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Abstract

Exosomes cargo tumour-characterized biomolecules secreted from cancer cells and play a pivotal role in tumorigenesis and cancer
progression, thus providing their potential for non-invasive cancer monitoring. Since cancer cell-derived exosomes are often mixed
with those from healthy cells in liquid biopsy of tumour patients, accurately measuring the purity of tumour cell-derived exosomes
is not only critical for the early detection but also essential for unbiased identification of diagnosis biomarkers. Here, we propose
‘ExosomePurity’, a tumour purity deconvolution model to estimate tumour purity in serum exosomes of cancer patients based on
microribonucleic acid (miRNA)-Seq data. We first identify the differently expressed miRNAs as signature to distinguish cancer cell-
from healthy cell-derived exosomes. Then, the deconvolution model was developed to estimate the proportions of cancer exosomes
and normal exosomes in serum. The purity predicted by the model shows high correlation with actual purity in simulated data and
actual data. Moreover, the model is robust under the different levels of noise background. The tumour purity was also used to correct
differential expressed gene analysis. ExosomePurity empowers the research community to study non-invasive early diagnosis and to
track cancer progression in cancers more efficiently. It is implemented in R and is freely available from GitHub (https://github.com/
WangHYLab/ExosomePurity).
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INTRODUCTION

Cancer is a genetic disease in which tumour cells grow uncon-
trolled and invade nearby tissues or spread to other parts of the
body [1]. As a leading cause of death worldwide, lung cancer
leads to over a million deaths and breast cancer was the most
common cancer among women [2–4]. However, cancer mortality
can be reduced if patients are diagnosed and treated early. A non-
invasive early detection of cancer is of crucial importance for
cancer treatment.

Exosomes are a class of extracellular vesicles, which are
derived from cells through exocytosis and ingested by target
cells, transferring biological signals to local or distant cells [5, 6].

Exosomes contain biomolecules, such as ribonucleic acids
(RNAs), microRNAs (miRNAs), deoxyribonucleic acid (DNA),
proteins or lipids and are involved in various physiological
and pathological processes through autocrine and paracrine
signalling [7–12]. To date, the role of exosomes in tumorigenesis
and cancer progression is well characterized. For example, in
colon cancer, exosomal a disintegrin and metalloproteinase
domain 17 (ADAM17) derived from cancer cells facilitated
metastasis by cleaving E-cadherin junctions and contributing
to the formation of premetastatic niches [13]. Glioma cells have
been found to promote M2 polarization of macrophages through
the secretion of exosomal miR-3591-3p [14]. Exosomes derived
from pancreatic ductal adenocarcinoma (PDAC) were shown to
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transport CD44v6/C1QBP complexes to the plasma membrane of
hepatic satellite cells, promoting hepatic metastasis of PDAC [15].
Transfer of unshielded RN7SL1 in exosomes to breast cancer cells
promotes both tumour growth and metastasis [16]. Exosomes
can be separated into two discernible subpopulations by AF4
technology and enrich highly heterogeneity biomolecules in
various exosomes [17, 18]. Thus, exosomes can be harnessed as
an ideal non-invasive diagnosis biomarker [19–21].

It is noteworthy that liquid biopsy of tumour patients con-
tains the mixed sources of exosomes including secreted from
cancer cells and healthy cells [22–24]. Identification of cancer cell-
derived exosomes from the mixed ones is not only critical for the
early detection of cancers but also essential for unbiased identifi-
cation of diagnosis biomarkers. Therefore, accurately measuring
the purity of tumour cell-derived exosomes in liquid biopsy is an
efficient approach to address this problem.

The deconvolution method is a common technique in signal
and image processing. In these fields, deconvolution is used to
reverse the effects of convolution, which is the mathematical
operation that occurs when a signal or image is passed through
a system that modifies it. By applying deconvolution, one can
attempt to recover the original signal or image before it was
convolved. In recent years, the deconvolution method has been
applied in biology to estimate cellular composition from the
methylation data [25, 26], bulk RNA-Seq data [27–30] and spatial
transcriptomic data [31]. For example, in the context of bulk RNA-
Seq data, CIBERSORT characterizes cell composition of complex
tissues from their gene expression profiles using a deconvolution
method [29]. TIMER imputes the tumour-infiltrating immune cells
from the tumour tissue expression profiles [28]. MethylPurify
infers tumour purity using differentially methylated regions from
tumour methylome samples [26]. Although these methods yield
the satisfactory prediction performance in the purity analysis,
there is still lack of the methods of estimating the tumour purity
from serum exosomes. An accurate estimation of the purity of
cancer cell-derived exosomes from liquid biopsy will make sense
to tumour early diagnosis and track cancer progression.

Here we propose ‘ExosomePurity’, a tumour exosome purity
deconvolution model to estimate tumour sourced exosome purity
in serum exosomes of cancer patients based on miRNA signatures.
Firstly, we interrogated miRNA-Seq data to identify the differently
expressed miRNAs as miRNA signatures to distinguish cancer
cell- from healthy cell-derived exosomes. The generalization of
the signatures was evaluated in the independent data. Then
the deconvolution model was developed to estimate the tumour
exosome purity in serum exosomes of cancer patients. The per-
formance and robustness of this purity model were evaluated on
actual and simulated data. Finally, we used the tumour exosome
purity to correct differential expressed gene (DEG) analysis.

MATERIALS AND METHODS
The framework of tumour purity deconvolution
model
We developed ‘ExosomePurity’, a tumour purity deconvolution
model to estimate the tumour exosome purity in serum exosomes
of cancer patients (Figure 1A). Firstly (Step 1), we performed the
DEG analysis between cancer cell line-derived exosomes and
healthy cell-derived exosomes using miRNA-Seq data. Those miR-
NAs that are differentially expressed between groups and stably
expressed within groups constitute an miRNA signature. We sup-
posed that the expression profile of the miRNA signature repre-
sented the miRNA expression pattern of the exosomes secreted
from cancer cells in tumour tissue and normal cells. Therefore,

the miRNA signature profile can be used to divide the mixed
serum exosomes of cancer patients into cancer cell- and healthy
cell-derived ones. With this signature profile and exosome miRNA
expression profile of cancer patients as input, we built the tumour
purity deconvolution model to quantify the proportions of cancer
exosomes and normal exosomes in serum (Step 2). Under the
assumption that serum exosomes of cancer patients contain two
major components of exosomes, from cancer cells and healthy
cells, the deconvolution model is formularized as T = Eα + ε

(Figure 1B). T represents the serum exosome miRNA expression
profile of cancer patients. E is the miRNA signature profile of
cancer cell line-derived and healthy cell-derived exosomes. α is
the proportion matrix of cancer cell- and healthy cell-derived
exosomes. To deconvolve the mixture, we employed the constraint
quadratic programming algorithm (see Materials and Methods
for detail). We subsequently evaluated the model performance
using simulated data mixed by cancer cell- and healthy cell-
derived exosomes with a series of different purities as well as
actual data (Step 3). The evaluation datasets cover 11 cancer
types and include two miRNA-Seq datasets � and � (Figure 1C–
D). The model robustness was evaluated by adding different levels
of noise to simulated data. Finally, we utilized the exosome purity
calculated by the model to correct differentially expressed miR-
NAs.

Tumour purity deconvolution model
We assumed that the serum exosomes of tumour patients are
sourced from cancer cell- and healthy cell-derived exosomes,
whose miRNA expression patterns can be speculated from cancer
cell line exosomes and healthy controls. Here we first generated
an miRNA signature profile to depict the expression patterns of
miRNAs from cancer cell- and healthy cell-derived exosomes. An
miRNA signature profile is expected to use for accurately dis-
tinguishing cancer exosomes from healthy controls. We selected
the miRNAs that are differentially expressed between cancer cell
line exosomes and healthy controls measured by DESeq2 (version
1.30.1) [32] and stably expressed in each subset measured by
the variance, to make an miRNA signature. In the present study,
miRNAs with |log2FC| > 1 and false discovery rate (FDR) < 0.01 and
with variance <2 were considered to be differentially expressed
and to be stably expressed, respectively.

In an miRNA signature profile, for any miRNA i in sample
j, Eki represented the expression value of miRNA i, which was
calculated by the average expression of i in the samples from
exosome source k (k = 1 for cancer cell-derived exosomes and
k = 2 for healthy cell-derived exosomes) (Equation (1)). For any
sample j, αj consisted of tumour purity α1j and healthy purity α2j

(Equation (2)).

(∀ i ∈ [1, m] , ∀j ∈ [1, n]
)

: Ei = [E1iE2i]i=1→m (1)

αj = [
α1jα2j

]
j=1→n (2)

For miRNA i in serum exosomes of the patient j, we defined the
expression level tij was composed of the expression of cancer cell-
derived exosomes and healthy cell-derived exosomes (Equation
(3)). An array formed by the expression level tij, Tij, is the product
of expression value Ej and purity array αj (Equations (4) and (5)).

Eki · (∀ i ∈ [1, m] , ∀ j ∈ [1, n]
)

: tij = α1iEi1 + α2iEi2 + ε (3)

Tij = (
t1j, t2j, . . . tmj

) = (
tij

)
i=1→m (4)

Tij = αjEi + ε (5)
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Figure 1. Overview of a tumour purity deconvolution model ‘ExosomePurity’ and the distribution of cancer types used in the model. (A) As input for
a tumour purity deconvolution model ‘ExosomePurity’, an miRNA signature profile is comprised of miRNAs that are differentially expressed between
cancer cell line-derived exosomes and healthy cell-derived exosomes and are stably expressed within each group (Step 1). Given the miRNA signature
profile and tumour exosome miRNA expression profile, tumour purity is solved by the purity deconvolution model, which uses quadratic programming
to estimate parameters (Step 2). The performance and robustness of the model are evaluated using independent and external samples alone or in
combination with noise background. Tumour purity is applied to correct the differentially expressed analysis between tumour exosomes and healthy
controls (Step 3). (B) Tumour purity deconvolution model. T represents the serum exosome miRNA expression profile of cancer patients. E is the miRNA
signature profile of cancer cell line-derived and healthy cell-derived exosomes. α is the proportion matrix of cancer cell- and healthy cell-derived
exosomes. (C) Schematic of 11 cancer types. Cancer cohorts include breast cancer, cervical cancer, colorectal cancer, gastric cancer, glioblastoma, head
and neck cancer, lung cancer, oesophageal cancer, ovarian cancer, pancreatic cancer and prostate cancer. (D) Pie chart shows the distribution of 11
cancer types and the number of healthy controls and cancer exosome samples in miRNA-Seq datasets � (left) and � (right) used in the model.

For each sample j, the purity αj should be greater than or equal
to 0, and the purity sum of cancer cell-derived exosomes and
healthy cell-derived exosomes should be 1 (Equation (6)). The
problem is solved by quadratic programming. The solution with
the smallest squares of errors is the purity of the sample (Equation
(7)). We used the Solve.QP function in the quadprog package in R
to solve the matrix.

s.t. α ≥ 0,
k∑
j

α = 1; ∀j, k, ajk ≥ 0 (6)

min‖(αE − T)‖2 (7)

Datasets
1) Simulated exosome miRNA-Seq data

We generated simulated miRNA-Seq data of known tumour
purity by combining the actual data � from cancer cell line
exosomes and healthy controls. Simulated tumour exosome data
with purity x% were designed by x% expression profile of cancer
cell line and (100-x)% of healthy controls. Two purity ranges of
datasets were simulated: (1) from 0 to 1 and (2) from 0 to 0.1.

2) Actual exosome miRNA-Seq data

The actual exosome miRNA-Seq data (data �, Supplemen-
tary Table S1) were obtained from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) [33]. These
data included 161 exosome samples of breast cancer, cervical
cancer, colorectal cancer, gastric cancer, glioblastoma, head and
neck cancer, lung cancer, oesophageal cancer, ovarian cancer,
pancreatic cancer and prostate cancer cell lines and 31 healthy

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
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control samples, which were used to generate the miRNA sig-
nature profile and evaluate the model. In addition, an external
cohort (data �, Supplementary Table S2) of 163 serum exosome
samples of patients with 9 cancers and 97 healthy individuals was
also collected, to evaluate the model generalization and detect
the differentially expressed miRNAs corrected by tumour purity
(Figure 1C-D).

Tumour-specific miRNA databases
To investigate if miRNAs in the model are tumour specific, we
conducted an analysis using three publicly available databases:
dbMEMC [34], CancerMIRNome [35] and miRCancer [36]. These
databases contain differentially expressed miRNAs in tumour tis-
sues or extracellular fluids of various human cancers. Specifically,
dbMEMC and CancerMIRNome collected differentially expressed
miRNAs from high-throughput miRNA expression profiles in pub-
lic data repositories including The Cancer Genome Atlas (TCGA),
GEO, Sequence Read Archive and ArrayExpress; miRCancer col-
lected ones by text mining from published literatures.

Processing of raw miRNA-Seq data
Raw reads of the miRNA-Seq data were processed by removing
low-quality reads, adaptor dimers and sequences with lengths
< 18 and > 35 nucleotides using cutadapt (version 2.3) (https://
cutadapt.readthedocs.io/en/stable/). The filtered reads were
aligned to the human genome using bowtie (version 1.2.1) with
options ‘-n 1 -l 16 -p 7 -a –best –strata’ [37] and quantified
by featureCounts (version 1.5.3) [38], and miRNA annotations
were retrieved from miRBase (v22.1) [39]. Expression levels
were depicted as counts per million for miRNA. For differential
gene expression analysis, raw reads for miRNAs quantified
by featureCounts (version 1.5.3) were then analyzed by the
Bioconductor package DESeq2 (version 1.30.1) [32].

Evaluation of performance in simulated and
actual exosome miRNA-Seq data
We divided the samples in � into five parts, with one of them (�0)
left as an independent cohort and the remaining four parts (�1)
used for 3-fold cross-validation. Additionally, we used external �

as another independent cohort. More specifically, for simulated
data evaluation, we applied two-thirds of �1 to generate the sig-
natures and the remaining one-third and �0 to produce simulated
data with the varied purities for validation. The purities ranged
from 0 to 1 and from 0 to 0.1. The purity 0–0.1 was designed to
evaluate if the model works for the early diagnosis of tumour.
The Pearson correlation (PC) as a performance benchmarking
was applied to evaluate the consistency of the simulated tumour
purity and the predicted tumour purity. For actual data evalua-
tion, we applied �1 for 3-fold cross-validation, and �0 and � as
independent cohorts.

To accurately differentiate between tumour and normal sam-
ples, we used healthy cell-derived exosomes to generate null dis-
tribution (H0) of tumour purities, and tested whether the tumour
purity (tPurity) for a given sample was from H0. If p(tPurity|
H0) < 0.05, we rejected H0 and considered the sample as cancer
cell-derived exosomes.

Based on the predictions of samples from cancer cell line-
derived exosomes in datasets �, patients and healthy individuals
in datasets �, we used Precision, Recall, Specificity and F1—
a combined measure of Precision and Recall—as performance
benchmarks to evaluate the model.

Evaluation of robustness with added noise
We evaluated the robustness of the purity model using simulated
exosome miRNA-Seq data with known tumour purity by adding
the different levels of noise. The noise follows the Gaussian distri-
butions with mean 0 and SD σ 1, 3, 5, 7, 9.

Detection of differentially expressed miRNAs
corrected by tumour purity
For miRNA i, we assumed that the expression level Xi ∼ N

(
mi, σ 2

i

)
in healthy cell-derived exosomes and the expression level Yi were
composed of Xi and the difference δi between cancer cell- and
healthy cell-derived exosomes, where δi is also assumed to follow
normal distribution δi ∼ N

(
μi, τ 2

i

)
(Equation (8)).

Yi = Xi + δi (8)

For miRNA i in serum exosomes of the patient j with purity αj,
the expression level Zij can be expressed as cancer cell-derived
expression levels with proportion αj and healthy exosomes
with proportion (1 − αj) and Zij follows normal distribution
Zij ∼ N

(
mi + αjμi, ε2

i

)
(Equations (9) and (10)).

Zij = (
1 − αj

)
Xij + αjYij = Xij + αjδi (9)

Zij = mi + αjμi + ε (10)

For n0 healthy cell-derived exosomes and n1 cancer cell-derived
exosomes, Z is the vector of miRNA expression levels, W is the
vector of purity of samples, β is the parameters determined by the
model and ε is the error term (Equation (11)). For given exosome,
sequencing data can be described as a linear model (Equation
(12)).

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

...
Xn0

Y′
1

Y′
21
...

Y′
n1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
...

...
1 0
1 λ1

1 λ2

...
...

1 λn1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =
[

m
μ

]
,

ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

...
εn0

εn0+1

εn0+2

...
εn0+n1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

Z = W × β + ε (12)

For the hypothesis test H0 : μ = 0, the Wald test statistics was
used to obtain P-value. Benjamini–Hochberg’s method is applied
on P-values to obtain FDRs. The model parameters can be solved
by the generalized least square method [40].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
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In addition, the analysis of uncorrected differentially expressed
miRNAs was performed using the Deseq2 packages (version
1.30.1). Differentially expressed miRNAs with FDR values <0.05
and |log2FC| >1 were considered to be significant. Differentially
expressed miRNAs were analyzed by DIANA-miRPath (version
3.0) to identify their targets and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) signalling pathways [41]. The significance
threshold was defined as FDR value <0.05.

Statistical analysis
The Wilcoxon rank-sum test was used to compare purity. The PC
and mean absolute errors (MAE) between predicted and simulated
purity were applied to evaluate the performance of the purity
model. All statistical analyses were executed in R (version 4.0.3).

RESULTS
Identification of miRNA signatures for cancer
exosomes
To identify miRNA signatures in cancer exosomes, we interrogated
miRNA-Seq data � and applied Deseq2 to evaluate expression
levels across samples. The differentially expressed miRNAs in
cancer exosomes were further narrowed down in terms of their
expression stability measured by variances with their values less
than 2 both in cancer cell- and healthy cell-derived exosomes. Our
analysis led to the identification of miRNA signatures in cancer
exosomes of 11 cancer types (Figure 2A and Supplementary
Figure S1A-H). Especially, we identified 49, 63 and 48 miRNAs,
respectively, for breast cancer, lung cancer and colorectal cancer.
The average expression of these miRNAs in cancer cell- versus
healthy cell-derived exosomes within each cancer constitutes
the miRNA signature profile. There were more miRNAs in the
signatures of glioblastoma and prostate cancer than of head and
neck cancer, pancreatic cancer and ovarian cancer (Figure 2B).
Moreover, some miRNAs were identified in multiple types of
cancers. For example, there were a total of 46 miRNAs in
more than five cancer types (Figure 2C). The miRNAs identified
in more than nine cancer types included hsa − miR − 12129,
hsa − miR − 135a − 5p, hsa − miR − 221 − 5p, hsa − miR − 4517,
hsa − miR − 4530, hsa − miR − 518a − 3p, hsa − miR − 548 t − 3p,
hsa − miR − 6728 − 3p and hsa − miR − 95 − 5p, whose expressions
were totally different across the different cancers and healthy
controls (Figure 2D). Interestingly, hsa − miR − 4530 was identified
in all cancers (Supplementary Figure S2A), which was worth
further investigation.

To evaluate the robustness of miRNA signatures, we applied re-
sampling technology with the two-thirds of samples in datasets
� to make the signatures and observed the consistency of the
signatures when different samples were employed. The results
showed that the signatures from three-time sampling were con-
sistent with those from all samples (Supplementary Figure S2B-L).
Specially, 79.59% (39), 79.37% (50) and 89.58% (43) of miRNAs
in breast cancer, lung cancer and colorectal cancer signatures,
respectively, generated by all samples were overlapped with those
from sampling.

Our analysis identified 548 miRNAs that are either up- or
down-regulated in individual cancers (Supplementary Table S3).
We further conducted an analysis using three publicly available
databases, dbMEMC, CancerMIRNome and miRCancer, to investi-
gate those miRNAs’ expression in tumour tissues or extracellular
fluids of human cancers. Among them, 226 (41.24%) were reported
to be up- or down-regulated in at least one database for the same
cancer type. If we extended the analysis to include all cancer types

without limitations on matching cancer type, we found that 427
out of 548 (77.92%) were up- or down-regulated in at least one
database (Supplementary Table S4).

Evaluation of tumour purity deconvolution
model in simulated data
To evaluate whether this model can accurately predict the varied
tumour purity, we applied two-thirds of �1 to generate the signa-
tures and the remaining one-third and �0 to produce simulated
data for validation. The varied purities of the simulated data
range from 0 to 1 and from 0 to 0.1 (see section Materials and
Methods). The PC was applied to evaluate the consistency of the
simulated tumour purity and the predicted tumour purity. The
results showed that when the tumour purity ranges from 0 to
1, PCs were 1 in breast cancer, 0.99 in lung cancer and 0.99 in
colorectal cancer, showing that the purity model was robust for
3-fold cross-validation (Figure 3A-E and Supplementary Figure
S3A-F). Then we generated the simulated exosome miRNA-Seq
data based on the independent cohort �0. The results showed an
excellent prediction of this model (Figure 3F-H and Supplemen-
tary Figure S3G-I).

To evaluate the ability of this model for early diagnosis, we spe-
cially designed the tumour purity varied from 0 to 0.1. We tested
the availability of the model by simulation purity ranging from 0
to 0.1 for early diagnosis. We observed that the model presented
its extended applicability in mixed exosomes with low tumour
purity for 3-fold cross-validation (Figure 3I-M and Supplementary
Figure S4A-F). The high correlations between simulated purity and
predicted purity were still achieved in the independent cohort �0

(Figure 3N-P and Supplementary Figure S4G-I). Taken together, the
purity model could accurately estimate the purity of simulated
exosome data, and miRNA signatures in all cancer types could be
generalized to the independent cohort for prediction.

Evaluation of tumour purity deconvolution
model in actual data
We further evaluated the model on two types of actual data: (i)
miRNA-Seq datasets � and (ii) an external cohort �. We divided
the samples in � into five parts, with one of them (�0) left as an
independent cohort and the remaining four parts (�1) used for 3-
fold cross-validation. Additionally, we used external � as another
independent cohort.

The results demonstrated good ability of our model to dis-
tinguish two groups of samples of � in 3-fold cross-validation
(Figure 4A-E and Supplementary Figure S5A-F) and independent
cohort (Figure 4F-H and Supplementary Figure S5G-I). The median
of predicted purity was close to 1 for cancer cell-derived exosomes
and to 0 for healthy cell-derived exosomes, suggesting the accu-
racy of the model.

Furthermore, miRNA signatures were generalized to an exter-
nal cohort �, including exosome datasets from the patients with
nine cancer types and healthy controls. The results showed that
the purity of different cancer samples varied considerably and
healthy controls were close to 0 absolutely (Figure 4I). In partic-
ular, we noted that the model distinguished the different disease
states well (Figure 4J-K). The median of tumour purity for the
patients with prostate cancer was close to 0.6, which was signifi-
cantly higher than the patients with benign prostatic hyperplasia
(P = 0.0022, Wilcoxon rank-sum test). Besides, a similar result was
observed between the patients with lung cancer and lung granu-
loma (P = 0.032, Wilcoxon rank-sum test).

To accurately differentiate between the exosomes secreted
from tumour samples and from normal samples, we used healthy

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
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Figure 2. The miRNA signatures of cancer exosomes. (A) Heatmap shows the expression levels of miRNA signatures including 49 differentially expressed
miRNAs in breast cancer, 63 in lung cancer and 48 in colorectal cancer. Each column represents an exosome sample from cancer or healthy controls.
Each row in the heatmap represents a specific miRNA whose expression is normalized across the column. (B) The number of miRNAs in the signatures
of 11 cancer types (breast cancer, cervical cancer, colorectal cancer, gastric cancer, glioblastoma, head and neck cancer, lung cancer, oesophageal
cancer, ovarian cancer, pancreatic cancer and prostate cancer). (C) Bar chart shows the frequency of miRNAs in all signatures across 11 cancers.
(D) Boxplot shows the expression of miRNAs identified in more than nine types of cancers in miRNA-Seq datasets �, including hsa − miR − 12129,
hsa − miR − 135a − 5p, hsa − miR − 221 − 5p, hsa − miR − 4517, hsa − miR − 4530, hsa − miR − 518a − 3p, hsa − miR − 548 t − 3p, hsa − miR − 6728 − 3p and
hsa − miR − 95 − 5p.

cell-derived exosomes to generate null distribution (H0) of tumour
purities, and tested whether cancer cell line-derived exosomes
in datasets �, patients’ and healthy individuals’ exosomes in
datasets � can be accurately predicted to be from tumour or
normal samples. We further used Precision, Recall, Specificity and
F1—a combined measure of Precision and Recall—as performance
benchmarks to evaluate the model. The results demonstrated our

model achieved high performance with zero false negatives and
acceptable false positives (Figure 4L).

Robustness and precision of tumour purity
deconvolution model
To evaluate the robustness of the purity model, we added the
different levels of noise into the simulated data. The noise follows
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Figure 3. Performance of exosome purity model evaluated in simulated data. The PC between simulated purity and predicted purity for 3-fold cross-
validation (A-E, I-M) and independent cohort �0 (F-H, N-P). The tumour purity ranges from 0 to 1 (A-H) and from 0 to 0.1 (I-P) in breast cancer (A, I),
lung cancer (B, J), colorectal cancer (C, K), head and neck cancer (D, L) and prostate cancer (E, M).

the Gaussian distributions with mean 0 and SD σ 1, 3, 5, 7, 9. We
assessed the model robustness by two measurements, the PC and
MAE, between predicted purity and simulated purity. The model
was shown to be stable at the different levels of noise. For each
cancer with simulated varied purity, the model achieved the PCs
above 0.9 and high PCs were maintained when noise levels were
increasing (Supplementary Figure S6A-B). We then observed that

MAE values overall were very low (Supplementary Figure S6C-F),
tending to rise along with the increase of tumour purity (Sup-
plementary Figure S6C-D) and the added noise (Supplementary
Figure S6E-F). Therefore, the purity model is robust against the
noise. Of note, the model is much robust at low purity, indicating
its potential in tumour early diagnosis (Supplementary Figure
S6D, F).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
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Figure 4. Performance of exosome purity model evaluated in actual data. Comparison of the predicted tumour purity between cancer cell line-derived
exosomes (left bars) and healthy controls (right bars) for 3-fold cross-validation (A-E) in breast cancer (A), lung cancer (B), colorectal cancer (C), head and
neck cancer (D) and prostate cancer (E). Comparison of the predicted tumour purity between cancer cell line-derived exosomes (left bars) and healthy
controls (right bars) for independent cohort �0 (F-H) in colorectal cancer (F), head and neck cancer (G) and prostate cancer (H). The P value is calculated
with the Wilcoxon rank-sum test. (I) The predicted tumour purity of external cohort �. The boxplots show the purity of tumour patients (left bars),
early disease states (middle bars) and healthy controls (right bars) in prostate cancer (J) and lung cancer (K). The model performance is evaluated using
Precision, Recall, Specificity and F1 in the combined samples in datasets �, patients and healthy individuals in datasets � (L). The P value is calculated
with the Wilcoxon rank-sum test.
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Figure 5. Performance of pan-cancer exosome purity model evaluated in simulated data and actual data. The PC between simulated and predicted
exosome purity for all samples with the tumour purity ranging from 0 to 1 (A) and from 0 to 0.1 (B) in pan-cancer exosome purity model. (C) Comparison
of the predicted tumour purity between cancer cell line-derived exosomes (left bars) and healthy controls (right bars) for all samples. (D) Comparison
of the predicted tumour purity with 11 individual cancer signatures and pan-cancer signatures for 11 different cancer cell line-derived samples. The P
value is calculated with the Wilcoxon rank-sum test. The PC between the simulated and predicted tumour purity ranging from 0 to 1 (E) and from 0 to
0.1 (F) when the different levels of noise added. The Kaplan–Meier curve illustrates the probability of OS according to the average expression levels of
the 28 down-regulated miRNAs in breast cancer (G) and lung cancer (H).

Evaluation of pan-cancer purity deconvolution
model in simulated/actual data
Our analysis above generated cancer type-specific model and
achieved good performance in predicting tumour purity. Next,
since some miRNAs were identified in multiple types of can-
cers (Figure 2C), we selected 46 miRNAs that were present in
more than five types of cancers as pan-cancer miRNA signatures
to generate and evaluate the pan-cancer purity deconvolution
model. We generated the simulated exosome miRNA-Seq data
with the tumour exosome purity ranging from 0 to 1 and from
0 to 0.1 based on miRNA-Seq datasets �. The results showed

that PCs were high when the tumour exosome purity ranging
from 0 to 1 and 0 to 0.1 (Figure 5A and B). The pan-cancer purity
model still well distinguished all cancer cell line-derived exo-
some samples from healthy cell-derived exosome samples in
actual data � (Figure 5C). We also compared the predicted tumour
purity of an individual cancer type using pan-cancer miRNA
signatures and individual cancer miRNA signatures. The results
showed that there were no significant differences between the
miRNA signatures of pan-cancer and individual cancer, indicat-
ing that the pan-cancer model can predict tumour purity as
well (Figure 5D). Moreover, at the different levels of noise, the
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pan-cancer model achieved the PCs above 0.9, showing high sta-
bility (Figure 5E and F). These results showed that the pan-cancer
tumour purity deconvolution model using 46 miRNA signatures
achieved excellent prediction performance and was applicable to
any individual cancers.

To further understand the function of these 46 miRNAs, includ-
ing 18 up-regulated and 28 down-regulated ones, we investigated
their expression in tumour tissues or extracellular fluids of var-
ious human cancers using three publicly available databases,
dbMEMC, CancerMIRNome and miRCancer, as well as their pre-
dictive ability on overall survival (OS) using TCGA patient data.
Notably, 41 (89%) were reported to be up- or down-regulated
in at least one database (Supplementary Table S5). Next, TCGA
patients were divided into two groups, high-expression and low-
expression, according to the average expression levels of the
down-regulated or up-regulated miRNAs. Remarkably, 28 down-
regulated miRNAs well presented their predictive ability on OS in
breast cancer and lung cancer (P <0.01, Figure 5G and H).

Differential analysis corrected by tumour purity
Our analysis showed that tumour purity varied among tumour
exosomes, moreover, about 10%–40% of which were from healthy
cell-derived ones (Figure 4I). This will lead to biased identification
of the differentially expressed miRNAs if tumour purity is not
taken into account in differential analysis. We thus developed a
method to correct differential analysis using tumour purity, which
was applied to serum exosome samples of colorectal cancer,
glioblastoma, pancreatic cancer, gastric cancer and lung cancer
(see Materials and Methods). After purity correction, there were
71, 190, 46, 36 and 49 differentially expressed miRNAs, respec-
tively, for colorectal cancer, glioblastoma, pancreatic cancer, gas-
tric cancer and prostate cancer (Supplementary Figure S7A-E).
Among them, 44, 130, 28, 20 and 21 miRNAs were also identified
by Deseq2 analysis without adjusting tumour purity, and 27, 60,
18, 16 and 28 miRNAs were uniquely identified by our method.
We performed the KEGG analysis on target genes of the 27, 60, 18,
16 and 28 differentially expressed miRNAs in five cancer types.
Interestingly, the mitogen-activated protein kinase (MAPK) sig-
nalling pathway and the PI3K-Akt signalling pathway were found
to be the top enriched pathways in those cancers (Supplementary
Figure S7F-J), which were well consistent with the vital roles
of these pathways in cancers. These results suggested that the
differentially expressed miRNAs identified after purity correction
may provide more biological meanings for further investigation.

DISCUSSION
Tumour-derived exosomes can be harnessed as non-invasive diag-
nosis and prognostic biomarkers because they are enriched in
biological fluids and carry tumour-characterized biomolecules
[8]. Exosomes from liquid biopsy of cancer patients are mixed
by tumour cell- and healthy cell-secreted ones. Therefore, accu-
rate and sensitive detection of tumour cell-derived exosomes in
biological fluids is an efficient approach for the early diagnosis
and tracking of cancer progression. Currently, numerous methods
were developed to estimate tissue tumour purity [42–45]. However,
there is still a lack of a method to estimate the tumour purity from
tumour biological fluids.

Therefore, we propose the R-based tumour purity deconvo-
lution model ‘ExosomePurity’ to address this unmet need and
enable researchers to accurately estimate tumour exosome purity
from miRNA-Seq data in serum exosomes of cancer patients. Our
study currently used this model in 11 cancer types. Utmost, it can

be extended to any cancers, provided sufficient serum exosome
sequencing data. The purity model was evaluated by actual and
simulated data with purity ranging from 0 to 1 and from 0 to 0.1 as
the application for early diagnosis. The median predicted purity is
close to 1 in actual cancer cell-derived exosomes and close to 0 in
actual healthy cell-derived exosomes. The purity predicted by the
model shows high correlation with simulated purity in simulated
data (Supplementary Figure S8). In addition, the model is robust
under the different levels of noise background. Thus, our model
gains the good prediction performance for serum tumour exo-
somes. When applied to simulated data with the varied purities,
the model successfully predicted samples with the purity greater
than 0.2, indicating its potential for early cancer diagnosis. More-
over, cancer patients at the different cancer progression introduce
variations in tumour purity, leading to the biased identification of
biomarkers. We further used tumour purity to correct the DEGs.
The new DEGs obtained after purity correction are enriched in
cancer-related signalling pathways.

In recent years, numerous studies have shown that miRNAs
can be circulated in biological fluids and serve as the biomarkers
for diagnosis and prognosis. For example, hsa-miR-21 is involved
in glioblastoma development and can predict tumour recurrence
or metastasis [46]. Moreover, hsa-miR-21 shows a higher upregu-
lation in stage II PDAC and intraductal papillary mucinous neo-
plasm (IPMN) patients, suggesting that it can thus serve as early
diagnostic markers of these two cancers [47, 48]. Hsa-miR-9-5p
is identified to be down-regulated in pancreatic cancer by the
differential analysis corrected by tumour purity in our analysis.
Overexpression of miR-9-5p significantly inhibits proliferation
and suppresses the invasion of pancreatic cancer cells [49]. In
adenocarcinoma, miR-9-5p exerts a tumour suppressive role and
the epithelial-to-mesenchymal transition phenotype is achieved
by low levels of miR-9-5p, which enable the upregulation of CDH2
via the transcription factor TWIST1 [50]. Although the differ-
entially expressed miRNAs in 11 cancer exosomes are different
due to the regulatory heterogeneity of miRNAs across cancers
(Supplementary Table S3), our analysis still identified some miR-
NAs, which are consistently up-regulated or down-regulated in
multiple cancers (Supplementary Table S4 and Supplementary
Table S5). For example, hsa-miR-200c-3p is up-regulated in seven
types of cancers. Interestingly, it has been reported as a novel
biomarker in endometrial cancer patients from a non-invasive liq-
uid biopsy screening of urine-derived exosomes [51]. In addition,
as an miRNA up-regulated in two types of cancer, hsa-miR-100 has
been reported to play a significant role in cancer progression and
is considered as a prognostic biomarker for cancer [52–56]. Also, as
a transforming growth factor beta effector, hsa-miR-100 regulates
the p53 pathway and DNA repair signalling and apoptosis [53].
Hsa-miR-100 is up-regulated in kirsten rat sarcoma viral oncogene
homolog (KRAS) mutant colorectal cancer exosomes and con-
fers hsa-miR-100 mediated cell communication [56]. Moreover,
46 miRNAs (Supplementary Table S3) that were present in more
than five types of cancers gain the good prediction ability in the
pan-cancer deconvolution model and thus provide the further
evidence of exosome miRNAs in tumorigenesis and development.
And the mechanisms of their regulatory role in cancers deserve
further investigation.

Tumour purity is an important measurement for tumour sam-
ples, reflecting cancer progression, tumour microenvironment,
the perturbed pathways et al [57]. Our study tentatively measured
tumour purity in biological fluids, pushing forward to its appli-
cation in non-invasive early diagnosis and cancer progression
monitor. However, tumour exosomes deliver specific cargo of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad119#supplementary-data
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biomolecules, which is heterogenous between the patients and
at the different stages [18]. Moreover, there is limited knowl-
edge of exosome-specific molecular machineries of biogenesis
and release. When more serum exosome samples as well as
knowledge are available in future, some efforts should definitely
include the optimization of the miRNA signature and the rational
stratification of samples in the model. Additionally, our model
needs to be continuously updated with the emergence of addi-
tional sequencing datasets, especially those including tissues of
precancerous lesions, to refine the model and improve its ability
to detect early cancer.

In summary, we developed ExosomePurity, a tumour exosome
purity deconvolution model to estimate tumour sourced exosome
purity in serum exosomes of cancer patients based on miRNA
signatures. ExosomePurity empowers the research community to
study non-invasive early diagnosis and track cancer progression
in cancers more efficiently.

Key Points

• We propose ‘ExosomePurity’, a tumour purity deconvo-
lution model to estimate tumour purity in serum exo-
somes of cancer patients based on miRNA signatures.

• The deconvolution models of individual cancers and
pan-cancer are developed and gain the excellent per-
formance in simulated and actual data of 11 individual
cancers and pan-cancer.

• ExosomePurity generates miRNA signatures of individ-
ual cancers and pan-cancer, which achieve the good
prediction ability for tumour purity and clinical out-
come, deserving further investigation on their regulatory
mechanisms during tumorigenesis and development.

• ExosomePurity empowers the research community to
study non-invasive early diagnosis and track cancer pro-
gression in cancers efficiently.
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