does not encode data using one-dimensional vectors (or
two-dimensional matrices). Instead, it uses graph structures
to encode relationships among cells. GCN-SC uses both intra-
dataset and inter-dataset cell-pairs to construct a mixed graph.
The GCN model is further applied on the mixed graph to adjust
single-cell data and finally non-negative matrix factorization
(NMF) algorithm is applied for dimension reduction. With six
datasets from multiple single-cell sequencing methods (Table S1),
we show that GCN-SC is efficient to integrate single-cell data
across different single-cell sequencing methods, species and
omics. Moreover, it outperforms the existing methods, including
Seurat, GLUER, LIGER and Pamona, for the integration of single-
cell multi-omics data.

Materials and methods
Datasets
To evaluate the performance of the GCN-SC, we collected six
single-cell multi-omics datasets from different tissues and organs
in humans and mice. All the six datasets used in this study
are publically available. Dataset 1 (PCF_2k) contains scRNA-seq
data of human pancreatic islets from two single-cell sequencing
technologies, Including Cel-seq2 (GSE81076) [32] and Fluidigm C1
(GSE86469) [33], which captured 1,728 and 638 cells, respectively.
Dataset 2 (PSG_5k) consists of cells from human pancreas and
islet from Smart-seq2 (E-MTAB-5061) [33] and 10X (GSE81608) [33],
which have 3,514 and 1,600 cells, respectively. Dataset 3 (HM_10k)
[34] consists of scRNA-seq data of 8,569 and 1,886 cells from
human and mouse pancreases, respectively. Dataset 4 includes
CITE-seq data [35] consisting of 161,764 human bone marrow cells
with 228 antibodies, and scRNA-seq data composed of 2,700 cells
from PBMC [36]. Dataset 5 consists of scRNA-seq and scATAC-seq
of 3,009 human peripheral blood mononuclear cells [35]. Dataset
6 includes scRNA-seq and scATAC-seq of 14,645 cells from human
lymphoma [35]. The specific introduction of data preprocess is
shown in Supplementary Si1.

scImpute
Single-cell transcriptome sequencing has revolutionized tra-
ditional analysis of gene expression, enabling comprehensive
characterization of the transcriptomics of individual cells with
unprecedented throughput [37]. However, transcriptomic data
analysis is limited by its own dropout events and curse of
dimensionality, and its high sparsity brings serious challenges to
downstream analysis of omics data integration [38–41]. Dropout
events occur when gene expression cannot be detected due to
sequencing technology limitations or low expression levels of
genes [42]. Thus, the zero values in the expression matrix include
both true zero and false zero values. Many methods have been
developed for the imputation of dropout events in scRNA-seq
data, such as DrImputes [43], SAVER [44], scImpute [45] and
autoencoder networks [46]. The comparative study found that
using scImpute imputation method to process scRNA-seq data
showed better performance [47]. It can overcome the sparsity
problem of scRNA-seq data and provide a high-quality expression
matrix. Thus, we used scImpute in GCN-SC framework for the
imputation of dropout events in scRNA-seq data.

Mnn algorithm
In order to integrate multi-omics data, it is necessary to explore
the correspondence between cells from each omics data. A
cell-pair consists of two similar cells, and some cells may form
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cell-pairs with multiple cells or may not form cell-pair with
any cell. The selection of cell-pairs is mostly based on the
characteristics of the cells. In our framework, the MNN algorithm
is used to find cell-pairs within the same omics and between
different omics data. This algorithm is an optimization of the
KNN algorithm. The KNN algorithm is designed to find the k
closest examples in the training dataset to the new input instance.
Classify the input sample into a class, which most samples in
the k neighbors belong. The typical KNN algorithm is used for
classification, while the MNN algorithm adapted the idea to find
its k nearest neighbors for a new input instance. The specific
introduction of MNN algorithms is shown in Supplementary Si2.

Graph convolutional neural networks
To correlate omics data obtained from different experiments and
transfer information between different omics, it is necessary to
assume that there is a correspondence between datasets. Previous
methods assume that the correspondence between omics data is
linear, but this is not true in reality [48–51]. Graph neural networks
(GNN) can convert the practical association as a connection and
transfer message between nodes in a graph. With the progress
of deep learning, more and more types of GNN emerged. Among
them, GCN is a kind of graph network that generalizes the convo-
lution operation from traditional data to graph data [52].

Our framework used a spectral-based GCN, which consists of
four layers, one input layer, two convolutional layers and one
output layer. The use of the two convolutional layers ensures that
the method is able to learn undirected graph relationships.

When we use the model for integration between different
omics datasets the activation function of the convolutional layer
selects ReLu. The input of the GCN includes both the query omics
data expression matrix X0 ∈ Rn×m, and the hybrid graph. In this
paper, the matrix A ∈ Rm×m is constructed based on the cell-pairs
matrix P ∈ Rmi×2 obtained by the MNN algorithm. When aij = 1, it
means that cell i and cell j are the nearest neighbor to each other.
When aij = 0, the situation is opposite, and the diagonal elements
of matrix A are all zero. Since the diagonal elements are set to zero,
the cell’s own characteristics are ignored, so it is necessary to add
a self-loop to it to obtain the matrix A∗ ∈ Rm×m, and the degree
matrix D ∈ Rm×m is obtained from the matrix A∗. D is a diagonal
matrix, and the value of dii represents the number of MNNs of
cell i in the query dataset. To prevent the neighbor information
of a certain cell from excessively affecting the cell characteristics,
we use the degree matrix to normalize the matrix A∗ to obtain the
adjacency matrix Ã, which is:

∼
A = D−1/2A∗D1/2 = D−1/2 (A + I) D1/2 (1)

where A∗ = A + I, I ∈ Rm×m is the identity matrix.
When we use the model for label transfer between omics data,

the activation function of the convolutional layers selects ReLu
and Softmax, respectively. The Softmax activation function is
defined as follows:

Soft max(.) = exp(.)∑
exp(.)

(2)

At this time, the input of the GCN is the expression matrix X0

of the query omics data, the cell label L ∈ Rmi×1 in the reference
omics data corresponding to the cell-pairs index between the
omics data and the adjacency matrix Ã constructed by the cell-
pairs inside the query omics data. The reference dataset cell label
in the cell-pairs is selected as the corresponding query dataset

cell label, where mi is the number of cell-pairs between omics.
Since it is not guaranteed that every cell in the query dataset can
form a cell-pair with cell in the reference dataset during cell-pairs
selection, so the label transfer in this paper is a semi-supervised
process.

The layer weight matrix and the bias matrix are introduced
inside the GCN model, and the initialization of W and B consists
of data randomly taken from [−a, a], where:

a = 1√
m

(3)

the output of each layer of the GCN is denoted as Xl+1, where:

Xl+1 = F
(

Xl,
∼
A

)
= σ

(
D−1/2A∗D1/2XlWl

)
(4)

when the gap between the output Xl+1 and the target matrix Y is
large, the model is optimized by adding the bias matrix B, that is:

Xl+1 = Xl+1 + B (5)

In the model, the mean square loss function is used to feedback
the model performance, and we choose Adam optimizer as the
model optimizer. The objective function of the GCN model is:

arg minF(X)‖Y − F(X)‖2
F (6)

where F(X) ∈ Rn×mi is the expression matrix extracted from the
model output data by the cell index number in the second column
of cell-pairs matrix P, and Y ∈ Rn×mi is the expression matrix
extracted from the reference dataset by the cell index number in
the first column of P.

Non-negative matrix factorization
Single-cell sequencing generates high-dimensional data and a
basic step in single-cell data analysis is to cluster and visualize
each cell after using dimensionality reduction techniques [53]. In
GCN-SC, we used NMF for the dimensionality reduction because
of two reasons. On one hand, the processed single-cell sequencing
data is non-negative, which is suitable for NMF [54]. On the other
hand, the NMF algorithm has many advantages compared with
traditional algorithms, such as the simplicity of implementation,
the interpretability of the decomposition form and decomposition
result. Since the activation functions in the GCN are Relu and
Softmax, the expression values of the omics data after being
processed by the GCN are still non-negative numbers, which
ensures that each expression value has biological significance.
The specific introduction of NMF algorithm is shown in Supple-
mentary Si3.

Evaluation indicators
In this paper, we used two different evaluation indicators to
assess the model performance. In evaluating the performance of
integration of scRNA-seq and scATAC-seq data, we used ‘align-
ment score’, an evaluation index proposed by Seurat. The better
the integration effect, the more comprehensive the information
transfer, and the higher the ‘alignment score’ obtained. The align-
ment score is a value from [0, 1]. The solution process of the
‘alignment score’ is as follows: find the k nearest neighbors for
each cell in the data, observe how many cells in the k cells belong
to the same omics, and compare the k nearest neighbors of all
cells with the search for k nearest neighbors. Cells belonging to
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the same omics are summed and averaged to get
∼
x. If the two

omics data are well integrated and the information transfer is
sufficiently comprehensive, it should be ensured that the number
of cells of the own omics and the other omics cells in the k nearest
neighbors of each cell is almost equal. This process is to ensure
that the two sets of data are evenly mixed and indistinguishable.
Calculated as follows:

AlignmentScore = 1 −
∼
x − k

N

k − k
N

(7)

where k is 0.01 of the total number of cells in the integrated
dataset, and N is the number of omics types included in the
integrated dataset.

In the process of label transfer that map the scRNA-seq data
to CITE-seq data, a custom ‘transfer accuracy rate’ is used to
evaluate the model’s label transfer performance. The better the
label transfer effect, the higher the evaluation index, and its value
range is [0, 1]. When evaluating the label transfer accuracy, let
Lpred be the cell label predicted by GCN-SC, Ltrue be the accurately
predicted label, and the calculation formula is:

Accuracy = Ltrue

Lpred
(8)

Illustration of the GCN-SC workflow
In the paper, we put forward a novel method GCN-SC for single-
cell multi-omics data integration, and the flowchart is shown in
Figure 1. The source codes and datasets are available at https://
github.com/YuBinLab-QUST/GCN-SC/.

The steps of GCN-SC method are:
Step1. Single-cell multi-omics data as input, including data

of gene expression (scRNA-seq), chromatin accessibility (scATAC-
seq) and protein expression (CITE-seq).

Step2. The scImpute algorithms were used to reduce potential
bias caused by high sparsity of scRNA-seq data.

Step3. Using MNN algorithm to find cell-pairs within pre-
processed data.

Step4. After cell-pair selection, input the mixed graph into
graph convolutional neural network (GCN) for omics data inte-
gration and information transfer.

Step5. NMF was implemented for dimension reduction on the
adjusted matrices from the query and the matrices from reference
for clustering analysis.

Step6. Six single-cell datasets across different single-cell
sequencing technologies, species and omics were used to assess
GCN-SC model.

Results and discussion
Integration of scRNA-seq data from different
single-cell sequencing technologies
Due to the difference in sequencing depth of RNA from single cell
and heterogeneities of biological samples, as well as efficiency
of single-cell experiments, RNA expression of each gene could be
quite variable across scRNA-seq data. Particularly, the variations
might be even more dramatic between scRNA-seq data from
experiments with different single-cell sequencing technologies,
such as Fluidigm, Cel-seq2 and Smart-seq. This kind of systematic
bias in gene expression is known as the batch effect. A strong
batch effect would complicate downstream analysis and lead to

potential misinterpretation of results. To test the ability of GCN-
SC to remove such kind of batch effect, we applied GCN-SC to
integrate scRNA-seq data from different experimental batches
with two datasets. Dataset 1 (PCF_2k) contains scRNA-seq data
of human pancreatic islets from two single cell sequencing tech-
nologies, including Cel-seq2 and Fluidigm C1. Dataset 2 (PSG_5k)
consists of cells from the human pancreas and islet from Smart-
seq2 and 10X.

In PCF_2k, 10 clusters and 5 clusters of cells were identified in
Cel-seq2 and Fluidigm C1 data by using UMAP [55], respectively
(Figure 2A and B). Even though these scRNA-seq data are from
the same types of human tissue, using UMAP algorithm directly
on the raw expression matrix, results in almost fully separation
of cells from different technologies in a two-dimensional space
(Figure 2C). This batch effect was almost unchanged after impu-
tation by using scImpute algorithm (Figure 2D). Next, Cel-seq2
data as the reference and Fluidigm C1 data as the query, and
then applied MNN algorithm to find three MNNs for each cell
in the query dataset. The cell-pairs were used to construct the
internal cell graph of the query dataset. Similarly, MNN algorithm
was applied to find five MNNs between cells from the reference
and the query dataset, and a cross-dataset graph was further con-
structed. By using the mixture of internal cell graph and the cross-
dataset graph as the input of GCN, the batch effect between two
scRNA-seq data was greatly reduced (Figure 2E). Finally, we used
NMF to reduce the dimension of integrated data and followed by
UMAP for two-dimensional embedding (Figure 2F). Notably, the
results maintain a similar cell cluster structures as the original
reference data, whereas the query data was successfully inte-
grated (Figure 2A and F). Similar results could be observed by
applying the analysis on the dataset 2 (Figure S1), demonstrate
that GCN-SC is efficient to integrate scRNA-seq data from various
single cell sequencing technologies.

GCN-SC enables cross-species cell alignment
based on scRNA-seq data
Single cell sequencing data has been widely used for the iden-
tification of cell types of different species, such as humans and
mice. However, association of different cell types across species is
poorly understood, which is at least partially due to the lack of
appropriate methods to align each type of cell between different
species. To examine the feasibility of the GCN-SC for cross-species
cell alignment, we selected dataset 3 (HM_10k) from the previous
study [56], which consists transcriptomic data of 8,569 and 1,886
cells from human and mouse pancreases, respectively (Figure S2).

Firstly, we retained the top 2,000 hypervariable genes to obtain
the gene expression matrix in human and mouse. Similar as the
integration of scRNA-seq data from different single-cell sequenc-
ing technologies, directly applying UMAP on the gene expression
matrix of human and mouse cells to project them into two-
dimensional space, almost did not find any cells from these two
species are clustered together (Figure 3A), even though there are
common types of cells. These results indicate the huge batch
effect of scRNA-seq data across different species. In contrast,
applying GCN-SC on this dataset by using human data as the
reference and mouse data as the query, the cells from human and
mouse were able to cluster together (Figure 3B). We also using
the mouse data as the reference and the human data as the
query, the results were not impacted (Figure S3). The effective
integration of the data enables to cluster cells from different cell
types, rather than different species, which identified 8 main types
of cells, including alpha, beta, delta, ductal, endothelial, gamma,
mast, quienscent_stellate and each class was present in both
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Figure 1. Overview of the GCN-SC framework on single-cell multi-omics data integration. GCN-SC can take single-cell multi-omics data as input,
including data of gene expression (scRNA-seq), chromatin accessibility (scATAC-seq) and protein expression (CITE-seq). Each omics data was pre-
processed to a uniform count matrix, in which each row represents one feature and each column represents one cell. As gene expression has much
higher frequency of dropout compared to other omics data, scImpute was conducted on the matrix to reduce the sparsity of the matrix. Next, one
scRNA-seq data were used as the reference, while the rest were considered as the query. By using MNN algorithm, cell-pairs with the closest Euclidean
distance were identified, and then a mixed graph was constructed based on cell–cell relationships, which includes both inter-dataset edges and intra-
dataset edges. A GCN that includes four layers further took this mixed graph to adjust matrices from the query dataset. Finally, NMF was implemented
for dimension reduction on the adjusted matrices from the query and the matrix from the reference.

species (Figure 3C and Table S2). For each cell type, proportion of
the misaligned cells are very low and almost not found in some
cell types (Figure 3D). Taken together, our results suggested that
GCN-SC is not only able to remove batch effect between different
batches of scRNA-seq data, but also able to align the same type of
cells across different species with scRNA-seq data.

Label transfer between scRNA-seq and CITE-seq
data with GCN-SC
CITE-seq enables the detection of surface proteins and tran-
scriptome profiling simultaneously in each single cell, which
provide association between RNA expression pattern and differ-
ent surface proteins [57, 58]. Using the surface proteins, different

types of cells could be identified. Due to different sequencing
technologies, the feasibility to directly map scRNA-seq data to
CITE-seq data remains unclear. To this aim, we collected dataset 4,
which includes CITE-seq data consisting of 161,764 human bone
marrow cells with 228 antibodies (CITE161k), and scRNA-seq data
composed of 2,700 cells (PBMC3k). Based on the surface proteins,
the 161,764 cells were classified into 5 types including B cell,
Progenitor cell, NK, Mono/DC and T cell (Figure 4A). On the other
hand, the 2,700 cells were annotated into 6 cell types including
B cells, Platelet cells, NK cells, T cells, Mono/DC cells and a few
unlabeled cells (Figure 4B).

We used the transcriptomic data of CITE161k as the reference
and applied GCN-SC to map the 2,700 cells from PBMC3k to the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
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Figure 2. Integration of scRNA-seq data from multiple experimental batches. (A) Raw cluster map of Cel-seq2 transcriptome sequencing data with
UMAP. (B) Raw cluster map of Fluidigm C1 transcriptome sequencing data with UMAP. (C) The UMAP embedding of the original expression matrix
from Cel-seq2 and Fluidigm, which contain 2000 hypervariable genes. (D) UMAP embedding of the expression matrix processed by scImpute algorithm.
(E) UMAP embedding of integrated expression matrix processed by the GCN-SC framework. (F) Clustering diagram of the integrated data processed
by GCN-SC.

reference. In this way, we were able to predict the cell types of each
cell in the query by transferring the label in CITE161k to PBMC3k.
The predicted label that is identical to the annotated one was
recorded as an accurate prediction. Among the four common cell
types between the two datasets, NK cell has the lowest transfer
accuracy and many of them were predicted as T cells, probably
due to relative similar expression profiles of these two cell types
(Figure 4C). We also test the robustness of the prediction by chang-
ing the value of the MNN coefficient between groups. Interestingly,
with the increasing of the coefficient, the transfer accuracy also
increased (Figure 4D and Table S3). In addition, we also explores
the change of prediction accuracy of cells in common cell types
with the number of anchor pairs (Table S4). Eventually, we used
the nearest neighbor parameter 24, which achieves 97% accuracy
after 100 iterations. Therefore, GCN-SC is an efficient tool to
predict cell types by mapping them to a reference with labels, even
if the cell types in the reference and query dataset are not fully
matched.

GCN-SC outperforms the existing methods on
integration of single-cell multi-omics data
Single-cell transcriptomic data can quantify RNA expression
of thousands of genes in parallel in each cell, whereas single-
cell epigenomics data is able to characterize DNA methylation
or chromatin accessibility in nearby genomic regions, which
is essential to determine the transcriptional activity of each
gene [59]. Therefore, these two omics data should be highly

correlated. Integrating these two is not only able to reveal
gene regulatory relationships associated with cell heterogeneity
but can also increase the power for classification of subcel-
lular population comparing to using only single omics data
[4, 60].

Therefore, we explored the performance of GCN-SC in integrat-
ing transcriptomics and epigenomics data from the same group
of cells using two datasets, including dataset 5 (PBMC_3k) and
dataset 6 (HL_11k). Both datasets have transcriptomics data and
epigenomics data (Figure S4). As single-cell transcriptomics data
has been more extensively used for the clustering, we chose it as
the reference, and epigenomics data as the query. We retained the
top 2,000 hypervariable genes in the two omics data, and then
selected the common ones to obtain a gene expression and a gene
activity matrix with the identical dimension.

Using UMAP, we projected the cells from scRNA-seq and
scATAC-seq data into a two-dimension plot based on gene
expression and gene activity matrix. As expected, the cells from
scRNA-seq are almost fully separated from the cells from scATAC-
seq on both PBMC_3K and HL_11k, suggesting that different omics
data have distinct batch effect (Figure 5A). However, by applying
UMAP on the output of GCN, we found that the batch effect
between scRNA-seq and scATAC-seq was greatly removed, for
which the cells from two omics data could be clustered together
(Figure 5B). Interestingly, some clusters of cells were only observed
from one omics data, suggesting a compensation effect when
integrating these two omics data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
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Figure 3. Cell alignment of cross-species transcriptome sequencing data. (A) The UMAP embedding of the original expression matrix of cells from
human and mouse. (B) The UMAP embedding the integrated data processed by GCN-SC. (C) Identification of cell types on the UMAP embedding of the
results from GCN-SC. (D) Number of cells from human and mouse in each cell type in the original data (upper) and in the processed data from GCN-SC
(bottom).

We further compared GCN-SC with four existing integration
algorithms, Seurat, LIGER, GLUER and Pamona. By using UMAP
on the data integrated by these four methods on PBMC_3k, we
classified the cells into different clusters. Seven clusters that
were identified on data from Seurat and LIGER, while the later
one is more compacted (Figure 5C and Figure S5A). Both these
two methods use the low-dimensional embedding vector of the
data in the integration process, so that the information carried
by each omics data might be lost, and the feature information
carried in each omics dataset cannot be fully taken into account.
GLUER obtained 10 clusters, while the boundary of each cluster
is not clear (Figure 5D). Surprisingly, GCN-SC was able to identify
14 clusters and each cluster was clearly separated from each
other (Figure 5E). The similar trend could also be observed when

applying the four methods on dataset 6 (HL11k), in which GCN-SC
obtained the most and clearest cell clusters (Figure S5B–G).

To compare the performance quantitatively, we calculated the
alignment scores (Methods) of the data processed by Seurat,
GLUER, Pamona and GCN-SC on PBMC_3k and HL_11k. Since
LIGER costs dramatically more computational resources, it is not
feasible to use 2,000 features for integration. Therefore, we only
included Seurat, GLUER and Pamona for a fair comparison. The
alignment score of Pamona on datasets 5 and 6 is 0.242 and 0.309,
respectively, which is very different from the other three methods.
As expected, GCN-SC achieved much higher alignment score
than Seurat, Pamona and GLUER on both datasets (Figure 5F and
Figure S5H). Taken together, our results demonstrated that GCN-
SC is more accurate to integrate single-cell transcriptomic and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad081#supplementary-data
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Figure 4. Mapping cell types between scRNA-seq and CITE-seq data. (A) The UMAP visualization diagram of the CITE-seq data. (B) The UMAP visualization
diagram of the scRNA-seq data. (C) The UMAP visualization of the predicted cell type in scRNA-seq data based on cell labels from CITE-seq data. (D)
Proportion of the correctly predicted cells in each cell type with different numbers of anchors.

epigenomic data compared to the existing methods, indicating
that it could be powerful to integrate single-cell multi-omics data.

Conclusion
In this paper, we proposed a GCN-based framework for integrat-
ing single-cell multi-omics data (GCN-SC). GCN-SC uses multi-
ple ways to address the challenges across different steps of the
integration. First, the use of imputation algorithms addresses
the challenge about sparsity of transcriptomic data. Second, the
MNN algorithm captures one-to-many and many-to-many rela-
tionships between cells in a biological sense. Then, the GCN takes
into account both reference data and query data. It uses mixed
graph to explore the nonlinear functional relationship between
different omics datasets and realize the information transfer
between omics data. Finally, NMF can obtain low-dimensional

representation of single-cell omics data therefore overcomes the
issue of high-dimensional data. In summary, GCN-SC is an effec-
tive framework for single-cell omics data integration. As single-
cell multi-omics data become more and more abundant, integrat-
ing data promises to deepen our recognition of the role of cellular
heterogeneity in the context of development and pathogenesis.

Although GCN-SC could effectively integrate single-cell multi-
omics data, there might be many modifications to improve its
performance in the future. First, it is reasonable to flexibly adjust
the number of convolutional layers according to the size and
characteristics of different datasets. Second, by adding weights
to the linkages between different omics, cell-pairs across differ-
ent types of the cells could be discriminatory, which might be
helpful to dissect the cell heterogeneities. Hopefully, these and
other issues will be addressed in the updated version of the
framework.
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Figure 5. Integration of single-cell multi-omics data. (A) The UMAP visualization of the scRNA-seq and scATAC-seq data from the same group of cells
(dataset 5). (B) The UMAP visualization of the integrated data processed by GCN-SC. The UMAP visualization of the integration data by Seurat (C), GLUER
(D) and GCNSC (E). (F) The alignment score map of the three integration algorithms Seurat, GLUER and GCN-SC on dataset 5.
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Key Points

• We propose a new method to integrate sing-cell data
from different sequencing technologies, species and
omics.

• The model can transfer labels across different single-
cell datasets, which enables to predict cell labels in
unlabeled datasets with a labeled dataset as reference.

• The results of the six datasets show that GCN-SC
achieves robust and good performance for the integra-
tion of single-cell omics datasets.

Supplementary data
Supplementary data are available online at https://academic.oup.
com/bib.
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