REVIEW ARTICLE

The diagnostic performance of functional dopaminergic scintigraphic imaging in the diagnosis of dementia with Lewy bodies: an updated systematic review

Mario Jreige¹ · George K. Kurian¹ · Jérémy Perriraz^{1,2} · Jevita Potheegadoo³ · Fosco Bernasconi³ · Sara Stampacchia³ · Olaf Blanke³ · Griffa Alessandra⁴ · Noemie Lejay⁴ · Paolo Salvioni Chiabotti^{4,2} · Olivier Rouaud⁴ · Marie Nicod Lalonde^{1,2} · Niklaus Schaefer^{1,2} · Giorgio Treglia^{1,2,5,6} · Gilles Allali^{2,4} · John O. Prior^{1,2}

Received: 11 October 2022 / Accepted: 13 February 2023 / Published online: 15 March 2023 © The Author(s) 2023

Abstract

Introduction Dopaminergic scintigraphic imaging is a cornerstone to support the diagnosis in dementia with Lewy bodies. To clarify the current state of knowledge on this imaging modality and its impact on clinical diagnosis, we performed an updated systematic review of the literature.

Methods This systematic review was carried out according to PRISMA guidelines. A comprehensive computer literature search of PubMed/MEDLINE, EMBASE, and Cochrane Library databases for studies published through June 2022 was performed using the following search algorithm: (a) "Lewy body" [TI] OR "Lewy bodies" [TI] and (b) ("DaTscan" OR "ioflupane" OR "123ip" OR "123ip" OR "123ip" OR "123i-FP-CIT" OR "FPCIT" OR "FP-CIT" OR "beta?CIT" OR "beta?CIT" OR "CIT?SPECT" OR "CIT SPECT" OR "Dat?scan*" OR "dat scan*" OR "dat?spect*" OR "SPECT"). Risk of bias and applicability concerns of the studies were evaluated using the QUADAS-2 tool.

Results We performed a qualitative analysis of 59 studies. Of the 59 studies, 19 (32%) addressed the diagnostic performance of dopamine transporter imaging, 15 (25%) assessed the identification of dementia with Lewy bodies in the spectrum of Lewy body disease and 18 (31%) investigated the role of functional dopaminergic imaging in distinguishing dementia with Lewy bodies from other dementias. Dopamine transporter loss was correlated with clinical outcomes in 19 studies (32%) and with other functional imaging modalities in 15 studies (25%). Heterogeneous technical aspects were found among the studies through the use of various radioligands, the more prevalent being the [123I]N- ω -fluoropropyl-2 β -carbomethoxy-3 β -(4-iodophenyl) nortropane (¹²³I-FP-CIT) in 54 studies (91.5%). Image analysis used visual analysis (9 studies, 15%), semi-quantitative analysis (29 studies, 49%), or a combination of both (16 studies, 27%).

Conclusion Our systematic review confirms the major role of dopaminergic scintigraphic imaging in the assessment of dementia with Lewy bodies. Early diagnosis could be facilitated by identifying the prodromes of dementia with Lewy bodies using dopaminergic scintigraphic imaging coupled with emphasis on clinical neuropsychiatric symptoms. Most published studies use a semi-quantitative analytical assessment of tracer uptake, while there are no studies using quantitative analytical methods to measure dopamine transporter loss. The superiority of a purely quantitative approach to assess dopaminergic transmission more accurately needs to be further clarified.

Keywords Dopaminergic imaging · DATscan · 123-FP-CIT · Dementia with Lewy bodies · DLB

This article is part of the Topical Collection on Neurology.

Mario Jreige, George K. Kurian and Gilles Allali contributed equally to this work.

John O. Prior john.prior@chuv.ch

Extended author information available on the last page of the article

Introduction

Dementia with Lewy bodies (DLB) is the second most frequent type of neurodegenerative dementia after Alzheimer's disease (AD), comprising 15–25% of all dementias [1]. Neuropathological findings in patients with DLB show Lewy bodies and Lewy neurites that are positive for α -synuclein immunohistochemical staining, as well as neuronal degeneration in the neocortex, limbic system and brainstem [2]. Although a clear-cut distinction between the entities of the "Lewy body disease (LBD) spectrum" (dementia with Lewy bodies, idiopathic Parkinson's disease (PD) and PD with dementia) is not always easy, diagnosis of DLB is made clinically through the identification of core clinical features. These include fluctuations of attention and cognitive impairment, visual hallucinations, rapid eye-movement (REM) sleep behavior disorder (RBD), and parkinsonism. Reduced dopamine transporter uptake in the basal ganglia shown by single-positron emission computed tomography (SPECT) is included as an indicative biomarker in the fourth and latest consensus on the diagnosis of Lewy body dementia [3]. Dopamine transporter (DAT) imaging is performed using specific radioligands. One such ligand is $[^{123}I]N-\omega$ fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl) nortropane (¹²³I-FP-CIT), a cocaine analogue that specifically binds to presynaptic DATs in the central nervous system, thus identifying the location and concentration of dopamine transporters in the synapses of dopamine-secreting neurons of the corpus striatum in the central nervous system. This allows imaging of the nigrostriatal pathway denervation that occurs in DLB. Other radiotracers can also be used [4]. Clinically, DLB can be difficult to differentiate from other forms of dementia. Furthermore, it is of paramount clinical importance to differentiate DLB from other etiologies as the subsequent clinical and therapeutical management of patients varies, especially to avoid any inappropriate use of neuroleptics in DLB patients [5]. The course of the disease is also different, as life expectancy is shorter in DLB. Literature covering these topics lack homogeneity.

A systematic review and a Bayesian latent class model (LCM) meta-analysis on the diagnostic accuracy of both DAT SPECT imaging as well as metaiodobenzylguanidine (MIBG) myocardial scintigraphy in DLB diagnosis has been published previously [6]. However, there were several limitations, as the literature was only reviewed up to the year 2018 and the number of analyzed studies was small (n=27), out of which less than a third used the new criteria of DLB published in 2017 [3]. In the present systematic literature review, we present an updated analysis of dopaminergic transporter imaging in the diagnosis of DLB.

Methods

This study was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which describe an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses [7]. A predefined protocol was created by the authors (without registration).

Search strategy

Two authors (MJ and GKK) performed a comprehensive computer literature search of the PubMed/MEDLINE, EMBASE and Cochrane Library databases to identify relevant retrospective or prospective published studies on the diagnostic performance of functional dopaminergic scintigraphy in the diagnosis of Lewy body dementia. The search algorithm used was based on a combination of terms, as follows: (a) "Lewy body" [TI] OR "Lewy bodies" [TI] and (b) ("DaTscan" OR "ioflupane" OR "123ip" OR "123?ip" OR "123 ip" OR "123i-FP-CIT" OR "FPCIT" OR "FP-CIT" OR "beta?CIT" OR "beta CIT" OR "CIT?SPECT" OR "CIT SPECT" OR "Dat?scan*" OR "dat scan*" OR "dat?spect*" OR "SPECT"). The search was updated through June 2022. No language restriction was applied. To expand the search, references of the retrieved articles were also screened for additional studies.

Study selection

Studies or subsets of studies investigating the diagnostic performance of functional dopaminergic scintigraphy in the evaluation of patients with Dementia with Lewy bodies (DLB) were eligible for *inclusion* in the qualitative analysis (systematic review).

The *exclusion criteria* were as follows: (a) articles not within the field of interest of this review, such as those with outcomes unrelated to dopaminergic scintigraphic imaging for diagnosis of DLB (e.g., use of brain perfusion SPECT or PET or myocardial scintigraphy *alone*); (b) review articles, editorials or letters, comments, conference proceedings; (c) case reports or small case series (<5 patients).

Two researchers (MJ and GKK) independently reviewed the titles and abstracts of the retrieved articles, applying the inclusion and exclusion criteria mentioned above. Articles were rejected if they were clearly ineligible. The same two researchers then independently reviewed the full-text versions of the remaining articles to determine their eligibility for inclusion. Disagreements were resolved in a consensus meeting.

Data extraction

Two researchers independently performed the data extraction. For each potentially eligible study, information was collected concerning basic study characteristics (authors, year of publication, country of origin, study design), patient characteristics (type and number of patients, mean age, sex ratio) and technical aspects (radiotracer used, hybrid imaging modality, mean injected activity, time interval between radiotracer injection and image acquisition, image analysis). Finally, information about the main outcome of this systematic review (diagnostic performance of dopaminergic scintigraphic imaging) was collected. Diagnostic performance was assessed according to clinical confirmation of DLB diagnosis as well as post-mortem neuropathological studies, the latter being rarely systematically documented. Differences between basic study characteristics, technical aspects and outcomes were reported and were analyzed.

Quality assessment

The overall quality of the studies included in the systematic review was critically appraised based on the revised Quality Assessment of Diagnostic Accuracy Studies tool (QUADAS-2) [8]. This tool comprises four domains: patient selection, index test, reference standard, and flow and timing. Three independent reviewers (MJ, GKK, JP) assessed each domain in terms of risk of bias (i.e., selection bias, as well as biases concerning the index test, reference standard and timing of studies), and the first three domains were also assessed in terms of concerns regarding applicability [8] (Table 1 and Fig. 1).

Results

Literature search

A comprehensive computer literature search of the Pub-Med/MEDLINE, EMBASE and Cochrane Library databases revealed 218 peer-reviewed articles. Upon review of titles and abstracts, 153 articles were excluded, as follows: 79 were not in the field of interest of this review, 44 were reviews, editorials or letters, and 30 were case reports or small case series (< 5 patients). 59 were selected and retrieved in full-text version [3–61]. No additional studies were found by screening the references of these articles (Fig. 2).

Finally, 59 articles including data on the diagnostic performance of functional dopaminergic scintigraphic imaging in the diagnosis of dementia with Lewy bodies (DLB) dementia were eligible for the qualitative analysis (systematic review) [3–61]. The characteristics of the studies included in the systematic review are summarized in Tables 2 and 3.

Qualitative analysis (systematic review)

Basic study and patient characteristics

Using the database search, 59 full-text articles reporting on the diagnostic performance of functional dopaminergic scintigraphic imaging in the diagnosis of Lewy body dementia were selected (Supplementary Table 1) [9–68].

All 59 selected articles were published within the last 21 years (32 were published since 2017 with the new DLB criteria). Several countries from Europe, North America and Asia were represented. 46% (27/59) of the studies were retrospective and 42% (25/59) were prospective. (<1% Case-control/cohort n = 4, cross-sectional n = 4). Most (81%) of the articles were single-center studies (48/59).

In 17 out of 59 studies, functional dopaminergic scintigraphic imaging was investigated as the single imaging modality in patients with DLB, whereas in the remaining studies, functional dopaminergic scintigraphic imaging was performed in addition to ¹⁸F-FDG PET (n=6) [9–14], β -Amyloid PET (n=1) [15], metaiodobenzylguanidine myocardial scintigraphy (MIBG) (n=9) [16–24], brain perfusion SPECT imaging with 99m technetium-exametazime (n=1) [25], 99m technetium-ethyl cysteinate dimer (n=1) [17], and N-isopropylp-[¹²³I] iodoamphetamine (n=1) [26], 44% (n=26) of the studies included patients with LBD only, while a mixed patient population with different types of dementia were included in the rest of the studies, in particular Alzheimer's disease (AD) (n=33), frontotemporal dementia (FTD) (n=8), corticobasal syndrome (CBS) (n=4), multi-system atrophy (MSA) (n=2), progressive supranuclear palsy (PSP) (n=2), Creutzfeldt-Jakob disease (CJD) (n=1), vascular dementia (VD) (n=3), vascular parkinsonism (VP) (n=2), and normal pressure hydrocephalus (NPH) (n=1). Only a few studies (n=31) reported disease duration [9,

(n = 51) reported disease duration [9, 10, 12–14, 18, 21, 22, 25, 27–48].

The mean patient age was 74 years and ranged from 64 to 82 years. The mean percentage of male patients was approximately 60%.

The diagnostic performance of dopamine transporter imaging in the assessment of nigrostriatal function loss was investigated in 19 studies (32%) in patients with DLB [17, 19, 20, 22, 23, 27, 35-37, 45, 49-57], while the differentiation of DLB from other entities in the Lewy body disease spectrum (DLB, PD, PDD) was assessed in 15 studies (25%) [18, 24, 26, 27, 29, 30, 35, 37–39, 43, 47, 53, 58, 59]. The correlation of dopamine transporter imaging to clinical phenotypes, core symptoms and clinical scores in DLB was addressed in 19 studies (32%) [11, 14-16, 18, 32, 33, 35, 40, 41, 44, 48, 58, 60-65]. Other studies compared the outcome of functional dopaminergic scintigraphic imaging to perfusion SPECT (rCBF) or ¹⁸F-FDG PET/ CT (n=8) [9, 10, 12, 13, 17, 25, 26, 49] or MIBG myocardial scintigraphy (n=7) [17, 20–24, 54]. A total of 31% (n=18)of the studies investigated the role of functional dopaminergic scintigraphic imaging in differentiating DLB from other types of dementia [12, 13, 21–23, 31, 34, 35, 37, 42, 42, 43, 49, 54, 59, 62, 66, 67]. The comparison of striatal dopamine receptor binding with extrastriatal serotonin transporter binding was the subject of 4 studies only (7%) [29, 30, 38, 46].

	- - - -				, t	-	
Authors	Patient selection		Index test		Keterence star	ndard	Flow and timing
	Risk of bias (unclear, Low, High)	Applicability concerns	Risk of bias	Applicability concerns	Risk of bias	Applicability concerns	Risk of bias
Ceravolo et al. [49]	Low	Low	Low	Low	Low	Low	low
Chen et al. [15]	Low	Low	Low	Low	Low	Low	Low
Chiu et al. [60]	Low	Low	High	High	Low	Low	Low
Colloby et al. [25]	Low	Low	High	High	Low	Low	Low
Colloby et al. [27]	Low	Low	Low	Low	Low	Low	Low
Colloby et al. [28]	Low	Low	Low	Low	Low	Low	Low
Del Sole et al. [61]	Low	Low	Low	Low	Low	Low	Low
Donaghy et al. [62]	Low	Low	High	High	Low	Low	Low
Durcan et al. [63]	Low	Low	High	High	Low	Low	Low
Gupta et al. [9]	Low	Low	Low	Low	Low	Low	Low
Hansen et al. [64]	Low	Low	Low	Low	Low	Low	Low
Huber et al. [10]	Low	Low	Low	Low	Low	Low	Low
Iizuka et al. [11]	Low	Low	Low	Low	Low	Low	Low
Inagawa et al. [16]	Low	Low	Low	Low	Low	Low	Low
Iwabuchi et al. [26]	Low	Low	Low	Low	Low	Low	Low
Joling et al. [29]	High	High	Low	Low	Low	Low	Low
Joling et al. [30]	Low	Low	Unclear	Unclear	Low	Low	Low
Kamagata et al. [31]	Low	Low	Unclear	Unclear	Low	Low	Low
Kasanuki et al. [32]	Low	Low	Low	Low	Low	Low	Low
Kemp et al. [50]	Low	Low	High	High	Low	Low	Low
Kobayashi et al. [17]	Low	Low	Low	Low	Low	Low	Low
Lamotte et al. [33]	Low	Low	Low	Low	Low	Low	Low
Lim et al. [12]	Low	Low	High	High	Low	Low	Low
Lloyd et al. [51]	Low	Low	High	High	Low	Low	Low
Maltais et al. [52]	Low	Low	Low	Low	Low	Low	Low
McKeith et al. [68]	Low	Low	Low	Low	Low	Low	Low
Miyagawa et al. [13]	Low	Low	Low	Low	Low	Low	Low
Miyamoto et al. [58]	Low	Low	Low	Low	Low	Low	Low
Morgan et al. [34]	High	High	High	High	Low	Low	Low
Nakahara et al. [18]	Low	Low	Low	Low	Low	Low	Low
Nicastro et al. [35]	Low	Low	Low	Low	Low	Low	Low
Nicastro et al. [53]	Low	Low	Low	Low	Low	Low	Low
Nicastro et al. [14]	Low	Low	Low	Low	Low	Low	Low
O'Brien et al. [36]	Low	Low	Low	Low	Low	Low	Low

Table 1 (continued)							
Authors	Patient selection		Index test		Reference star	ıdard	Flow and timing
	Risk of bias (unclear, Low, High)	Applicability concerns	Risk of bias	Applicability concerns	Risk of bias	Applicability concerns	Risk of bias
O'Brien et al. [37]	Low	Low	Low	Low	Low	Low	Low
Oliveira et al. [59]	Low	Low	Low	Low	Low	Low	Low
Pilotto et al. [38]	Low	Low	Low	Low	Low	Low	Low
Ransmayr et al. [39]	High	High	Low	Low	Low	Low	Unclear
Roberts et al. [19]	Low	Low	Low	Low	Low	Low	Low
Roberts et al. [54]	Low	Low	Low	Low	Low	Low	Low
Roselli et al. [40]	High	Low	Low	Low	Low	Low	Low
Sakamoto et al. [20]	High	Low	Low	Low	Low	Low	Low
Shimizu et al. [21]	Low	Low	Low	Low	Low	Low	Low
Shimizu et al. [22]	Low	Low	Low	Low	Low	Low	Low
Siepel et al. [65]	Low	Low	Low	Low	Low	Low	Low
Siepel et al. [41]	Low	Low	High	High	Low	Low	Low
Spehl et al. [42]	High	High	Low	Low	Low	Low	Low
Taylor et al. [43]	Low	Low	Low	Low	Low	Low	Low
Thomas et al. [55]	Low	Low	Low	Low	Low	Low	Low
Tiraboschi et al. [23]	Low	Low	Low	Low	Low	Low	Low
Treglia et al. [24]	Low	Low	Low	Low	Low	High	Low
Van de Beek et al. [44]	Low	Low	Low	Low	Low	Low	Low
Van der Zande et al. [45]	Low	Low	Low	Low	Low	Low	Low
Van der Zande et al. [46]	Low	Low	Low	Low	Low	Low	Low
Walker et al. [66]	Low	Low	Low	Low	Low	Low	Low
Walker et al. [47]	Low	Low	Low	Low	High	High	Low
Walker et al. [56]	Low	Low	Low	Low	Low	Low	Low
Walker et al. [57]	Low	High	High	High	Low	Low	Low
Ziebell et al. [48]	Low	Low	Low	Low	Low	Low	Low

Technical aspects

results

Heterogeneous technical aspects were found among the included studies (Table 2). The radiotracer used was $[^{123}I]$ N- ω -fluoropropyl-2 β -carbomethoxy-3 β -(4-iodophenyl) nortropane (¹²³I-FP-CIT) in 54 studies (91.5%) [all others], 2 beta-carboxymethoxy-3 beta-(4-iodophenyl)tropane (¹²³I-B-CIT) in 2 studies (3.4%) [12, 39], ¹²³I-N-(3-iodoprop-2E-enyl)-2-b-carbomethoxy-3b-(4-methylphenyl) nortropane (¹²³I-PE2I) in one study (1.7%) [48], and Technetium-99 m labeled tropane derivative (99mTc-TRODAT-1) in 2 studies (3.4%) [9, 60]. The hybrid imaging modality was SPECT/CT was used in 20 studies [9-11, 14, 15, 17, 19, 20, 22, 26, 29-31, 33, 35, 37, 52, 54, 58, 60], while SPECT alone was used in 29 studies [16, 18, 23-25, 34, 37-45, 47-51, 55, 56, 62-66, 68] and the combination of SPECT and MRI was used in 11 studies [13, 27-30, 32, 46, 53, 57, 60, 61]. The reported mean injected activity of radiolabelled ¹²³I-FP-CIT ranged from 110 to 210 MBq (in absolute values). The time interval between radiotracer injection and image acquisition varied among studies, ranging from 2 to 6 h after injection. The duration of acquisition of images also varied among studies for FP-CIT, ranging from 24 to 60 min. Some studies (n=27) did not report one or more of the aforementioned technical aspects.

Image analysis was performed using visual analysis in 9 studies (15%), semi-quantitative analysis 29 studies (49%) and a combination of semi-quantitative and visual analysis in 16 studies (27%) (Table 2). Briefly, semi-quantitative analysis is the quantification of specific binding ratios using the occipital lobe for intensity normalization from off-target binding of the radiotracer.

Main findings

DLB versus other dementia and LBD spectrum

The clinical differentiation of DLB from other forms of dementia like AD can be challenging, as clinical features may overlap and co-pathologies often occur [69, 70]. Multiple studies confirm that dopaminergic imaging can help distinguish DLB from AD [13, 21, 22, 35–37, 49, 59, 66].

DLB versus AD Dopamine transport (DAT) imaging can help distinguish DLB from AD in vivo through the measure of specific binding ratios (SBRs) of the radioligand. The **Fig. 2** Flow chart of the search for eligible studies on the diagnostic performance of radiolabelled ¹²³I-FP-CIT SPECT in detecting dopaminergic denervation in patients with Lewy body dementia

specific (i.e., bilateral caudate nuclei, putamen) to non-specific (i.e., occipital cortex) FP-CIT binding ratio in DLB patients is lower than in AD patients [49]. Uptake of FP-CIT in the putamen is significantly lower in patients with DLB compared to those with AD, and discordant cases (i.e., AD patients with very low putamen uptake) exist but often show mixed LB and AD pathologies in post-mortem neuropathological confirmation studies [13]. Compared to patients with AD, patients with DLB have reduced FP-CIT binding on all levels of the striatum, i.e., caudate nucleus, anterior and posterior putamen [36]. With regards to laterality, when analyzed using the mean right and left SBRs, FP-CIT uptake is markedly lower in patients with DLB as compared to patients with AD [21].

In addition to distinguishing DLB from AD, DAT SPECT imaging also allows the distinction of DLB from amnestic mild cognitive impairment, considered by some as a prodromal stage of AD with an accuracy of 88% [31]. Further, some authors provide evidence for distinguishing mild cognitive impairment associated DLB from that associated with AD [54, 62]

DLB versus FTD Frontotemporal degeneration (FTD) can be difficult to distinguish from DLB by visual rating of FP-CIT

alone [34]. However, semi-quantitative assessment of the putaminal binding and the binding ratio of FP-CIT, as well as the combination of these two parameters provides high accuracy to distinguish DLB from FTD (AUC 0.92, 0.91 and 0.97 respectively) [42]. Tiraboschi et al. recognize the possibility to rule out dementia subtypes like FTD and progressive supranuclear palsy (PSP) using DAT imaging as well as MIBG myocardial scintigraphy. They recognized in all such patients that striatal FP-CIT uptake was reduced, whereas uptake of ¹²³I-MIBG was normal [23].

DLB versus PSP In accordance with previous knowledge in the literature, PSP has a markedly decreased striatal DAT and a uniform involvement in the caudate and putamen [71, 72], but this is when comparing PSP to PD and MSA, not DLB, and is thus outside the scope of our systematic review.

DLB versus PD and PDD There are considerable clinical and pathological similarities between dementia with Lewy bodies (DLB) and idiopathic Parkinson's disease (PD). However, dopaminergic SPECT imaging may identify differences in patterns of dopaminergic deficit between each entity. For instance, Walker et al. showed that DLB patients have lower

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Ceravolo et al. [49]	Assess dopamine transporter function	Ratio of specific (bilateral caudate nucleus, putamen) to non-specific (occipital cortex) radiotracer binding	Age, sex, MMSE, CAM- COG, NPI, UPDRS	NR	Decreased specific to non-specific FP-CIT binding in DLB com- pared to AD
Chen et al. [15]	Determine clinical phenotypes associated with beta-amyloid PET (A+) and DaT imaging (D+) in MCI-LB (higher risk of progression to probable DLB)	Putamen z score (cutoff <-0.82), beta-amyloid PET PiB SUVR	MMSE, CDR sum of boxes and UPDRS-III scores, visual hallucinations, fluctuations, parkinson- ism, probable RBD	T test for continuous variables, Chi- squared test for categorical vari- ables; linear or logistic regression models for predictors (factorial modeling approach using continu- ous A and D); Age adjusted.	Decreased putaminal z score and lower PiB SUVRs independently associated with higher UPDRS- III scores; More probability of RBD in posi- tive DaTscan group
Chiu et al. [60]	Differentiate DLB from AD with motor dysfunction	SBR and visual rating	Novel designed question- naire, composite scale with motor dysfunction questionnaire (MDQ) and dopamine transporter imaging	Chi-square test for each question in the HAI-MDQ between DLB and non-DLB groups,	Higher frequency of motor dys- function in DLB group; Lower SBR in DLB group; Sensitivity/Specificity (%): 91/72 (MDQ), 91/80 (SBR), 87/93 (composite scale)
Colloby et al. [25]	Compare diagnostic accuracy of ^{99m} Tc-exametazime to ¹²³ I-FP-CIT for AD and DLB	Normal or Abnormal visual rating of 1231-FP- CIT SPECT Scans (grade 0 = normal, grade 1,2,3 = abnormal).	Age, sex, MMSE, CAM- COG, UPDRS-III, dura- tion of illness	Shapiro-Wilk test for normality of distribution of continuous vari- ables; one-way ANOVA (F-Test) for group effects; Nominal data with Chi-square tests; Cohen's kappa test for inter-observer agreement between raters' visual assessment; ROC curve analysis for Sn and Sp	Excellent Inter-rater agreement (k = 0.88) for DaTscan; Superior ROC for DaTscan in diagnosing DLB (AUC 0.83, sensitivity: 78.6%, specificity: 87.9) compared to brain perfu- sion
Colloby et al. [27]	Investigate rate of progression of nigrostriatal dopaminergic loss in DLB, PD, PDD using DaTscan	Striatal binding between groups	Age, MMSE, UPDRS III, duration of symptoms	Shapiro-Wilk test for normality of distribution of continuous vari- ables; Pearson's r or Spearman's rho as appropriate for correlations between SPECT and clinical vari- ables; 2-sample dependent t tests for differences in binding rations; ANCOVA (analysis of covariance) for rates of decline in BRs	Faster rates of decline in striatal binding in LBD than controls in caudate nucleus and posterior putamen; Faster rates of decline in striatal binding in DLB & PDD than controls in anterior putamen; Similar rates of decline between DLB, PD and PDD
Colloby et al. [28]	Investigate the differences in striatal binding using auto- mated statistical parametric mapping (SPM99) in DLB, AD, PD	Voxel-level changes in FPCIT binding	Age, MMSE, UPDRS III, duration of symptoms	Spatial normalization and smooth- ening for voxelwise univariate statistical tests (technique of pro- portional scaling) with t-statistic for each voxel formed SPM, foci described in terms of spatial extent (k) and peak height (u); Gaussian random field theory; ROC analysis	Decreased bilateral uptake in caudate nucleus, anterior and posterior putamen in DLB and PD versus AD and controls and in AD versus controls; No difference between DLB and PD; ROC AUCs > 0.92

🙆 Springer

Table 2 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Del Sole et al. [61]	Study the correlations between ¹²³ I-FP-CIT uptake in the striatum and extrapyramidal signs (EPS) in probable DLB patients	Specific uptake ratio	EPS using UPDRS III score, MMSE	Pearson's r for correlation	Negative linear correlation between FP-CIT uptake and UPDRS III score in caudate and putamen; Decreased striatal uptake in patients with mild and severe EPS
Donaghy et al. [62]	Compare the neuropsychiatric symptoms and cognitive profile of MCI-LB with MCI-AD	Normal or abnormal FP-CIT SPECT scans	Lewy body Neuropsychi- atric Supportive Symp- tom Count (LBNSSC), calculated based on supportive neuropsychiat- ric symptoms (non-visual hallucinations, delusions, anxiety, depression, apathy)	T-tests, Mann-Whitney U tests, Chi-squared and Fisher's exact tests depending on the nature of the data.	Higher symptoms count in MCI- LB than MCI-AD, using a posi- tive FP-CIT SPECT in the list of diagnostic features of MCI-LB
Durcan et al. [63]	Explore whether gastroparesis is early diagnostic marker of prodromal DLB and the rela- tionship with dopaminergic imaging (FP-CIT SPECT)	Visually rated FP-CIT SPECT scans (normal vs abnormal)	Gastroparesis Cardinal Symptom Index (GSCI), MMSE, ACE-R, CDR, CIRS-G	Chi-square, Mann-Whitney, Fisher exact test	No difference in gastroparesis symptom prevalence or severity score and FP-CIT uptake
Gupta et al. [9]	Study the imaging patterns of PCA and DLB with FDG PET/CT and develop a pre- diction model	Normal vs abnormal TRODAT uptake and ¹⁸ F-FDG PET/CT uptake patterns		Z score analysis, ROC curve analysis, binary logistic regression analysis to determine the OR	Hypometabolism in parieto- temporo-occipital association cortices and cingulate cortices in non-DLB patients; Reduced visual vortex uptake in DLB; Hypometabolism in both groups in occipital association cortex

🙆 Springer

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Hansen et al. [64]	Validating ¹²³ I-FP-CIT SPECT as a method to diagnose probable DLB in patients with psychiatric symptoma- tology and suspected DLB	SBR ratios	Clinical and neuropsycho- logical phenotypes via main core and supportive clinical features; sup- portive biomarkers (EEG slowing posterior, tempo- ral preservation); clinical onset of symptoms (Psych-onset, MCI-onset, Mixed onset)	Fisher's exact test, Student's t-tests to compare age groups and num- ber of DLB patients with probable DLB before and after ^{1,23} I-FP-CIT SPECT. Mann-Whiney U test for non-normally distributed group data; ANOVA for core features, clinical features, demographics; two factorial ANOVA for SBR ration between groups (prodromal DLB, possible and probable DLB) as one factor and binary ^{1,23} I-FP CIT SPECT result (nigrostriatal deficit vs no deficit) as the other.	Higher number of probable DLB patients with psychiatric symptoms post-DaTscan than pre-DaTscan; Higher number of prodromal DLB with a psychiatric-phenotype
Huber et al. [10]	Elucidate the link between ¹⁸ F- FDG PET and ¹²³ Lioflupane SPECT in the pathophysi- ological course of dementia with Lewy Bodies	DaT-SPECT Z-Score	Core features of DLB	Pearson's r for correlation, linear regression analysis (associations between DaT Z-score and FDG- PET SUVr), regression analysis using DaT Z-Scores as predictor and voxel-wise ¹⁸ F-FDG-PET SUVr as outcome variable	Inverse relationship between striatal dopamine availability and relative glucose hypermetabo- lism in basal ganglia and limbic regions; Increasing dopamine deficiency reflected in metabolic connectiv- ity deteriorations
lizuka et al. [11]	Investigation of the relation- ship between awareness of memory-deficit and glucose metabolism in DLB	DaT binding, CIS ratio	Clinical characteristics, educational yearls, MMSE, RAVLT, MAC-Q, Awareness index	Two-sample t-test; Pearson 's R for correlations with Bonferroni correction	Decreased Awareness index in DLB than in normal cognition; Association with glucose metabo- lism in bilateral posterior cingu- late cortex and right OFC; No correlation between Awareness index and striatal DAT density
Inagawa et al. [16]	Investigate the efficacy of olfactory (Odor Stick Identi- fication Test for the Japanese) and pareidolia tests (suscepti- bility to visual hallucinations) to differentiate AD from DLB	SBR on DaTscan, MIBG H/M ratio	OSIT-J and pareidolia test scores, Age, sex, educa- tional history	Mann-Whitney test, Chi-squared, Student's t-test	Sensitivity/specificity for differen- tiating DLB from AD: 86/100 for MIBG scintigraphy; 82/96 for SBR uptake; 77/67 for combined OSIT-J and pareidolia test scores; 73/62 for pareidolia test scores; 77/58 for OSIT-J test scores;

 $\underline{\textcircled{O}}$ Springer

Table 2 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Iwabuchi et al. [26]	Evaluate the correlation between perfusion SPECT and quantitative indices with DaTscan in patients with DLB, PD, PDD.	Quantitative indices from DaTscan: Specific bind- ing, Putamen-to-caudate, Caudate-to-putamen ratios (SBR, PCR, CPR).	Age, sex, MMSE	Kruskal-Wallis test to compare age, quantitative indices (e.g. SBR) and MMSE between LBD groups (PD, PDD, DLB; post-hoc analysis with Bonferoni correc- tion; Pearson's chi-square test to compare sex between groups	Correlation between: -decreased PCR and hypop- erfusion in the medulla and midbrain; -decreased CPR and hypoperfu- sion in the right temporoparietal cortex, right precuneus and bilateral temporal cortex; No correlation between decreased SBR index and brain perfusion
Joling et al. [29]	Compare ¹²³ J-FP-CIT binding to striatal dopamine and the extrastriatal serotonin trans- porter between PD and DLB	ROI and voxel-based analysis	Age, gender, MMSE	Distribution of data with his- tograms, Q-Q plots and with Kolmogrov-Smirnov tests; Clinical variables compared with unpaired t-tests or Mann-Whitney U tests as appropriate; ANOVA between PD and DLB for mean binding ration in each ROI	Decreased DAT binding in PD patients than DLB patients (bilateral posterior putamen); Decreased Caudate/putamen ratios in DLB
Joling et al. [30]	Study ¹²³ 1-FP-CTT binding to striatal dopamine and the extrastriatal serotonin trans- porter between early-stage PD and DLB comparted to healthy controls	ROI and voxel-based analysis	Age, gender, MMSE, UPDRS-III, Hoehn & Yahr	Distribution of data with his- tograms, Q-Q plots and with Kolmogrov-Smirnov tests; Kruskal-Wallis tests for non-nor- mal distribution. ANCOVA with age as a nuisance covariate.	Decreased DAT binding ratio in both PD and DLB than HC (bilateral caudate head and bilat- eral posterior putamen); Lower hypothalamic FP-CIT bind- ing ratios in DLB versus HC; Decreased striatal binding in PD and DLB versus HC; Decreased striatal DAT and lower hypothalamic SERT in early- stage PD and early-stage DLB versus HC

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Kamagata et al. [31]	Compare SWI with DaT- SPECT for differentiation of DLB from AD/a-MCI	SBR, presence or absence of nigrosome-1 on SWI (visu- ally evaluated)	Age, Sex, disease duration, MMSE	ANOVA with Tukey's honest significant difference (HSD) test for continuous variables and Chi-square test for categorical variables. Inter-rater variability and reproducibility of visual assessment of SWI and DaTscan with kappa statistic. ANOVA and unpaired t-test to compare contrast ratio and ROI size of nigrosome-1 and assess inter-group differences in SBR for DaTscan. ROC curve analysis for diagnostic utility of normalized signal intensity of nigrosome-1 and SBR from DaTscan, Pearson correlation test for correlations.	Diagnostic accuracy with SWI of 90% (sensitivity: 93%, specific- ity: 87%) in detecting nigro- some-1 degeneration versus 88.3% (sensitivity: 93%, specific- ity: 84%) with DaTscan
Kasanuki et al. [32]	Investigate 1231-FP-CIT SPECT findings and clinical relevance in prodromal DLB	Scheltens score on MRI, left and right medial temporal lobe atrophy, occipital hypo- metabolism, SBR of FP-CIT SPECT	Age, sex, duration of cognitive decline, MMSE, UPDRS-III, medications (Levodopa vs choline esterase inhibitor vs SSRI), Core features (cog- nitive fluctuations, visual hallucinations and parkin- sonism = UPDRS>15), Non-motor symptoms	One-way ANOVA and Student's t-test for differences in age and duration of disease across the three groups, Chi-square and Fisher's exact test for differences in categorical data; non-paramet- ric Mann-Whitney and Kruskal- Wallis tests to test for differences. Spearman correlation coefficient for correlations between SBR scores and clinical symptoms in DLB groups.	Decreased mean SBR scores of both prodromal DLB and clinical DLB versus AD; Negative correlations between SBR and UPDRS-III scores in total and clinical DLB groups (not in prodromal DLB); Negative correlation between duration of olfactory dysfunc- tion, RBD and SBR scores in prodromal DLB
Kemp et al.* [50]	Assess the impact of presyn- aptic dopaminergic imaging with DaTscan SPECT on the clinical diagnosis and subsequent management of patients with possible DLB, referred for imaging	Visually rated DaTscans (nor- mal or abornmal)	Core clinical features (fluc- tuating cognition, VH, spontaneous parkinson- ism, REM sleep disorder, neuroleptic sensitivity, diagnosis of dementia, executive dysfunction, visuospatial dysfunction, Age, sex	NR	Abnormal DaTscan in 20/80 (25%), normal in 60/80 (75%) patients; 18/20 true positives (postscan working clinical diagnosis of DLB) (90%); 58/60 true negatives (alterative clinical diagnosis) (95%); Concordance of DaTscan findings with clinical outcomes in 76/80 cases (95%).

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Kobayashi et al. [17]	Evaluate the extent of diag- nosis accuracy of combined brain perfusion SPECT, MIBG scintigraphy and DaTscan, and comparison of the 3 tests to determine priority	SBR on DAT-SPECT, early and delayed heart-to- mediastinum ratio on MIBG, regional cerebral blood flow quantified by an automated bp-SPECT analysis program	Age, sex, MMSE, parkin- sonism, VH, cognitive fluctuations, REM sleep behavior disorders	Mann-Whitney U-test for relation- ship between mean MMSE and bp-SPECT, MIBG or DAT- SPECT; Chi-squared or Fishers' exact test for relationship between clinical features and imaging modalities.	Better sensitivity for MIBG (79%) and Datscan (79%) than bp- SPECT (53%); Higher ratio of patients with RBD in the MIBG-positive; Increased accuracy of diagnosis with the combination of the 3 modalities (Sensitivity: 100%)
Lamotte et al. [33]	Identify if the education level (years of school after first grade) influences cognitive performance and DAT bind- ing in DLB patients	DAT binding in the striatum, caudate nucleus and putamen (primary evaluation criteria)	MMSE score, scores on executive functions, memory and instrumen- tal functions (secondary criteria), motor and non- motor symptoms	Pearson correlation coefficient; Lev- ene's test for equality of variances for assumption of homogeneity of variance; bi- and multivariate analysis to account for confound- ing factors	Positive correlation between higher education and DAT binding (putamen and caudate nucleus);
Lim et al. [12]	Optimize the interpretation of ¹⁸ F-FDG-PET images for differentiation of DLB from AD and comparison with DAT imaging	Presence or absence of hypo- metabolism in the lateral occipital and medial occipital cortices, relative preservation of mid or posterior cingulate region (cingulate island sign).	Age, sex, MMSE, CDR, UPDRS	Sensitivity and specificity for diagnosis of DLB; ANOVA, ROC curve analysis	Higher accuracy and greater size effect for diagnosis of DLB with ¹²³ Lβ-CIT SPECT than ¹⁸ F-FDG-PET
Lloyd et al. [51]	Develop a new visual rating scale for ¹²³ 1-Ioftupane brain imaging in DLB and validate it against autopsy diagnosis	Visual rating scale using the "Newcastle scale" (0 normal, 0.5 very mild/equivocal, 1 mild loss, 2 moderate loss, 3 severe loss)	Clinical diagnosis, autopsy diagnosis	Inter-operator agreement was measured with the intra-class cor- relation coefficient (ICC, two-way mixed effects models) for each striatal region (right-left caudate and putamen) and for total score, ROC curve analysis for optimal threshold to optimize combined Sn and Sp.	Higher sensitivity/specificity of the Newcastle scale (97%/100%) versus standard scale (97%/80%) with autopsy validation; Inter-rater reliability of Newcastle scale (intra-class correlation coefficient 0.93)

 $\underline{\textcircled{O}}$ Springer

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Maltais et al. [52]	Compare three ¹²³ I-FP-CIT SPECT quantitative methods in patients with neurode- generative syndromes with neuropathological findings as reference	DQ Striatum, Caudate SBRs (z-score), MIM Striatum, Caudate SBR (z-score), DAT Visual interpretation	Age at scan, time between last scan and death (y), clinical diagnosis before death	ANOVA for continuous variables and Chi-squared test for categori- cal variables to test for differences amongst the 3 groups (LBD, LBD/AD, no LBD), AUROCs to test for neuropathology discrimi- nation of the semi-quantitative image analysis programs, ICC for assessing the relationship between image analysis program and ROIs, Box-and-whisker plots to display the distribution of ROIs in z-score and SBR format with the relation to neuropathological diagnosis	AUROC values between 0.93 and 1.00 for discrimination between LBD and non-LBD using DaTQUANTm, MIMneuro and manual ROI methods
McKeith et al. [68]	Assess the sensitivity and specificity of ¹²³ 1-FP-CIT SPECT imaging in ante- mortem differentiation of probable DLB from other causes of dementia	Visually interpreted SPECT images (normal or abnor- mal); abnormal scans subdivided into 3 types: type 1) asymmetric uptake with normal or almost normal putamen activity, type 2) greatly reduced uptake in the putamen on both hemispheres, type 3) virtually absent uptake	Age, sex, UPDRS, Hoehn & Yahr, MMSE, CDR, CAMCOG-R, NPI, Cornelle scale for depres- sion in dementia, clinical assessment of cognitive fluctuations	Chi-squared test for differences among diagnostic groups, ANOVA for normally distributed variables, otherwise non-paramet- ric Kruskal-Wallis test; sensitivity, specificity, positive and negative predictive values for probable and possible DLB according to DATs- can diagnosis; Cohen's kappa statistic for inter-reader agreement	Mean sensitivity of 77.7% of an abnormal DATscan to detect clinically probable DLB; speci- ficity of 90.4% for excluding non-DLB dementia; mean value of 85.7% for overall diagnostic accuracy; PPV of 82.4%, NPV of 87.5%; Inter-reader agreement for rating images was high with kappa coefficient of 0.87
Miyagawa et al. [13]	Asses how well ¹²³ I-FP-CIT SPECT can differentiate DLB from AD and whether multi- modal imaging has additional value	Da TQUANT putamen z-score, PiB-PET global SUVr, FDG- PET CIS ratio	Age, sex, education, core symptoms (RBD, VH, fluctuation score), dura- tion of cognitive decline, UPDRS-III, MMSE	AD and DLB groups compared with Student's t-test for continuous variables and Chi-squared for cat- egorical variables. Logistic regres- sions with 1, 2 or 3 modalities as predictors of AD vs DLB. Pearson correlations between continuous imaging biomarkers.	C-statistic of 0.916 with DaT- QUANT z-scores of the putamen for differentiating DLB from AD: Added accuracy with multimodal imaging with ¹⁸ F-FDG PET and PiB-PET (c-statistics of 0.968- 0.975 adding 1 modality and 0.987-0.996 adding 2 modalities)

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Miyamoto et al. [58]	Examine DaTscan in Japanese patients with iRBD as a bio- marker for the development of Lewy body disease (PD and DLB) and DLB)	SBR of striatium (L, R, mean; z-score)	Age, sex, Odor identifica- tion test, MMSE, UPDRS- III	Fisher's exact test and Mann- Whitney U tests for comparison. Wilcoxon matched-pairs signed rank test for changes in SBR and z-score in R, L and average of R and L striatum. ROC curve analysis for cutoff value (Youden's method). Kaplan-Meier method for plots of estimated propor- tion of subjects that developed clinically defines LBD over time, compared with log-rank test. Cox proportional hazard for predic- tive markers, stratified by cutoff values.	Development of LBD in 33.8%; Difference in ROC curve z-score in iRBD patients; Increased risk of LBD if z-score < 2.5 for striatal DAT binding in Kaplan-Meier survival analysis
Morgan et al. [34]	Investigate how well DaTscan differentiates DLB from FTD	Visually rated FP-CIT uptake (0 normal uptake, 1 sligh reduction, 2 significant reduction), dichotomized to normal (scores of 0 or 1) vs abnormal (score of 2)	Sex, age, CDR, CAMCOG- R, MMSE, letter fluency, category fluency, UPDRS, modified Hoehn and Yahr, EPSM (at least one), pres- ence of tremor, rigidity, bradykinesia, VH	Chi-squared, Mann-Whitney and Kruskal-Wallis as appropriate for comparison between groups.	Significant decreased of DAT binding (putamen and caudate) in 9/10 DLB patients; Abnormal DaTscan with reduced DAT (putamen and caudate) in 1/3 of FTD patients; Visually different scans and ROIs between groups
Nakahara et al. [18]	Investigate the relationship between olfaction and frontal lobe cognition using ¹²³ I-FP- CIT SPECT in PD, PDD or DLB (LBD)	MIBG early and delay, SBR (man, min, average)	Age, Sex, duration of dis- ease, UPDRS, Odor stick identification test score, FAB score	Welch's t-test for differences between groups (continuous variables). Pairwise comparisons using Chi-squared tests for binary variables. Spearman's rank corre- lation coefficients for correlations between pairs of datasets (SBR and FAB scores)	Correlation between OSIT-J scores and SBR in both groups; Correlation between SBR and FAB scores in patients with reduced CBF in frontal lobe (not in normal CBF)

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		·
Nicastro et al. [35]	 Assess the validity of semi- quantitative DaTscan analysis compared to visual analysis in probable DLB and AD; 2) study DLB specific uptake impartment patterns in DLB and correlation of uptake in the presence or absence of parkinsonism 	Right and left uptake values via BRASS for caudate, putamen, striatum, as well as Caudate/Putamen (C/P) ratios, striatal asymmetry indices (AIs) for both DLB and AD groups	Age, sex, disease duration, visual assessment (clearly abnormal = stage 1-3	Shapiro-Wilk test to test continuous variables for normality. Non- parametric, two-sample Wilcoxon Rank Sum (Mann-Whitney U) test for VOIs uptake, C/P ratio and striatal AI. Kruskal-Wallis test compare more than two independ- ent groups (DLB with and without parkinsonism and AD), post hoc Mann-Whitney analysis to specifi- cally compare two groups (DLB without parkinsonism and AD).	Abnormal visual staging in 96.8% of DLB patients; Abnormal semi-quantitative analy- sis in 97.8%; Sessitivity of 100% with combina- tion of visual and semi-quantita- tive analysis; More pronounced putaminal uptake in DLB patients if associ- ated with parkinsonism
Nicastro et al. [53]	Determine sensitivity of com- bined visual and semi-quan- titative ¹²³ J-FP-CIT SPECT analysis in a prospective cohort of patients with DLB and degenerative parkinson- isms (PD, MSA, CBS, PSP) to determine the prevalence and clinical significance of Scans Without Evidence of Dopaminergic Deficit (SWEDD).	Semi-quantitative parameters values, visual grading system (0-to-3 system)	Age, sex, disease duration, clinical diagnosis	Shapiro-Wilk test to test continuous variables for normality. Non- parametric, two-sample Wilcoxon Rank Sum (Mann-Whitney U) when appropriate	Normal visual SPECT in only 2.1% of patients with degenera- tive parkinsonism and 1.9% with DLB; Mild striatal uptake impairment with semi-quantitative analysis in only two patients (1 DLB, 1 PD)
Nicastro et al. [14]	Understanding the metabolic and dopaminergic correlation of presence hallucinations (DH) as well as their relation to a recently defined PH brain network in DLB	Mean caudate nucleus ioflupane uptake, ioflupane SBRs	Age, Sex, education, MMSE, disease duration, MMSE, UPDRS-III, LEDD, VH	Shapiro-Wilk test to assess con- tinuous variables for normality, t-test of Mann-Whiney U test as appropriate for between-group comparisons, Chi-squared test for discrete variables. Whole brain analysis with a two-sample t-test design (PH+ vs PH-) with ANCOVA taking age and sex as covariates. ROI Analysis with Marsbar toolbox for MATLAB and R: linear mixed-effects model. Seed-to-whole-brain analysis with interregional correlation analysis (IRCA) for both groups.	Decreased ¹⁸ F-FDG uptake in superior frontal and parietal gyri in patients with PH+; Involvement of ventral premo- tor cortex of PH network with reduced functional connectivity; Negative correlation between ¹⁸ F-FDG vPMC uptake and ¹²³ L-FP-CIT caudate uptake in PH patients

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
O'Brien et al. [36]	 Determine the pattern and clinical correlates of dopamine transporter loss in DLB with Datscan compared with HC and PD, AD or PDD patients; 2) examine whether FP-CIT changes might discriminate between DLB and AD 	Main Outcome Measures = Visual ratings of scans and region of interest analysis (binding ratios: mean cau- date, anterior and posterior putamen, left and right cau- date, anterior and posterior putamen)	Age, Sex, MMSE, CAM- COG, UPDRS-III, dura- tion of illness	Analysis of variance with the Gabriel post hoc tests for normally distributed data, nonparametric Mann-Whitney test. Intersubject variability agreement assessed with Cohen weighted kappa test. Pearson r or Spearman p as appro- priate for correlations between clinical and SPECT variables.	Decreased FP-CIT binding in caudate, anterior and posterior putamen in DLB patients versus HC and AD; Good discrimination of DLB and AD with visual and ROI analysis (Sn/Sp 78%/94%, PPV 90%); No difference between DLB, PD and PDD
O'Brien et al.** [37]	Determine the accuracy of ¹²³ I-FP-CIT SPECT in diag- nosing people with possible DLB, i.e. compare the results of visual assessment in prob- able DLB or non-DLB as determined by the 12-month follow-up diagnosis (consen- sus panel)	Dichotomized visually rated using 4-point scale (0 normal uptake, 1 unilateral putamen loss, 2 bilateral putamen loss, 3 virtually absent uptake)	MMSE, CAMCOG-R, UPDRS, Hoen and Yahr staging, Neuropsychiatric inventory, VH, Psycholep- tics (hypnotic and antip- sychotic drugs), Psycho- analeptics (anti-dementia drugs and antidepressants)	Chi-squared tests for differences between probable DLB, possible DLB and non-DLB. ANOVA for normally distributed data. Kruskal-Wallis test if non-normal.	Change of diagnosis from possible to probable DLB in 19/44 (43%) patients and non-DLB in 7/44 (7%); Abnormal baseline scan in 12/19 new probable DLB cases (Sn 63%)
Oliveira et al. *** [59]	Re-evaluate the differentiation of patients with DLB from AD and PD with quantita- tive analysis of ¹²³ J-FP-CIT SPECT based on neuropa- thology diagnoses.	Visual assessment of scans, Semi-quantitative indices	Age, sex, autopsy confirmed diagnosis, clinical diagno- sis at baseline	Kruskal-Wallis test for comparison of caudate, putamen binding potentials (CBP, PBP), putamen- to-caudate ratio (PCR) across groups, and post hoc analyses using two-tailed Mann-Whitney U test, correction using the Hold- Bonferroni method.	Decreased CBP and PBP in DLB versus AD patients; Higher PCR in DLB vesus PD patients; Diagnostic accuracies: -Visual rating: 88% in all patients and 96% between PD, AD and DLB -Semi-quantitative: 94% (DLB vs AD), 94% (DLB vs PD vs AD), 93% (DLB, AD, PD vs HC)

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Pilotto et al. [38]	Evaluate extra-striatal dopa- minergic and serotonergic pathways in PD and DLB with DaTscan	Binding in nigrostriatal and extrastriatal ROIs, SBR in the regions	Age, sex, disease duration, serotonergic/dopaminergic treatments	ANOVA or Mann-Whitney U test for three group (PD vs DLB vs HC) comparisons and two-group (PD vs DLB) comparisons respec- tively. Chi-squared test for dif- ferences in categorical variables. ANOVA with Bonferroni post hoc comparisons adjusted for age and sex for nigrostriatal and extrastri- atal FP-CIT SBR values. Post-hoc comparisons between DLB and PD with univariate analysis (adjusted for age, sex, disease duration, SSRI and LEDD).	Decreased ¹²³ I-FP-CIT SBR in both PD and DLB versus HC in insula, cingulate and thalamus; Decreased ¹²³ I-FP-CIT SBR in thalamus in DLB versus HC and PD; Correlation between thalamic and cingulate ¹²³ I-FP-CIT SBR defi- cits with limbic serotonergic; Correlation between cingulate ¹²³ I-FP-CIT and widespread cor- tical monoaminergic projections
Ransmayr et al. [39]	Compare parkinsonian features and loss of striatal dopamine transporter function in DLB and PD	Mean count rates per pixel, striatal (S) to cerebellar (C) ratio, differences between left-right S/C ratios, S/C asymmetry indices	Age, sex, disease duration, UPDRS, CAS, CAI	Kruskal Wallis ANOVA, Mann- Whitney U test, Spearman rank correlation	Decreased S/C ratios in DLB and HC versus PD; Higher total UPDRS scores during practical-off in DLB versus PD; Lower UPDRS extremity sub- scores in DLB versus PD
Roberts et al. [19]	Provide evidence that MIBG scintigraphy differentiates probable MCI-LB from MCI-AD	Dichotomized cardiac MIBG uptake result (H/M ratio)	Age, sex, BMI, UDRS, MMSE, ACE, ESS, GDS, IADL, CDR, NPI, Memantine, cholinester- ase inhibitor, antiparkin- sonian drug, fluctuations (baseline), VH (baseline), Parkinsonism (baseline), RBD (baseline)	Levene test, Mann-Whitney U test, Chi-squared test	Diagnosis accuracy with core clinical features: -79% for MIBG (95% CI 68%- 87%) -76% for FP-CIT (95% CI 65%- 85%)
Roberts et al.**** [54]	Provide evidence of the diag- nostic accuracy of dopamin- ergic imaging at the MCI stage to support or refute its inclusion as a biomarker for MCI with Lewy bodies	SBRs	Age, sex, BMI, UDRS, MMSE, ACE, Epworth Sleepiness scale, Geriatric Depression scale, IADL, CDR, NPI, Memantine, cholinesterase inhibitor, antiparkinsonian drug, fluctuations (baseline), VH (baseline), Parkin- sonism (baseline), RBD (baseline)	Student's t-test or Mann-Whitney U-test; Chi-square; independent samples t-test; Z-scores below -2 calculated; Likelihood ratios from a 2x2 frequency table to estimate the added value of DaTscan	Baseline 1231-FP-CIT visual rating for probable MCI-LB sensitivity of 66%, specificity of 88%, accuracy 76%, positive likelihood ratio 5.3

 Table 2
 (continued)

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Roselli et al. [40]	Explore whether 1231-FP-CIT binding in the putamen, caudate nucleus and nucleus accumbens is related to psy- chiatric symptoms in DLB.	Neuropsychiatric symptoms (delusions, hallucinations, depression, apathy), DAT levels	Age, sex, disease dura- tion, MMSE, CDR, UPDRS-III, NPI, various subscores: hallucinations, delusions, depression, anxiety, apathy, sleep	Spearman's correlation; Pairwise Pearson's correlation coefficients; Bonferroni correction.	Inverse correlation between delu- sions, apathy, depression and DAT levels (caudate);
Sakamoto et al. [20]	Determine whether DAT- SPECT or 1231-MIBG myo- cardial scintigraphy should be examined first; evaluate superiority of the combined use of DAT-SPECT and MIBG versus either modality alone	SBR, H/M ratio (early and delayed, and washout rate)	Age, sex	ROC analysis with delayed H/M ratio yielding Specificity, sensitiv- ity, accuracy and AUC, 2-sided t test for normally distributed data, 2-sided Mann-Whitney U test for non-normally distributed data	Sensitivity, Specificity and accuracy of diagnosing LBD: - SBR mean with DAT-SPECT: 59.6%, 71.4%, 67.5% - Delayed H/M ratio with MIBG: 85.1%, 91.4% and 88.9% -Combined index: 76.6%, 74.3% and 75.2%
Shimizu et al. [21]	Compare diagnostic value of DAT SPECT vs MIBG myocardial scintigraphy for supporting the diagnosis of DLB and differentiating it from AD; evaluation the use of the combination of the two modalities	SBR, H/M ratio (delayed)	Age, sex, disease dura- tion, length of education, MMSE	Student's t test, Chi-squared, one- way ANOVA, ROC curve analysis	 Sensitivity, Specificity and of differentiating DLB from AD: DAT-SPECT: 88.2%, 88.9% Delayed H/M ratio with MIBG: 72.4%, 94.4% Combined index: 96.1%, 90.7% and higher accuracy than single modality; Higher frequency of parkinsonism in the abnormal DAT SPECT group; Higher frequency of RBD in the abnormal MIBG group.
Shimizu et al. [22]	Compare the diagnostic value of 1231-FP-CIT DAT- SPECT, MRI, perfusion SPECT and MIBG myocar- dial scintigraphy in differenti- ating DLB from AD	SBR for DAT-SPECT, H/M ratio (delayed phase) for MIBG, z-scores in the medial occipital lobe for perfusion SPECT, z-scores of hip- pocampal atrophy for MRI	Age, sex, education, dura- tion of disease, MMSE	Student's t-test, Chi-squared test, one-way ANOVA, ROC curve analysis	 Sensitivity, Specificity and of differentiating DLB from AD: DAT SPECT: Sn 93.8%, Sp 93.8%), superior accuracy 93.8%), superior accuracy Delayed H/M ratio with MIBG: Sn 63.5%, Sp 100% Perfusion SPECT: Sn 71.9%, Sp 59.4% -MRI: Sn 46.9%, Sp 81.3%

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Siepel et al. [65]	Explore the clinical course of patients with criteria for clin- ical DLB but normal FP-CIT SPECT ("false negative") and patients not fulfilling DLB criteria with an abnormal scan ("false positive")	Visually rated FP-CIT SPECT	Scores on standardized clinical rating scales for hallucinations, parkinson- ism, fluctuations, RBD	Two-step cluster analysis with 4 continuous variables (parkinson- ism, hallucinations, cognitive fluctuations and RBD) and log- likelihood.	Increased frequency and severity of parkinsonism and cognitive fluctuation in S+CF- patients (not VH and RBD); Fulfillment of probable DLB criteria at baseline and end of follow-up for S-CF+ patients
Siepel et al. [41]	Explore the association between loss of striatal dopa- mine transporter binding and DLB symptoms	SBR	UPDRS, NPI, MMSE	Linear regression (DAT SBRs were the dependent variables and cognitive scores the independent variables), corrected for age and sex	Association of dopamine defi- ciency in DLB with severity of motor symptoms; No correlation between dopa- mine deficiency and ratings of neurobehavioral disturbances nor overall cognition
Spehl et al. [42]	Evaluate the role of ¹²³ 1-FP- CIT SPECT in the differen- tiation of DLB, FTD and AD	Binding potential values in caudate nucleus, putamen and whole striatum including caudate/putamen BP ratio and asymmetry indices	Age, sex, symptom dura- tion, MMSE, parkinson- ism	Student t-test (continuous data), Chi-squared test (nominal data), ANOVA with post hoc Tukey- Kramer test for cases of multiple group comparisons	Decreased putaminal binding potential in patients with: -DLB versus AD (AUC 0.94) -FTD versus AD (AUC 0.92); -FTD versus AD (AUC 0.74) Decreased binding potential ration in DLB versus FTD patients (AUC 0.91); High accuracy of combination of putaminal BP and BPR for DLB versus FTD (AUC 0.97); High accuracy in diagnosis of DLB among all patients (AUC 0.95) but but not of FTD (AUC 0.81) and AD (AUC 0.80)
Taylor et al. [43]	Clarify whether chronic ChEi therapy modulates striatal dopamine transporter binding measured by ¹²³ 1-FP-CIT in DLB, AD and PDD patients	Striatal binding (caudate, ante- rior and posterior putamen)	ChEi use versus non-use, Age, sex, MMSE, sever- ity of parkinsonism and concurrent anti-depressant use, UPDRS-III, duration of illness, time on ChEi for those on medication	Analysis of the effect of ChEi on 1231-FP-CIT SBR with multi- variate analysis of covariance (MANCOVA)	Decreased striatal ¹²³ 1-FP-CIT uptake in DLB and PDD versus AD: No significant change for patients with ChEi

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Thomas et al. [55]	Investigate the diagnostic value of ¹²³ LFP-CIT in a prospective study of a cohort followed up over one year	Visually rated FP-CIT scans (normal or abnormal),	Age, Sex, MMSF, ACE-R, CDR, CIRS-G, IADL, UPDRS, H&Y, ESS, NPI, NPI distress, GDS, Medi- cation at baseline (anti- dementia, -parkinsonian, -psychotic, -depressant)	Chi-squared, t-test and Mann- Whitney for group comparisons; Likelihood ratios for diagnostic value	Visually rated FP-CIT scans to detect: -possible or probable MCI-LB: Sensitivity of 54.2% (95% CI 39.2-68.6), Specificity of 89% (95% CI 70.8-97.6), Likelihood ratio of 4.9; -probable MCI-LB only: Sensitiv- ity: 61% (95% CI 42.5-77.4); -possible MCI-LB only: Sensitiv- ity: 40% (95% CI 16.4-67.7)
Tiraboschi et al. [23]	Compare the diagnostic value of ¹²³ J-FP-CIT SPECT and MIBG myocardial scintigra- phy in differentiating DLB from other dementia subtypes (AD, FTD)	Normal or abnormal visual DaTscans, VOI-based semi- quantitative values	Age, sex, MMSE, CDR, IADL, CIRS severity and comorbidity, CDS, ESS, MFS, Clinical asses- ment of fluctuations, NPI, North-East Visual Hal- lucinations Interview	Student's t-test, Pearson chi-square test for dichotomous variables; comparison of semi-quantitative results between the 2 groups. Sensitivity and specificity determined for both visual and semi-quantitative analyses, as well as PPV, NPV. McNemar test to compare sensitivities and specificities. Cohen kappa statistic for inter-rater agreement for visual assessment.	Sensitivity and specificity for MIBG: 93% and 100%; Sensitivity and specificity for FP- CIT: 90% and 76%; Decreased FP-CIT uptake in 7 non-DLB patients (3 with par- kinsonism)
Treglia et al. [24]	Compare myocardial sym- pathetic imaging using ¹²³ I-MIBG scintigraphy and striatal dopaminergic imaging using ¹²³ I-ioflupane (FP-CTT) SPECT in patients with LBD	SBR, H/M ratio	Age, sex	Chi-square for relationship between 2 modalities; Sensitiv- ity, specifitiy, accuracy, PPV and NPV were calculated with 95% confidence interval; McNemar's test to compare results, Chi-square with Yates' correction or Fisher's test when appropriate to assess relationship between MIBG and FP-CIT	MIBG: overall sensitivity of 83%, specificity of 79%, accuracy of 82%, PPV of 86% and NPV of 76%; FP-CIT: 93%, 41%, 73%, 71%, 80%; No difference in the 2 modalities in patients with LBD
Van de Beek et al. [44]	Investigate associations between core and suggestive DLB symptoms and different aspects of disease burden (i.e. IADL, QoL, caregiver burden)	Visual assessments as well as age-matched binding ratio's of DAT binding	Core and suggestive symp- toms, questionnaires for functional activities, QoL, Zarit Caegiver Burden Interview, age, sex, MMSE	Descriptive statistics to character- ize core and suggestive features (dichotomized as absent/present), general linear models to evalu- ate the influence of cognition, core and suggestive symptoms on IADL, univariate and multi- variate models	88% abnormal FP-CIT scans; 95% patients with EEG/MEG abnormalities; 53% patients with a CSF AD profile

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Van der Zande et al. [45]	Describe clinical and imaging follow-up of patients with probable DLB with a normal baseline scan (compared to those with abnormal baseline scans)	Binding ratios of FP-CIT SPECT	Usual clinical character- istics	Fisher's exact test for categorical variables, Mann-Whitney U test for continuous variables, Cohen's kappa statistic for interobserver variation	7/67 (10.4 %) normally rated FP- CIT scans; Abnormal subsequent control in five DLB/S- patients (average second scan after 1.5 years)
Van der Zande et al. [46]	Study the concomitant AD pathology in DLB on DaTs- can and serotonin transporter availability using ¹²³ 1-FP-CIT SPECT	Atrophy corrected ROIs, Bind- ing ratios	CSF biomarker profile	Mann-Whitney U test, Chi-square or Fisher's exact test as appropriate. Linear regression with Pearson or Spearman correlation between BRs in each ROI (DAT and SERT) and clinical measures (cor- rected for age and ROI volume)	Decreased FP-CIT binding ratios in the left amygdala (trend in the right hippocampus) in patients with DLB + AD co-pathology; Negative correlation between motor symptoms and striatal DAT binding ratios;
Walker et al. [66]	Determine if detection of dopa- minergic degeneration can help distinguish DLB from AD during life	Binding of FP-CTT radioactiv- ity in caudate, anterior and posterior putamen	Age, MMSF, CAMCOG, CDR, BEHAVE-AD, UPDRS, Cornell depres- sion scale, CAPE	ANOVA and t-test were used to assess the difference between the four groups in ipsilateral and contralateral FP-CIT binding in caudate, anterior and posterior putamen and their basic indices; Cohen's kappa test for inter-rater reliability	Decreased ¹²³ I-FP-CIT uptake in DLB and PD patients versus AD patients and HC (caudate nucleus, anterior and posterior putamen)
Walker et al. [47]	Compare the patterns of dopaminergic disruption in DLB and PD and evaluate the relationship between extrapy- ramidal signs and severity of dopaminergic dysfunction	FP-CIT binding (STR/OCC)	MMSE, CAMCOG, CDR, UPDRS, Hoehn and Yahr stage	ANOVA and Student's t-test for differences between groups of FP- CIT binding in caudate nuclei and anterior and posterior putamen; nonparametric Kruskal-Wallis and Mann-Whitney tests for C/P ratios and asymmetry indices; Spear- man's rank correlation for ordinal data	Decreased ¹²³ 1-FP-CIT striatal binding in DLB and patients versus HC; Decreased binding in DLB versus PD patients in caudate nucleus; Increased asymmetry of uptake in posterior putamen of PD versus DLB patients; Higher mean C/P ratios of PD versus DLB patients and HC
Walker et al. [56]	Determine in a series of dementia patients with autopsy confirmation whether dopaminergic imaging improves accuracy of diag- nosis compared to clinical criteria alone.	FP-CIT binding (STR/OCC), visual rating of scans	Family history, rigidity, akinesia, tremor, VH, fluctuations, age, sex, years of education, Hoehn and Yahr stage, MMSe, UPDRS, CAMCOG, CAPE, GDS, CDR, Behave-AD, Neuropatho- logical diagnostic criteria (i.e. neurofibrillary tan- gles), alpha-synuclein)	Sensitivity and specificity (autopsy = gold standard) of FP-CIT SPECT and of the Consensus DLB criteria (of 1996)	Initial clinical diagnosis of DLB: Sensitivity of 75%, specificity of 42% ¹²³ J-FP-CIT: Sensitivity of 88%, specificity of 100% Neuropathological diagnosis over 10 years: -8/20 patients DLB -9/20 patients AD (co-existing with cerebrovascular disease) -3/20 patients with other diagnoses

Table 2 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Walker et al. *****[57]	Investigate whether doing a DaTscan in patients with pos- sible DLB would to a more certain diagnosis (probable DLB or non-DLB dementia).	Visual rating (type 1: asym- metric activity, one putamen with reduced uptake; type 2: absent activity of putamen of both hemispheres; type 3: type 2+greatly reduced of absent activity in one or more caudate nuclei)	Primary outcome measure: proportion of patients with a change in clinical diagnosis (to probable DLB or non-DLB) at 8 weeks, secondary outcome was the same at 24 weeks and change in clinician's confidence of diagnosis at 8 and 24 weeks	Fisher's exact test; ANCOVA to compare the mean change in clinician's confidence of diagnosis between baseline and week 8, baseline and week 24 and weeks 8 and 24.	Abnormal scans in 43% of 114 patients; Higher likelihood for clinical change in diagnosis if abnormal scan (82%) versus normal scan (46%)
Ziebell et al. [48]	Identify whether any of the core features of DLB were influenced by disturbances of DAT availability	DAT availability (Non-dis- placeable binding potential adjusted to age)	Core features of DLB (dementia, hallucinations, fluctuations or parkinson- ism)	Unpaired Student's t-test to compare clinical core symptoms and DAT binding; Linear regression analy- sis for correlation of continuous data	No correlation between MMSE, Hoehn & Yahr score, fluc- tuations or hallucinations and striatal DAT availability as measured with ¹²³ I-PE2I SPECT
MD not monorthy MM	GE Ealain Minim State En			Dombin from the second s	" TIP BE TIPE Production of the second se

EXamination-Kevised, UPDK3 Unified Parkinson's est. ICC intra-class correlation coefficients, AUROC Area under the Receiving operating characteristics, OS/T-J Odor stick identification test for the Japanese, LEDD Levodopa equivalent daily dosage in mg, SSRI selective serotonin reuptake inhibitors, CAS clinical asymmetry score, CAI clinical asymmetry index, ACE Addenbrooke's Cognitive Examination, BMI Body mass index, CDR Clinical Dementia Rating, IADL instrumental activities of daily life, NPI Neuropsychiatric Inventory, CUSPAD Columbia University Scale of Psychopathology in Alzheimer's Disease, ChEi Cholinesterase inhibitor, CIRS Cumulative Illness Rating Scale, QoL Quality of Life, BEHAVE-AD bevavioural pathology in Alzheimer's Disease, CAPE Clifton assessment procedure for Disease Rating Scale, EPSM extrapyramidal motor signs, VH Visual hallucinations, DQ DaTQUANT, FAB Frontal assessment battery, SBR Striatum-to-Background Ratio, ROI region of inter-CAMCUU-K Cambridge Cognitive WK not reported, MMSE Folstein Mini-Mental State Examination, CDK Clinical Dementia Kating Scale, the elderly

*Kemp et al: 95% change in dx, 94% change in ttt, 93% change in management

****O'Brien et al.** [37] : 43% change in diagnosis from possible to probable DLB

***Oliveira: Autopsy diagnosis change in 1/8 normal DaTscans that turned out to be DLB

****Roberts et al. [54]: 42% change in diagnosis from MCI to probable MCI-LB

*****Walker et al. [57]: More patients in the imaging group had a change in diagnosis at 8 and 24 weeks compared with controls (61% versus 4% and 71% versus 16%)

Table 3 Methodology and outc	ome summary of the included stu	adies			
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables C	Jinical variables		
Ceravolo et al. [49]	Assess dopamine transporter function	Ratio of specific (bilateral caudate nucleus, putamen) to non-specific (occipital cortex) radiotracer binding	ege, sex, MMSE, CAMCOG, NPI, UPDRS	NR	Decreased specific to non-spe- cific FP-CIT binding in DLB compared to AD
Chen et al. [15]	Determine clinical phenotypes associated with beta-amyloid PET (A+) and DaT imaging (D+) in MCI-LB (higher risk of progression to probable DLB)	Putamen z score (cutoff ≤0.82). N beta-amyloid PET PiB SUVR	1MSE, CDR sum of boxes and UPDRS-III scores, visual hallucinations, fluctuations, parkinsonism, probable RBD	T test for continuous vari- ables, Chi-squared test for categorical variables; linear or logistic regression models for predictors (factorial modeling approach using continuous A and D); Age adjusted	Decreased putaminal z score and lower PiB SUVRs r independently associated with higher UPDRS-III scores; More probability of RBD in positive DaTscan group
Chiu et al. [60]	Differentiate DLB from AD with motor dysfunction	SBR and visual rating	lovel designed questionnaire, composite scale with motor dysfunction questionnaire (MDQ) and dopamine trans- porter imaging	Chi-square test for each question in the HAI-MDQ between DLB and non-DLB groups,	Higher frequency of motor dysfunction in DLB group; Lower SBR in DLB group; Sensitivity/Specificity (%): 91/72 (MDQ), 91/80 (SBR), 87/93 (composite scale)
Colloby et al. [25]	Compare diagnostic accuracy of ^{99m} Tc-exametazime to ¹²³ I-FP-CIT for AD and DLB	Normal or Abnormal visual k rating of 1231-FP-CIT SPECT Scans (grade 0 = normal, grade 1,2,3 = abnormal)	ge, sex, MMSE, CAMCOG, UPDRS-III, duration of ill- ness	Shapiro–Wilk test for normality of distribution of continuous variables; one-way ANOVA (<i>F</i> -Test) for group effects; Nominal data with Chi-square tests; Cohen's kappa test for inter-observer agreement between raters' visual assess- ment; ROC curve analysis for Sn and Sp	Excellent Inter-rater agreement $(\kappa = 0.88)$ for DaTscan; Superior ROC for DaTscan in diagnosing DLB (AUC 0.83, sensitivity: 78.6%, specific-ity: 87.9) compared to brain perfusion
Colloby et al. [27]	Investigate rate of progression of nigrostriatal dopaminergic loss in DLB, PD, PDD using DaTscan	Striatal binding between groups A	ge, MMSE, UPDRS III, dura- tion of symptoms	Shapiro–Wilk test for normality of distribution of continu- ous variables; Pearson's r or Spearman's rho as appropri- ate for correlations between SPECT and clinical variables; 2-sample dependent t tests for differences in binding rations; ANCOVA (analysis of covari- ance) for rates of decline in BRs	Faster rates of decline in striatal binding in LBD than controls in caudate nucleus and poste- rior putamen; Faster rates of decline in striatal binding in DLB & PDD than controls in anterior putamen; Similar rates of decline between DLB, PD, and PDD

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Colloby et al. [28]	Investigate the differences in striatal binding using auto- mated statistical parametric mapping (SPM99) in DLB, AD, PD	Voxel-level changes in FPCIT binding	Age, MMSE, UPDRS III, dura- tion of symptoms	Spatial normalization and smoothening for voxel-wise univariate statistical tests (technique of proportional scaling) with t-statistic for each voxel formed SPM, foci described in terms of spatial extent (k) and peak height (u); Gaussian random field theory; ROC analysis	Decreased bilateral uptake in caudate nucleus, anterior and posterior putamen in DLB and PD versus AD and controls, and in AD versus controls; No difference between DLB and PD; ROC AUCs > 0.92
Del Sole et al. [61]	Study the correlations between ¹²³ 1-FP-CIT uptake in the striatum and extrapyramidal signs (EPS) in probable DLB patients	Specific uptake ratio	EPS using UPDRS III score, MMSE	Pearson's r for correlation	Negative linear correlation between FP-CIT uptake and UPDRS III score in caudate and putamen; Decreased striatal uptake in patients with mild and severe EPS
Donaghy et al. [62]	Compare the neuropsychiatric symptoms and cognitive pro- file of MCI-LB with MCI-AD	Normal or abnormal FP-CIT SPECT scans	Lewy body Neuropsychiatric Supportive Symptom Count (LBNSSC), calculated based on supportive neuropsychi- atric symptoms (non-visual hallucinations, delusions, anxiety, depression, apathy)	<i>T</i> -tests, Mann–Whitney <i>U</i> tests, Chi-squared, and Fisher's exact tests depending on the nature of the data	Higher symptoms count in MCI-LB than MCI-AD, using a positive FP-CIT SPECT in the list of diagnostic features of MCI-LB
Durcan et al. [63]	Explore whether gastroparesis is early diagnostic marker of prodromal DLB and the rela- tionship with dopaminergic imaging (FP-CIT SPECT)	Visually rated FP-CIT SPECT scans (normal vs abnormal)	Gastroparesis Cardinal Symp- tom Index (GSCI), MMSE, ACE-R, CDR, CIRS-G	Chi-square, Mann–Whitney, Fisher exact test	No difference in gastroparesis symptom prevalence or sever- ity score and FP-CIT uptake
Gupta et al. [9]	Study the imaging patterns of PCA and DLB with FDG PET/CT and develop a predic tion model	Normal vs abnormal TRODAT uptake and ¹⁸ F-FDG PET/CT - uptake patterns		Z score analysis, ROC curve analysis, binary logistic regression analysis to deter- mine the OR	Hypometabolism in parieto- temporo-occipital association cortices and cingulate cortices in non-DLB patients; reduced visual vortex uptake in DLB; hypometabolism in both groups in occipital association cortex

Authors	Study objectives	Variables analyzed		statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Hansen et al. [64]	Validating ¹²³ T-FP-CIT SPECT as a method to diagnose probable DLB in patients wit psychiatric symptomatology and suspected DLB	SBR ratios h	Clinical and neuropsychologicalI phenotypes via main core and supportive biomarkers (EEG slowing posterior, temporal preservation); clinical onset of symptoms (Psych-onset, MCI- onset, Mixed onset)	Tisher's exact test, Student's <i>t</i> -tests to compare age groups and number of DLB patients with probable DLB before and after ¹²³ 1-FP-CTT SPECT. Mann–Whiney <i>U</i> test for non-normally distributed group data; ANOVA for core features, clinical features, supportive biomarkers, demographics; two facto- rial ANOVA for SBR ration between groups (prodromal DLB, possible and probable DLB) as one factor and binary ¹²³ 1-FP CIT SPECT result (nigrostriatal deficit vs no deficit) as the other	Higher number of probable DLB patients with psychiatric symptoms post-DaTscan than pre-DaTscan; higher number of prodromal DLB with a psychiatric- phenotype
Huber et al. [10]	Elucidate the link between ¹⁸ F- FDG PET and ¹²³ I-ioflupane SPECT in the pathophysi- ological course of dementia with Lewy bodies	DaT-SPECT Z-Score	Core features of DLB	Pearson's r for correlation, linear regression analysis (associations between DaT Z-score and FDG-PET SUVr), regression analysis using DaT Z-Scores as predictor and voxel-wise ¹⁸ F-FDG-PET SUVr as outcome variable	Inverse relationship between striatal dopamine availability and relative glucose hyperme- tabolism in basal ganglia and limbic regions; increasing dopamine deficiency reflected in metabolic con- nectivity deteriorations
lizuka et al. [11]	Investigation of the relation- ship between awareness of memory-deficit and glucose metabolism in DLB	DaT binding, CIS ratio	Clinical characteristics, educational yearls, MMSE, RAVLT, MAC-Q, Awareness index	[wo-sample <i>t</i> -test; Pearson 's <i>R</i> for correlations with Bonferroni correction	Decreased Awareness index in DLB than in normal cogni- tion; association with glucose metabolism in bilateral posterior cingulate cortex and right OFC; no correlation between Aware- ness index and striatal DAT density

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Inagawa et al. [16]	Investigate the efficacy of olfactory (Odor Stick Identification Test for the Japanese) and pareidolia tests (susceptibility to visual hallucinations) to differentiate AD from DLB	-SBR on DaTscan, MIBG H/M ratio	OSIT-J and pareidolia test scores, age, sex, educational history	Mann-Whitney test, Chi- squared, Student's <i>t</i> -test	Sensitivity/specificity for dif- ferentiating DLB from AD: 86/100 for MIBG scintigraphy; 82/96 for SBR uptake; 77/67 for combined OSIT-J and pareidolia test scores; 73/62 for pareidolia test scores; 77/58 for OSIT-J test scores
Iwabuchi et al. [26]	Evaluate the correlation between perfusion SPECT and quantitative indices with DaTscan in patients with DLB, PD, PDD	Quantitative indices from DaTscan: specific binding, Putamen-to-caudate, Caudate- to-putamen ratios (SBR, PCR CPR)	Age, sex, MMSE	Kruskal–Wallis test to compare age, quantitative indices (e.g., SBR) and MMSE between LBD groups (PD, PDD, DLB; post-hoc analysis with Bon- ferroni correction; Pearson's chi-square test to compare sex between groups	Correlation between: -decreased PCR and hypop- erfusion in the medulla and midbrain; -decreased CPR and hypoperfu- sion in the right temporopa- rietal cortex, right precuneus and bilateral temporal cortex; no correlation between decreased SBR index and brain perfusion
Joling et al. [29]	Compare ¹²³ I-FP-CIT binding to striatal dopamine and the extrastriatal serotonin trans- porter between PD and DLB	ROI and voxel-based analysis	Age, gender, MMSE	Distribution of data with his- tograms, Q-Q plots and with Kolmogorov–Smirnov tests; clinical variables compared with unpaired <i>t</i> -tests or Mann–Whitney <i>U</i> tests as appropriate; ANOVA between PD and DLB for mean binding ration in each ROI	Decreased DAT binding in PD patients than DLB patients (bilateral posterior putamen); decreased Caudate/putamen ratios in DLB
Joling et al. [30]	Study ¹²³ 1-FP-CIT binding to striatal dopamine and the extrastriatal serotonin trans- porter between early-stage PL and DLB compared to healthy controls	ROI and voxel-based analysis	Age, gender, MMSE, UPDRS- III, Hoehn & Yahr	Distribution of data with histograms, Q-Q plots and with Kolmogorov–Smirnov tests; Kruskal–Wallis tests for non-normal distribution. ANCOVA with age as a nui- sance covariate	Decreased DAT binding ratio in both PD and DLB than HC (bilateral posterior putamen); Lower hypothalamic FP-CIT binding ratios in DLB versus HC; decreased striatal binding in PD and DLB versus HC; Decreased striatal DAT and lower hypothalamic SERT in early-stage PD and early-stage DLB versus HC

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Kamagata et al. [31]	Compare SWI with DaT- SPECT for differentiation of DLB from AD/a-MCI	SBR, presence or absence of nigrosome-1 on SWI (visually evaluated)	Age, sex, disease duration, MMSE	ANOVA with Tukey's honest significant difference (HSD) test for continuous variables and Chi-square test for cat- egorical variables. Inter-rater variability and reproduc- ibility of visual assessment of SWI and DaTscan with kappa statistic. ANOVA and unpaired <i>t</i> -test to compare contrast ratio and ROI size of nigrosome-1 and assess inter-group differences in SBR for DaTscan. ROC curve analysis for diagnostic utility of normalized signal intensity of nigrosome-1 and SBR from DaTscan, Pearson correlation test for correlations	Diagnostic accuracy with SWI of 90% (sensitivity: 93%, specificity: 87%) in detecting nigrosome-1 degeneration versus 88.3% (sensitivity: 93%, specificity: 84%) with DaTscan
Kasanuki et al. [32]	Investigate 1231-FP-CIT SPECT findings and clinical relevance in prodromal DLB	Scheltens score on MRI, left and right medial temporal lobe atrophy, occipital hypo- metabolism, SBR of FP-CIT SPECT	Age, sex, duration of cognitive decline, MMSE, UPDRS- III, medications (Levodopa vs choline esterase inhibi- tor vs SSRJ), Core features (cognitive fluctuations, visual hallucinations and parkinson- ism = UPDRS > 15), Non- motor symptoms	One-way ANOVA and Stu- dent's <i>t</i> -test for differences in age and duration of disease across the three groups, Chi- square and Fisher's exact test for differences in categorical data; non-parametric Mann- Whitney and Kruskal-Wallis tests to test for differences. Spearman correlations between SBR scores and clinical symptoms in DLB groups	Decreased mean SBR scores of both prodromal DLB and clinical DLB versus AD; Negative correlations between SBR and UPDRS-III scores in total and clinical DLB groups (not in prodromal DLB); Negative correlation between duration of olfactory dysfunc- tion, RBD and SBR scores in prodromal DLB

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Kemp et al.* [50]	Assess the impact of presyn- aptic dopaminergic imaging with DaTscan SPECT on the clinical diagnosis and subse- quent management of patients with possible DLB, referred for imaging	Visually rated DaTscans (nor- mal or abornmal)	Core clinical features (fluctuat- ing cognition, VH, spontane- ous parkinsonism, REM sleep disorder, neuroleptic sensitiv- ity, diagnosis of dementia, executive dysfunction, visuos- patial dysfunction), Age, sex	NR	Abnormal DaTscan in 20/80 (25%), normal in 60/80 (75%) patients; 18/20 true positives (postscan working clinical diagnosis of DLB) (90%); 58/60 true negatives (alterative clinical diagnosis) (95%); Concordance of DaTscan find- ings with clinical outcomes in 76/80 cases (95%)
Kobayashi et al. [17]	Evaluate the extent of diagnosi: accuracy of combined brain perfusion SPECT, MIBG scintigraphy and DaTscan, and comparison of the 3 tests to determine priority	s SBR on DAT-SPECT, early and delayed heart-to-mediastinum ratio on MIBG, regional cerebral blood flow quantified by an automated bp-SPECT analysis program	Age, sex, MMSE, parkinson- ism, VH, cognitive fluctua- tions, REM sleep behavior disorders	Mann–Whitney U-test for relationship between mean MMSE and bp-SPECT; MIBG or DAT-SPECT; Chi-squared or Fishers' exact test for relationship between clinical features and imaging modalities	Better sensitivity for MIBG (79%) and Datscan (79%) than bp-SPECT (53%); Higher ratio of patients with RBD in the MIBG-positive; increased accuracy of diagnosis with the combination of the 3 modalities (sensitivity: 100%)
Lamotte et al. [33]	Identify if the education level (years of school after first grade) influences cognitive performance and DAT bind- ing in DLB patients	DAT binding in the striatum, caudate nucleus and putamen (primary evaluation criteria)	MMSE score, scores on execu- tive functions, memory and instrumental functions (sec- ondary criteria), motor and non-motor symptoms	Pearson correlation coefficient; Levene's test for equality of variances for assumption of homogeneity of variance; bi- and multivariate analysis to account for confounding factors	Positive correlation between higher education and DAT binding (putamen and caudate nucleus);
Lim et al. [12]	Optimize the interpretation of ¹⁸ F-FDG-PET images for dif- ferentiation of DLB from AD and comparison with DAT imaging	Presence or absence of hypo- metabolism in the lateral occipital and medial occipital cortices, relative preservation of mid or posterior cingulate region (cingulate island sign)	Age, sex, MMSE, CDR, UPDRS	Sensitivity and specificity for diagnosis of DLB; ANOVA, ROC curve analysis	Higher accuracy and greater size effect for diagnosis of DLB with ¹²³ I-β-CIT SPECT than ¹⁸ F-FDG-PET
Lloyd et al. [51]	Develop a new visual rating scale for ¹²³ 1-Ioflupane brain imaging in DLB and validate it against autopsy diagnosis	Visual rating scale using the "Newcastle scale" (0 normal, 0.5 very mild/equivocal, 1 mild loss, 2 moderate loss, 3 severe loss)	Clinical diagnosis, autopsy diagnosis	Inter-operator agreement was measured with the intra- class correlation coefficient (ICC, two-way mixed effects models) for each striatal region (right-left caudate and putamen) and for total score, ROC curve analysis for optimal threshold to optimize combined Sn and Sp	Higher sensitivity/specific- ity of the Newcastle scale (97%/100%) versus standard scale (97%/80%) with autopsy validation; Inter-rater reliability of New- castle scale (intra-class cor- relation coefficient 0.93)

🖄 Springer

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Maltais et al. [52]	Compare three ¹²³ 1-FP-CIT SPECT quantitative methods in patients with neurode- generative syndromes with neuropathological findings as reference	DQ Striatum, Caudate SBRs (z-score), MIM Striatum, Caudate SBR (z-score), DAT visual interpretation	Age at scan, time between last scan and death (y), clinical diagnosis before death	ANOVA for continuous vari- ables and Chi-squared test for categorical variables to test for differences amongst the 3 groups (LBD, LBD/AD, no LBD), AUROCs to test for neuropathology discrimina- tion of the semi-quantitative image analysis programs, ICC for assessing the relation- ship between image analysis program and ROIs, Box-and- whisker plots to display the distribution of ROIs in z-score and SBR format with the relation to neuropathological diagnosis	AUROC values between 0.93 and 1.00 for discrimination between LBD and non- LBD using DaTQUANTm, MIMneuro, and manual ROI methods
Miyagawa et al. [13]	Asses how well ¹²³ 1-FP-CTT SPECT can differentiate DLF from AD and whether multi- modal imaging has additional value	DaTQUANT putamen z-score, B PiB-PET global SUVr, FDG- PET CIS ratio	Age, sex, education, core symp- toms (RBD, VH, fluctuation score), duration of cognitive decline, UPDRS-III, MMSE	AD and DLB groups com- pared with Student's <i>t</i> -test for continuous variables and Chi-squared for categorical variables. Logistic regressions with 1, 2, or 3 modalities as predictors of AD vs DLB. Pearson correlations between continuous imaging biomark- ers	C-statistic of 0.916 with DaTQUANT <i>z</i> -scores of the putamen for differentiating DLB from AD; added accuracy with multi- modal imaging with ¹⁸ F-FDG PET and PiB-PET (c-statistics of 0.968–0.975 adding 1 modality and 0.987–0.996 adding 2 modalities)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Miyamoto et al. [58]	Examine DaTscan in Japanese patients with iRBD as a bio- marker for the development o Lewy body disease (PD and DLB)	SBR of striatium (L, R, mean; z-score) f	Age, sex, Odor identification test, MMSE, UPDRS-III	Fisher's exact test and Mann- Whitney U tests for compari- son. Wilcoxon matched-pairs signed rank test for changes in SBR and z-score in R, L and average of R and L striatum. ROC curve analysis for cutoff value (Youden's method). Kaplan-Meier method for plots of estimated proportion of subjects that developed clinically defines LBD over time, compared with log-rank test. Cox proportional hazard for predictive markers, strati- fied by cutoff values	Development of LBD in 33.8%; Difference in ROC curve z-score in iRBD patients; Increased risk of LBD if z-score < 2.5 for striatal DAT binding in Kaplan-Meier survival analysis
Morgan et al. [34]	Investigate how well DaTscan differentiates DLB from FTD	Visually rated FP-CIT uptake (0 normal uptake, 1 slight reduction, 2 significant reduc- tion), dichotomized to normal (scores of 0 or 1) vs abnormal (score of 2)	Sex, age, CDR, CAMCOG- R, MMSE, letter fluency, category fluency, UPDRS, modified Hoehn and Yahr, EPSM (at least one), the presence of tremor, rigidity, bradykinesia, VH	Chi-squared, Mann–Whitney, and Kruskal–Wallis as appro- priate for comparison between groups	Significant decreased of DAT binding (putamen and cau- date) in 9/10 DLB patients; abnormal DaTscan with reduced DAT (putamen and caudate) in 1/3 of FTD patients; visually different scans and ROIs between groups
Nakahara et al. [18]	Investigate the relationship between olfaction and frontal lobe cognition using ¹²³ I-FP- CIT SPECT in PD, PDD, or DLB (LBD)	MIBG early and delay, SBR (man, min, average)	Age, sex, duration of disease, UPDRS, odor stick identifica- tion test score, FAB score	Welch's <i>t</i> -test for differences between groups (continuous variables). Pairwise com- parisons using Chi-squared tests for binary variables. Spearman's rank correlation coefficients for correlations between pairs of datasets (SBR and FAB scores)	Correlation between OSIT- J scores and SBR in both groups; correlation between SBR and FAB scores in patients with reduced CBF in frontal lobe (not in normal CBF)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables	1	
Nicastro et al. [35]	 Assess the validity of semi- quantitative DaTscan analysis compared to visual analysis in probable DLB and AD; 2) study DLB specific uptake impartment patterns in DLB and correlation of uptake in the presence or absence of parkinsonism 	Right and left uptake values via BRASS for caudate, putamen, striatum, as well as Caudate/ Putamen (C/P) ratios, striatal asymmetry indices (AIs) for both DLB and AD groups	Age, sex, disease duration, visual assessment (clearly abnormal = stage 1–3	Shapiro–Wilk test to test continuous variables for normality. Non-parametric, two-sample Wilcoxon Rank Sum (Mann–Whitney <i>U</i>) test for VOIs uptake. <i>C/P</i> ratio and striatal AI. Kruskal–Wallis test compare more than two independent groups (DLB with and without parkinson- ism and AD), post hoc Mann- Whitney analysis to spe- cifically compare two groups (DLB without parkinsonism and AD)	Abnormal visual staging in 96.8% of DLB patients; abnormal semi-quantitative analysis in 97.8%; Sensitivity of 100% with 1 combination of visual and semi-quantitative analysis; more pronounced putaminal uptake in DLB patients if associated with parkinsonism
Nicastro et al. [53]	Determine sensitivity of com- bined visual and semi-quan- titative ¹²³ 1-FP-CIT SPECT analysis in a prospective cohort of patients with DLB and degenerative parkinson- isms (PD, MSA, CBS, PSP) to determine the prevalence and clinical significance of Scans Without Evidence of Dopaminergic Deficit (SWEDD)	Semi-quantitative parameters values, visual grading system (0-to-3 system)	Age, sex, disease duration, clinical diagnosis	Shapiro–Wilk test to test continuous variables for normality. Non-parametric, two-sample Wilcoxon Rank Sum (Mann–Whitney U) when appropriate	Normal visual SPECT in only 2.1% of patients with degen- erative parkinsonism and 1.9% with DLB; mild striatal uptake impair- ment with semi-quantitative analysis in only two patients (1 DLB, 1 PD)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Nicastro et al. [14]	Understanding the metabolic and dopaminergic correlation of presence hallucinations (DH) as well as their relation to a recently defined PH brain network in DLB	Mean caudate nucleus ioflupane uptake, ioflupane SBRs	Age, Sex, education, disease duration, MMSE, UPDRS-III, LEDD, VH	Shapiro–Wilk test to assess continuous variables for normality, <i>t</i> -test of Mann– Whitney <i>U</i> test as appropriate for between-group com- parisons, Chi-squared test for discrete variables. Whole brain analysis with a two- sample <i>t</i> -test design (PH + vs PH-) with ANCOVA taking age and sex as covariates. ROI Analysis with Marsbar toolbox for MATLAB and R: linear mixed-effects model. Seed-to-whole-brain analysis with interregional correla- tion analysis (IRCA) for both groups	Decreased ¹⁸ F-FDG uptake in superior frontal and parietal gyri in patients with PH + ; involvement of PH network with reduced functional connec- tivity; negative correlation between ¹⁸ F-FDG vPMC uptake and ¹²³ 1-FP-CIT caudate uptake in PH patients
O'Brien et al. [36]	 Determine the pattern and clinical correlates of dopa- mine transporter loss in DLB with Datscan compared with HC and PD, AD, or PDD patients; 2) examine whether FP-CIT changes might discriminate between DLB and AD 	Main outcome measures = Vis- ual ratings of scans and region of interest analysis (binding ratios: mean caudate, anterior and posterior putamen, left and right caudate, anterior and posterior putamen)	Age, Sex, MMSE, CAMCOG, UPDRS-III, duration of ill- ness	Analysis of variance with the Gabriel post hoc tests for normally distributed data, nonparametric Mann- Whitney test. Intersubject variability agreement assessed with Cohen weighted kappa test. Pearson <i>r</i> or Spearman p as appropriate for correlations between clinical and SPECT variables	Decreased FP-CIT binding in caudate, anterior and poste- rior putamen in DLB patients versus HC and AD; good discrimination of DLB and AD with visual and ROI analysis (Sn/Sp 78%/94%, PPV 90%); No difference between DLB, PD and PDD
O'Brien et al.** [37]	Determine the accuracy of ¹²³ 1-FP-CIT SPECT in diagnosing people with possible DLB, i.e., compare the results of visual assessment ir probable DLB or non-DLB as determined by the 12-month follow-up diagnosis (consensus panel)	Dichotomized visually rated using 4-point scale (0 normal uptake, 1 unilateral putamen loss, 2 bilateral putamen loss, 3 virtually absent uptake)	MMSE, CAMCOG-R, UPDRS, Hoen and Yahr staging, Neuropsychiatric inventory, VH, psycholeptics (hypnotic and antipsychotic drugs), psy- choanaleptics (anti-dementia drugs and antidepressants)	Chi-squared tests for differ- ences between probable DLB, possible DLB and non-DLB. ANOVA for normally distrib- uted data. Kruskal-Wallis test if non-normal	Change of diagnosis from possible to probable DLB in 19/44 (43%) patients and non- DLB in 7/44 (7%); abnormal baseline scan in 12/19 new probable DLB cases (Sn 63%)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables	-	
Oliveira et al.*** [59]	Re-evaluate the differentiation of patients with DLB from AD and PD with quantita- tive analysis of ¹²³ I-FP-CIT SPECT based on neuropathol- ogy diagnoses	Visual assessment of scans, Semi-quantitative indices	Age, sex, autopsy confirmed diagnosis, clinical diagnosis at baseline	Kruskal–Wallis test for com- parison of caudate, putamen binding potentials (CBP, PBP), putamen-to-caudate ratio (PCR) across groups, and post hoc analyses using two-tailed Mann–Whitney U test, correction using the Hold-Bonferroni method	Decreased CBP and PBP in DLB versus AD patients; higher PCR in DLB versus PD patients; diagnostic accuracies: -visual rating: 88% in all patients and 96% between PD, AD and DLB -Semi-quantitative: 94% (DLB vs AD), 94% (DLB vs PD vs AD), 93% (DLB, AD, PD vs HC)
Pilotto et al. [38]	Evaluate extra-striatal dopa- minergic and serotonergic pathways in PD and DLB with DaTscan	Binding in nigrostriatal and extrastriatal ROIs, SBR in the regions	Age, sex, disease duration, serotonergic/dopaminergic treatments	ANOVA or Mann–Whitney U test for three group (PD vs DLB vs HC) comparisons and two-group (PD vs DLB) comparisons respectively. Chi-squared test for differ- ences in categorical variables ANOVA with Bonferroni pos hoc comparisons adjusted for age and sex for nigrostriatal and extrastriatal FP-CIT SBR values. Post-hoc comparisons between DLB and PD with univariate analysis (adjusted for age, sex, disease duration, SSRI, and LEDD)	Decreased ¹²³ 1-FP-CIT SBR in both PD and DLB versus HC in insula, cingulate and thalamus; Decreased ¹²³ 1-FP-CIT SBR in thalamus in DLB versus HC and PD; tCorrelation between thalamic and cingulate ¹²³ 1-FP-CIT SBR deficits with limbic serotonergic; correlation between cingulate ¹²³ 1-FP-CIT and widespread cortical monoaminergic projections
Ransmayr et al. [39]	Compare parkinsonian features and loss of striatal dopamine transporter function in DLB and PD	Mean count rates per pixel, stri- atal (S) to cerebellar (C) ratio, differences between left-right S/C ratios, S/C asymmetry indices	Age, sex, disease duration, UPDRS, CAS, CAI	Kruskal Wallis ANOVA, Mann–Whitney U test, Spear- man rank correlation	Decreased S/C ratios in DLB and HC versus PD; higher total UPDRS scores during practical-off in DLB versus PD; lower UPDRS extremity sub- scores in DLB versus PD

Authors	Study objectives	Variables analyzed		statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Roberts et al. [19]	Provide evidence that MIBG scintigraphy differentiates probable MCI-LB from MCI-AD	Dichotomized cardiac MIBG uptake result (H/M ratio)	Age, sex, BMI, UDRS, MMSE, I ACE, ESS, GDS, IADL, CDR, NPI, Memantine, cho- linesterase inhibitor, antipar- kinsonian drug, fluctuations (baseline), VH (baseline), RBD (baseline), RBD	Levene test, Mann-Whitney U test, Chi-squared test	Diagnosis accuracy with core clinical features: -79% for MIBG (95% CI 68–87%) -76% for FP-CIT (95% CI 65–85%)
Roberts et al.**** [54]	Provide evidence of the diag- nostic accuracy of dopamin- ergic imaging at the MCI stage to support or refute its inclusion as a biomarker for MCI with Lewy bodies	SBRs	Age, sex, BMI, UDRS, MMSE, S ACE, Epworth Sleepiness scale, Geriatric Depression scale, IADL, CDR, NPI, Memantine, cholinesterase inhibitor, antiparkinsonian drug, fluctuations (baseline), VH (baseline), Parkinsonism (baseline), RBD (baseline)	Student's <i>t</i> -test or Mann–Whit- ney <i>U</i> -test; Chi-square; independent samples <i>t</i> -test; <i>Z</i> -scores below -2 calculated; Likelihood ratios from a 2×2 frequency table to estimate the added value of DaTscan	Baseline 1231-FP-CIT visual rating for probable MC1-LB sensitivity of 66%, specificity of 88%, accuracy 76%, posi- tive likelihood ratio 5.3
Roselli et al. [40]	Explore whether 1231-FP-CIT binding in the putamen, caudate nucleus and nucleus accumbens is related to psy- chiatric symptoms in DLB	Neuropsychiatric symptoms (delusions, hallucinations, depression, apathy), DAT levels	Age, sex, disease duration, MMSE, CDR, UPDRS-III, NPI, various subscores: hal- lucinations, delusions, depres- sion, anxiety, apathy, sleep	pearman's correlation; Pairwise Pearson's correla- tion coefficients; Bonferroni correction	Inverse correlation between delusions, apathy, depression, and DAT levels (caudate);
Sakamoto et al. [20]	Determine whether DAT- SPECT or 12.31-MIBG myo- cardial scintigraphy should be examined first; evaluate superiority of the combined use of DAT-SPECT and MIBG versus either modality alone	SBR, H/M ratio (early and delayed, and washout rate)	Age, sex	ROC analysis with delayed H/M ratio yielding Specific- ity, sensitivity, accuracy and AUC, 2-sided t test for nor- mally distributed data, 2-side Mann–Whitney U test for non-normally distributed data	Sensitivity. Specificity and accuracy of diagnosing LBD: - SBR mean with DAT-SPECT: 59.6%, 71.4%, 67.5% - Delayed H/M ratio with MIBG: 85.1%, 91.4%, and 88.9% -Combined index: 76.6%, 74.3%, and 75.2%

Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Shimizu et al. [21]	Compare diagnostic value of DAT SPECT vs MIBG myocardial scintigraphy for supporting the diagnosis of DLB and differentiating it from AD; evaluation the use of the combination of the two modalities	SBR, H/M ratio (delayed)	Age, sex, disease duration, length of education, MMSE	Student's <i>t</i> test, Chi-squared, one-way ANOVA, ROC curve analysis	Sensitivity, Specificity and of differentiating DLB from AD: - DAT-SPECT: 88.2%, 88.9% - Delayed H/M ratio with MIBG: 72.4%, 94.4% -Combined index: 96.1%, 90.7% and higher accuracy than single modality: higher frequency of parkinson- ism in the abnormal DAT SPECT group; higher frequency of RBD in the abnormal MIBG group
Shimizu et al. [22]	Compare the diagnostic value of 1231-FP-CIT DAT-SPECT MRI, perfusion SPECT and MIBG myocardial scintigra- phy in differentiating DLB from AD	SBR for DAT-SPECT, H/M ratio (delayed phase) for MIBG, z-scores in the medial occipital lobe for perfusion SPECT, z-scores of hip- pocampal atrophy for MRI	Age, sex, education, duration of disease, MMSE	Student's <i>t</i> -test, Chi-squared test, one-way ANOVA, ROC curve analysis	Sensitivity, Specificity and of differentiating DLB from AD: - DAT SPECT: Sn 93.8%, Sp 93.8%), superior accuracy - Delayed H/M ratio with MIBG: Sn 63.5%, Sp 100% - Perfusion SPECT: Sn 71.9%, Sp 59.4% -MRI: Sn 46.9%, Sp 81.3%
Siepel et al. [65]	Explore the clinical course of patients with criteria for clini- cal DLB but normal FP-CIT SPECT ("false negative") and patients not fulfilling DLB criteria with an abnormal scar ("false positive")	Visually rated FP-CIT SPECT	Scores on standardized clinical rating scales for hallucina- tions, parkinsonism, fluctua- tions, RBD	Two-step cluster analysis with 4 continuous variables (parkinsonism, hallucinations, cognitive fluctuations and RBD) and log-likelihood	Increased frequency and severity of parkinsonism and cognitive fluctuation in S+CF ⁻ patients (not VH and RBD); fulfillment of probable DLB criteria at baseline and end of follow-up for S-CF+patients
Siepel et al. [41]	Explore the association between loss of striatal dopamine transporter binding and DLB symptoms	ıSBR	UPDRS, NPI, MMSE	Linear regression (DAT SBRs were the dependent variables and cognitive scores the inde- pendent variables), corrected for age and sex	Association of dopamine defi- ciency in DLB with severity of motor symptoms; no correlation between dopa- mine deficiency and ratings of neurobehavioral disturbances nor overall cognition

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Spehl et al. [42]	Evaluate the role of ¹²³ LFP-CT SPECT in the differentiation of DLB, FTD, and AD	TBinding potential values in caudate nucleus, putamen and whole striatum including caudate/putamen BP ratio and asymmetry indices	Age, sex, symptom duration, MMSE, parkinsonism	Student <i>t</i> -test (continuous data) Chi-squared test (nominal data), ANOVA with post hoc Tukey-Kramer test for cases of multiple group compari- sons	 , Decreased putaminal binding potential in patients with: -DLB versus AD (AUC 0.94) -FTD versus DLB (AUC 0.92); -FTD versus AD (AUC 0.74) Decreased binding potential ration in DLB versus FTD patients (AUC 0.91); High accuracy of combination of putaminal BP and BPR for DLB versus FTD (AUC 0.97); High accuracy in diagnosis of DLB among all patients (AUC 0.81) and AD (AUC 0.80)
Taylor et al. [43]	Clarify whether chronic ChEi therapy modulates striatal dopamine transporter binding measured by ¹²³ L-FP-CIT in DLB, AD and PDD patients	Striatal binding (caudate, ante- rior and posterior putamen)	ChEi use versus non-use, Age, sex, MMSE, severity of parkinsonism and concurrent anti-depressant use, UPDRS- III, duration of illness, time on ChEi for those on medica- tion	Analysis of the effect of ChEi on 1231-FP-CIT SBR with multivariate analysis of covariance (MANCOVA)	Decreased striatal ¹²³ I-FP-CIT uptake in DLB and PDD versus AD; no significant change for patients with ChEi
Thomas et al. [55]	Investigate the diagnostic value of ¹²³ F-FP-CIT in a prospec- tive study of a cohort followe up over one year	• Visually rated FP-CIT scans (normal or abnormal), d	Age, sex, MMSE, ACE-R, CDR, CIRS-G, IADL, UPDRS, H&Y, ESS, NPI, NPI distress, GDS, Medica- tion at baseline (anti-demen- tia, -parkinsonian, -psychotic, -depressant)	Chi-squared, <i>t</i> -test and Mann- Whitney for group com- parisons; likelihood ratios for diagnostic value	Visually rated FP-CIT scans to detect: -possible or probable MCI-LB: sensitivity of 54.2% (95% CI 39.2-68.6), specificity of 89% (95% CI 70.8-97.6), likeli- hood ratio of 4.9; -probable MCI-LB only: Sensitivity: 61% (95% CI 42.5-77.4); -possible MCI-LB only: Sensitivity: 40% (95% CI 16.4-6777)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Tiraboschi et al. [23]	Compare the diagnostic value of ¹²³ I-FP-CIT SPECT and MIBG myocardial scintigra- phy in differentiating DLB from other dementia subtypes (AD, FTD)	Normal or abnormal visual DaTscans, VOI-based semi- quantitative values	Age, sex, MMSE, CDR, IADL, CIRS severity and comorbid- ity, CDS, ESS, MFS, clinical assessment of fluctuations, NPI, North-East Visual Hal- lucinations Interview	Student's <i>t</i> -test, Pearson chi- square test for dichotomous variables; comparison of semi-quantitative results between the 2 groups. Sen- sitivity and specificity deter- mined for both visual and semi-quantitative analyses, as well as PPV, NPV. McNemar test to compare sensitivities and specificities. Cohen kappa statistic for inter-rater agree- ment for visual assessment	Sensitivity and specificity for MIBG: 93% and 100%; sensitivity and specificity for FP-CIT: 90% and 76%; decreased FP-CIT uptake in 7 non-DLB patients (3 with parkinsonism)
Treglia et al. [24]	Compare myocardial sym- pathetic imaging using ¹²³ I-MIBG scintigraphy and striatal dopaminergic imaging using ¹²³ I-ioflupane (FP-CIT) SPECT in patients with LBD	SBR, H/M ratio	Age, sex	Chi-square for relationship between 2 modalities; sen- sitivity, specifitiy, accuracy, PPV, and NPV were calcu- lated with 95% confidence interval; McNemar's test to compare results, Chi-square with Yates' correction or Fisher's test when appropriate to assess relationship between MIBG and FP-CIT	MIBG: overall sensitivity of 83%, specificity of 79%, accuracy of 82%, PPV of 86% and NPV of 76%; FP-CIT: 93%, 41%, 73%, 71%, 80%; No difference in the 2 modali- ties in patients with LBD
Van de Beek et al. [44]	Investigate associations between core and suggestive DLB symptoms and different aspects of disease burden (i.e., IADL, QoL, caregiver burden)	Visual assessments as well as age-matched binding ratio's of DAT binding	Core and suggestive symptoms, questionnaires for functional activities, QoL, Zarit Cae- giver Burden Interview, age, sex, MMSE	Descriptive statistics to char- acterize core and sugges- tive features (dichotomized as absent/present), general linear models to evaluate the influence of cognition, core and suggestive symptoms on IADL, univariate and multi- variate models	88% abnormal FP-CIT scans; 95% patients with EEG/MEG abnormalities; 53% patients with a CSF AD profile
Van der Zande et al. [45]	Describe clinical and imaging follow-up of patients with probable DLB with a normal baseline scan (compared to those with abnormal baseline scans)	Binding ratios of FP-CIT SPECT	Usual clinical characteristics	Fisher's exact test for categori- cal variables, Mann–Whiney U test for continuous vari- ables, Cohen's kappa statistic for interobserver variation	7/67 (10.4%) normally rated FP-CIT scans; abnormal subsequent control in five DLB/S – patients (average second scan after 1.5 years)

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Van der Zande et al. [46]	Study the concomitant AD pathology in DLB on DaTs- can and serotonin transporter availability using ¹²³ I-FP-CIT SPECT	Atrophy corrected ROIs, bind- ing ratios	CSF biomarker profile	Mann–Whitney U test, Chi- square or Fisher's exact test as appropriate. Linear regression with Pearson or Spearman correlation betweer BRs in each ROI (DAT and SERT) and clinical measures (corrected for age and ROI volume)	Decreased FP-CIT binding ratios in the left amygdala (trend in the right hip- pocampus) in patients with n DLB + AD co-pathology; negative correlation between motor symptoms and striatal DAT binding ratios;
Walker et al. [66]	Determine if detection of dopa- minergic degeneration can help distinguish DLB from AD during life	Binding of FP-CTT radioactiv- ity in caudate, anterior and posterior putamen	Age, MMSE, CAMCOG, CDR, BEHAVE-AD, UPDRS, Cor- nell depression scale, CAPE	ANOVA and <i>t</i> -test were used to assess the difference between the four groups in ipsilateral and contralateral FP-CIT binding in caudate, anterior and posterior putamen and their basic indices; Cohen's kappa test for inter-rater reli- ability	Decreased ¹²³ I-FP-CIT uptake in DLB and PD patients versus AD patients and HC (caudate nucleus, anterior and posterior putamen)
Walker et al. [47]	Compare the patterns of dopaminergic disruption in DLB and PD and evaluate the relationship between extrapy- ramidal signs and severity of dopaminergic dysfunction	FP-CIT binding (STR/OCC)	MMSE, CAMCOG, CDR, UPDRS, Hoehn and Yahr stage	ANOVA and Student's <i>t</i> -test for differences between groups of FP-CIT binding in caudate nuclei and anterior and posterior putamen, nonpara- metric Kruskal–Wallis and Mann–Whitney tests for C/P ratios and asymmetry indices; Spearman's rank correlation for ordinal data	r Decreased ¹²³ 1-FP-CIT striatal binding in DLB and patients versus HC; decreased binding in DLB versus PD patients in caudate nucleus; Increased asymmetry of uptake ; in posterior putamen of PD versus DLB patients; higher mean C/P ratios of PD versus DLB patients and HC
Walker et al. [56]	Determine in a series of demen- tia patients with autopsy confirmation whether dopa- minergic imaging improves accuracy of diagnosis com- pared to clinical criteria alone	-FP-CIT binding (STR/OCC), visual rating of scans	Family history, rigidity, akine- sia, tremor, VH, fluctuations, age, sex, years of educa- tion, Hoehn and Yahr stage, MMSe, UPDRS, CAMCOG, CAPE, GDS, CDR, Behave- AD, Neuropathological diagnostic criteria (i.e., neurofibrillary tangles), alpha-synuclein)	Sensitivity and specificity (autopsy = gold standard) of FP-CTT SPECT and of the Consensus DLB criteria (of 1996)	Initial clinical diagnosis of DLB: Sensitivity of 75%, specificity of 42% ¹²³ 1-FP-CIT: sensitivity of 88%, specificity of 100% Neuropathological diagnosis over 10 years: -8/20 patients DLB -9/20 patients AD (co-existing with cerebrovascular disease) -3/20 patients with other diagnoses

Table 3 (continued)					
Authors	Study objectives	Variables analyzed		Statistical analysis	Outcome summary
		SPECT variables	Clinical variables		
Walker et al. *****[57]	Investigate whether doing a DaTscan in patients with pos- sible DLB would to a more certain diagnosis (probable DLB or non-DLB dementia)	Visual rating (type 1: asym- metric activity, one putamen with reduced uptake; type 2: absent activity of putamen of both hemispheres; type 3: type 2 + greatly reduced of absent activity in one or more caudate nuclei)	Primary outcome measure: proportion of patients with a change in clinical diagnosis (to probable DLB or non- DLB) at 8 weeks, secondary outcome was the same at 24 weeks and change in clini- cian's confidence of diagnosis at 8 and 24 weeks	Fisher's exact test; ANCOVA to compare the mean change in clinician's confidence of diag- nosis between baseline and week 8, baseline and week 24 and weeks 8 and 24	Abnormal scans in 43% of 114 patients; Higher likelihood for clinical change in diagnosis if abnor- mal scan (82%) versus normal scan (46%)
Ziebell et al. [48]	Identify whether any of the core features of DLB were influenced by disturbances of DAT availability	DAT availability (Non-dis- placeable binding potential adjusted to age)	Core features of DLB (demen- tia, hallucinations, fluctua- tions or parkinsonism)	Unpaired Student's r-test to compare clinical core symptoms and DAT binding; Linear regression analysis for correlation of continuous data	No correlation between MMSE, Hoehn & Yahr score, fluctua- tions or hallucinations and striatal DAT availability as measured with ¹²³ I-PE2I SPECT
*Kemp et al.: 95% change in **O'Brien et al. (2009): 43% ***Oliveira: Autopsy diagnos ****Roberts et al. (2021): 42% *****Walker et al. (2015): Mo	dx, 94% change in ttt, 93% change change in diagnosis from possible is change in 1/8 normal DaTscans o change in diagnosis from MCI to re patients in the imaging group ha	in management to probable DLB that turned out to be DLB probable MCI-LB d a change in diagnosis at 8 and	24 weeks compared with control	s (61% versus 4% and 71% vers	us 16%) ad 770.0811-iffed Dord-incom?e

NK not reported, MMSE Folstein Mini-Mental State Examination, CDR Clinical Dementia Rating Scale, CAMCOG-R Cambridge Cognitive Examination-Revised, UPDRS Unified Parkinson's age in mg. SSRI selective serotonin reuptake inhibitors, CAS clinical asymmetry score, CAI clinical asymmetry index, ACE Addenbrooke's Cognitive Examination, BMI body mass index, CDR Disease Rating Scale, EPSM extrapyramidal motor signs, VH visual hallucinations, DQ DaTQUANT, FAB Frontal assessment battery, SBR striatum-to-background ratio, ROI region of interest, ICC intra-class correlation coefficients, AUROC area under the receiving operating characteristics, OSIT-J odor stick identification test for the Japanese, LEDD Levodopa equivalent daily dos-

clinical dementia rating, IADL instrumental activities of daily life, NPI neuropsychiatric inventory, CUSPAD Columbia University Scale of Psychopathology in Alzheimer's Disease, ChEi cholinesterase inhibitor, CIRS Cumulative Illness Rating Scale, QoL quality of life, BEHAVE-AD behavioral pathology in Alzheimer's disease, CAPE Clifton assessment procedure for the elderly **DLB** versus other

dementias: AD, FTD, PSP • Kemp et al. (2011) **Comparison DAT vs** • Kobayashi et al. (2017) • Donaghy et al. (2017) perfusion • Lloyd et al. (2018) • Kamagata et al. (2017) • Maltais et al. (2020) • Nicastro et al. (2017) • Colloby et al. (2008) • Gupta et al. (2019) • Morgan et al. (2012) • O'Brien et al. (2009) • Huber et al. (2020) • Nicastro et al. (2017) • O'Brien et al. (2004) • Iwabuchi et al. (2022) • O'Brien et al. (2009) • Kobayashi et al. (2017) • Oliveira et al. • Roberts et al. (2021, • Shimizu et al. (2016) Neurology) • Spehl et al. (2015) • Taylor et al. (2007) **Comparing MIBG vs DAT** • Thomas et al. (2019) • Kobayashi et al. (2017) • Walker et al. (2002) • Van der Zande (2016) • Walker et al. (2007) • Walker et al. (2015) • Shimizu et al. (2016) • Treglia et al. (2012) **Correlation of DAT** imaging with clinical presentations & scores LBD spectrum: • Chen et al. (2021) Dopamine vs serotonin transport **DLB vs PD and PDD** • Chiu et al. (2021) binding • Del Sole et al. (2015) • Joling et al. (2019) • Donaghy et al. (2017) • Iwabuchi et al. (2022) • Joling et al. (2018) • Joling et al (2019) • Durcan et al. (2019) • Pilotto et al. (2019) • Joling et al. (2018) • Hansen et al. (2021) • Van der Zande (2020) • Miyamoto et al. (2020) • lizuka et al. (2017) • Nakahara et al. (2021) • Inagawa et al. (2020) • Nicastro et al. (2017) • Kasanuki et al. (2017) • Lamotte et al. (2016) • O'Brien et al. (2009) • Miyamoto et al. (2020) • Oliveira et al. (2021) • Nakahara et al. (2021) • Pilotto et al. (2019) • Nicastro et al. (2017) • Ransmayr et al. (2001) • Nicastro et al. (2021) • Roselli et al. (2009) • Taylor et al. (2007)

Diagnostic value

Fig. 3 Venn diagram of selected studies according to their main outcomes (color-coded for overlapping studies)

• Treglia et al. (2012)

• Walker et al. (2004)

FP-CIT binding in the caudate nucleus than PD patients, and that PD patients have a greater asymmetry of uptake in the posterior putamen, confirming a selective pattern of dopaminergic degeneration in both entities (i.e., degeneration of ventrolateral nigral neurons in PD) [47].

• Siepel et al. (2013)

Siepel et al. (2015)
Van de Beek et al. (2021)
Ziebell et al. (2013)

Parkinson's disease with dementia (PDD) shares very similar clinical and cognitive features with DLB. Colloby

et al. performed serial FP-CIT SPECT studies, which found similar rates of dopaminergic loss in DLB, PD and PDD [27].

With regards to DLB versus PD, Ransmayr et al. found that DLB presented with more severe loss of dopaminer-gic transporter function than PD [39].

FP-CIT SPECT has a low specificity in differentiating PD and DLB from other degenerative parkinsonian syndromes, i.e., atypical parkinsonian syndromes like multisystem atrophy (MSA), corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP), as they all demonstrate striatal dopaminergic deficits [24]. In a prospective analysis, Nicastro et al. confirmed this as visual and semi-quantitative assessment of FP-CIT SPECT is normal in only a negligible proportion of patients with DLB and other degenerative parkinsonian syndromes [35].

Correlation of DAT imaging with clinical presentations & scores

Dopaminergic imaging and parkinsonism The association between parkinsonian symptoms (i.e., extra-pyramidal motor symptoms like rigidity, brady-/akinesia) and FP-CIT uptake has been studied but results are controversial: some authors [48] found no significant difference between striatal dopamine transport availability and severity of motor parkinsonism measured by the Hoehn and Yahr score in DLB patients, whereas others like Siepel et al. did [41].

Chiu et al. demonstrated that a motor dysfunction guestionnaire (MDQ) used to distinguish characteristic parkinsonian features of DLB patients positively correlates with the Unified Parkinson Disease Rating Scale motor scale (UPDRS-m) as well as with dopamine transporter imaging [60]. A composite scale of MDQ and visual rating of DaTscans is more accurate to distinguish DLB from AD or healthy controls than DaTscan or the MDQ questionnaire alone (see Table 3). The UPDRS-m also inversely correlates with FP-CIT uptake in the caudate and the putamen, and patients with even mild extra-pyramidal symptoms had similarly less abnormal FP-CIT uptake than those with severe parkinsonism [61]. Nicastro et al. showed that patients with DLB with parkinsonism features had more pronounced dysfunction of putaminal uptake versus a diffuse pattern and higher uptake values in patients with DLB and without parkinsonism features [35].

In summary, despite the initial ambivalence in the literature, these data show that dopaminergic scintigraphic imaging can correlate with the presence and severity of motor parkinsonism in DLB patients, even at early stages of symptoms, when used in combination of clinical scores and questionnaires. More importantly, parkinsonism in DLB can be highlighted through specific patterns of radiotracer uptake.

Prodromal DLB Mild cognitive impairment (MCI) with one or more core features of DLB (fluctuations of attention and cognitive impairment, visual hallucinations, rapid eye-movement (REM) sleep behavior disorder (RBD), and parkinsonism) corresponds to the prodromal phase of DLB that may be present several years before a clinical diagnosis, referred as MCI with Lewy bodies (MCI-LB) [68]. A prospective longitudinal case study carried out over 2 to 5 years by Siepel et al. showed that visually assessed FP-CIT SPECT detects patients with DLB before they develop the complete clinical syndrome, and that the frequency and severity of parkinsonism and cognitive fluctuations increased during the follow-up period [65]. Other research criteria for prodromal DLB include psychiatric-onset DLB and delirium-onset DLB, but these entities have not been extensively studied with regards to dopaminergic imaging and are not included in the scope of this review [73].

Neuropsychiatric symptoms (cognition, awareness and hallucinations) Neuropsychiatric presentation of patients is a key feature in dementia with Lewy bodies. Visual hallucinations are the psychiatric symptoms that are included among the core clinical features of DLB, but other neuropsychiatric features are now considered as supportive features, such as non-visual hallucinations such as presence hallucinations, delusions, depression, and anxiety [3]. Donaghy et al. compared prodromal DLB and AD patients and showed that MCI-LB patients were four times more likely than MCI-AD patients to present two or more of the five supportive neuropsychiatric symptoms. [62]. However, studies that show a link between dopaminergic imaging and neuropsychiatric symptoms are scarce [74]. Nonetheless, evidence shows that the onset of symptoms in DLB patients who show dopaminergic dysfunction through positive FP-CIT SPECT occurs more often with psychiatric symptoms than cognitive impairment. Furthermore, it is generally accepted that the neuropsychological profile of DLB patients will show impacted attentional, executive and visuospatial deficits with relatively preserved episodic memory, unlike AD [64]. When episodic memory is affected in DLB patients, it suggests the presence of a concomitant AD [74]. Although less prevalent in patients with DLB than AD, Iizuka et al. showed that the awareness of memory-deficits in DLB patients, measured by the discrepancy between subjective and objective memory scores, is more impaired than in patients with normal cognition. Interestingly, the awareness index does not correlate with striatal DAT density, but does with hypometabolism of cortical midline structures (i.e., bilateral occipital and parietal association cortices, bilateral temporal cortex, precuneus, and posterior cingulate cortex) shown by ¹⁸F-FDG-PET [11].

Reduced FP-CIT SPECT binding is useful in predicting the development of LBD within five years in patients presenting with isolated or idiopathic RBD (iRBD), as shown by Kaplan–Meier survival analysis by Miyamoto and colleagues [58]. Important non-visual hallucinations that DLB patients frequently present are presence hallucinations (PH), corresponding to a vivid sensation of somebody nearby in the absence of any physical person [14]. PH occurs frequently in PD, especially at early stages [75–77]. Nicastro et al. showed that DLB patients with PH have widespread frontoparietal ¹⁸F-FDG hypometabolism, and that ¹⁸F-FDG uptake in the ventral premotor cortex (vPMC) is negatively correlated with FP-CIT uptake in the caudate nucleus. As for visual hallucinations (VH), Roselli et al. have reported that FP-CIT uptake is inversely associated with their severity and frequency [40]. Among other non-motor symptoms associated with DLB, duration of olfactory dysfunction negatively correlates with striatal specific binding ratios of FP-CIT SPECT [32]. Furthermore, clinical scores that test olfactory decline and susceptibility to visual hallucinations, the odor stick identification and pareidolia tests respectively, can aid in differentiating DLB from AD, albeit less sensitive and specific than FP-CIT uptake [16] (see Table 3). In a more recent study, Nakahara et al. showed that olfactory dysfunction correlates with lower FP-CIT binding independently of cerebral blood flow in the frontal lobe (assessed through perfection SPECT), unlike clinically assessed frontal lobe dysfunction which only showed a negative correlation in patients with frontal lobe hypoperfusion [18].

In DLB patients, a higher level of education is associated with better scores in neuropsychological tests that assess visuoconstructive functions and retrieval strategies, and correlates with higher dopamine transporter binding in the striatum, caudate nucleus and putamen bilaterally [33].

Diagnostic performance of DAT imaging and other modalities

A retrospective analysis assessing the impact of dopamine transporter imaging on patients with suspected DLB during their diagnostic workup showed significant impact on diagnosis and subsequent management, as 90% of patient with an abnormal DaTscan had a postscan clinical diagnosis of DLB, and 95% of patients with normal imaging had an alternative clinical diagnosis [50]. Similarly, a randomized multi-center trial by Walker et al. showed that DAT imaging significantly helps clinicians change their diagnosis from possible DLB to probable DLB [57].

Patients who meet clinical criteria for DLB but have a normal DaTscan remain a challenge. In this context, a retrospective study from the Amsterdam Dementia Cohort [45] found that in almost all DLB patients with negative DaTscans, a follow-up ¹²³I-FP-CIT SPECT (average 1.5 years after first DaTscan) was abnormal emphasizing the importance of repeating DaTscans if the clinical diagnosis is difficult.

There seems to be a benefit in combining visual and semi-quantitative assessments to discriminate between DLB and AD patients, with a combined sensitivity of 100% [35]. Oliveira et al. computed the bihemispheric caudate binding potentials (CBP), putamen binding potentials (PBP) and putamen-to-caudate ratios (PCR) (derived from the ratio of mean counts across voxels of the regions of interest over the mean counts across voxels of the background reference region), finding that DLB patients had lower CBP and PBPs than AD patients and higher PCR than PD patients, providing an accuracy of 94% in classifying DLB versus AD and DLB versus PD [59].

The use of other technical methods to measure FP-CIT binding, such as through the use of software packages for brain imaging analyses (e.g., Statistical Parametrical Mapping), has been shown to have comparable discriminatory power as visual rating [28].

Multiple studies compared the diagnostic accuracy of dopaminergic imaging using FP-CIT against perfusion SPECT/PET modalities, or their combined use. In comparison to dopaminergic transporter imaging, ¹⁸F-FDG PET imaging was less accurate and had a lower effect size, but regional hypometabolism in the lateral occipital cortex can be used to exclude the diagnosis of DLB, and the socalled "cingulate island sign" (relative preservation of the mid or posterior cingulate gyrus) is very specific to DLB [12]. Huber et al. showed an inverse relationship between FP-CIT uptake and glucose metabolism in the basal ganglia and limbic regions, referred to relative glucose hypermetabolism [10]. Other tracers such as ^{99m}Tc-exametazime also has lower accuracy than FP-CIT in distinguishing between AD and DLB (AUC of 0.64 and 0.83) [25]. However, this radiotracer can identify selective occipital hypoperfusion on LBD, as compared to decreased temporoparietal blood flow of AD [49]. Other studies confirm these regional differences in hypometabolism, i.e., reduced ¹⁸F-FDG PET uptake in the visual cortex in DLB patients, and specific decreased blood flow in parieto-temporo-occipital association cortices in a form of AD [9].

Patients in the LBD spectrum have regional reduction in striatal FP-CIT uptake and changes in brain perfusion, as measured by ¹²³I-IMP SPECT, such that decreased putamento-caudate ration correlates with hypoperfusion in the brainstem whereas decreased caudate-to-putamen ratio correlates with right temporal cortex hypoperfusion [26].

Cardiac ¹²³I-metaiodobenzylguanidine sympathetic innervation imaging (MIBG) is included in the diagnostic criteria in the most recent consensus criteria for DLB [3] as an indicative biomarker. Overall, FP-CIT SPECT and MIBG myocardial scintigraphy have similar diagnostic accuracies when distinguishing DLB from other dementias, although FP-CIT SPECT has the highest sensitivity [24]. Other studies show that MIBG scintigraphy is more specific for excluding non-DLB dementias and is particularly useful when the only core feature exhibited by the patient is parkinsonism [23]. Concerning the prodromal stage of DLB, MIBG myocardial scintigraphy has a specificity, sensitivity and accuracy of 59%, 88%, and 75%, respectively, to distinguish patients with MCI-LB from those with MCI-AD [54].

Multimodal imaging shows high accuracy in diagnosing DLB. Miyagawa et al. demonstrated almost perfect areas under the curve (AUC), ranging from 0.987 to 0.996, in differentiating DLB from AD when using FP-SPECT combined with ¹⁸F-FDG PET and ¹¹C-Pittsburgh compound B (PiB)-PET [13]. It also seems useful to combine dopamine transporter imaging, myocardial scintigraphy and brainperfusion SPECT for the diagnosis of DLB, which yields a sensitivity of 100% [17]. Sakamoto et al. show that MIBG myocardial scintigraphy alone is superior (sensitivity, specificity and accuracy of 85, 91%, and 89%) to a combined index of FP-CIT SPECT and MIBG SPECT (76.6%, 74.3%, and 75.2%) [20]. Another study by Shimizu et al. compared the diagnostic performance of FP-CIT SPECT, MIBG, perfusion SPECT, and MRI (for quantification of atrophy), and found that FP-CIT SPECT is the most accurate modality overall (sensitivity and specificity of 93.8% and 93.8%, respectively) to differentiate between DLB and AD, and MIBG myocardial scintigraphy has low sensitivity but high specificity (62.5% and 100%, respectively) [22]. Combining DAT SPECT and MIBG myocardial scintigraphy surpass the accuracy of either modalities alone according to some authors [21].

Finally, amyloid PET imaging, using the ¹¹C-Pittsburgh compound B (PiB) radiotracer, has been compared to standard FP-CIT imaging and do not have a higher diagnostic accuracy (measured by AUC) to distinguish DLB from AD [13]. In MCI-LB, it is possible to study the co-existence of β -amyloid pathology through Amyloid PET, but the phenotype of both β -amyloid positive and FP-CIT positive is rare, as the majority of the studied MCI-LB patients have decreased dopaminergic activity and low β -amyloid deposition [15]. Comparative performance between more recent AmyPET radiotracers such as flutemetamol and florbetapir and FP-CIT imaging has not been studied in the literature.

DAT versus SERT

FP-CIT has affinity to both dopamine (DAT) and serotonin (SERT) transporters, therefore it is possible to image both the integrity of dopaminergic striatal and serotoninergic extrastriatal systems simultaneously [30]. However, extrastriatal serotonin transporter (SERT) is seldom studied along with striatal dopaminergic transporter (DAT) binding using FP-CIT SPECT imaging. Some authors found no difference in extrastriatal SERT binding between DLB and PD patients using FP-CIT [29], but others showed that only DLB patients had impairments in serotoninergic pathways of the thalamus [38]. Further, Joling et al. showed that DLB patients have lower hypothalamic SERT availability as compared to standard reference [30]. Finally, Van der Zande et al. studied DLB patients with concomitant AD pathology (defined with cerebrospinal fluid tau/a β -42 ratio) and found that these patients had lower extrastriatal FP-CIT SERT binding in limbic brain regions (i.e., left amygdala) [46].

Medication such as chronic cholinesterase inhibitors (ChEi) do not influence the radioligand's binding to striatal DATs therefore do not influence the diagnostic performance of ¹²³I-FP-CIT imaging [43]. The authors took into account the effect of selective serotonin reuptake inhibitors (SSRIs) like citalopram and paroxetine on striatal FP-CIT binding, increasing its availability: they had similar proportions of subjects taking antidepressants in those taking ChEi and those without ChEi. The interaction between serotonin and dopamine systems in the striatum is of interest since depression is one of the prodromal symptoms of DLB and AD, and the use of SSRIs is thus frequent in these patients.

Discussion

Summary of evidence

The present study is an updated systematic literature review involving 59 primary studies, constituting the largest collection of studies relating to the diagnosis of dementia with Lewy bodies using scintigraphic dopaminergic imaging to this day. Based on the body of evidence that was hereby studied, the use of dopamine transporter imaging provides support in the diagnosis of DLB from other forms of dementia, and within the larger spectrum of Lewy body diseases. Dopaminergic scintigraphic imaging enables accurate discrimination between DLB and AD. As for other forms of neurodegenerative parkinsonian syndromes such as FTD, PSP, and CBD, semi-quantitative measures of DAT uptake cannot clearly differentiate them from DLB. Within the spectrum of Lewy body disease, some patterns of FP-CIT uptake (i.e., lower FP-CIT binding in the caudate nucleus in DLB than PD patients and greater asymmetry of uptake in the posterior putamen with degeneration of ventrolateral nigral in PD patients) have been proposed to specifically identify PD from DLB and PDD, whereas discriminating between the latter two is more challenging. Whether this is due to the different modalities of pharmacological treatments and the patients' clinical response remains unclear and requires further investigation. Similarly, we could ask ourselves what effects cognitive fluctuations have on FP-CIT binding. Clear patterns of radioligand uptake can be identified using semi-quantitative and/or simple visual rating, and this can be done in prodromal stages of dementia. There is solid evidence to consider motor symptoms and parkinsonism, measured by the validated clinical scores, as adjunct factors to FP-CIT SPECT imaging. The same goes for non-motor symptoms, especially behavioral symptoms. These clinical variables greatly aid the diagnostic accuracy

of functional imaging, even at the prodromal stage of DLB. Specifically for the neuropsychiatric symptoms that DLB initially present, such as visual and non-visual hallucinations, relevance of FP-CIT SPECT imaging in the early stages of the disease exists and has been shown in only a few studies, and further investigations are required. For instance, it is unclear whether patterns of ligand uptake can be differentially identified for patients presenting major or minor hallucinations, as the methods of classifying and reporting of these symptoms is not standardized and has been insufficiently studied with regards to dopaminergic scintigraphic imaging.

DAT imaging can be complemented by other imaging modalities, namely by myocardial MIBG scintigraphy, brainperfusion SPECT and ¹⁸F-FDG-PET. Essentially, MIBG myocardial scintigraphy is more specific than DAT SPECT imaging, whereas the latter is more sensitive in detecting DLB. FDG-PET can be used to highlight certain signs that are highly specific to DLB, such as the relative preservation of the posterior cingulate (cingulate island sign) and occipital hypometabolism. Combinations of striatal scintigraphy, as well as brain-perfusion SPECT and FDG-PET can identify regional correlations of hypoperfusion and striatal DAT availability and ascertain the diagnosis of DLB with greater sensitivity and specificity.

The current review updates the meta-analysis performed by Nihashi et al. in 2018, which itself was an update of their 2015 meta-analysis [6, 78]. Since we did not perform a meta-analysis, we did not compare specificities and sensitivities with these previous studies. Admittedly, we considered there to be too much heterogeneity in the studied populations and subsequent imperfection in comparing reference results. However, our review adds 23 new studies, all but two (n=21) including the use of semi-quantitative assessment. In the study by Nihashi and colleagues, semi-quantitative image analysis was still relatively new, thus limiting the number of analyzed articles. In our review, we propose groups of study findings that are pooled according to their main outcomes (see Fig. 3). This allows identification of clinically relevant contexts (i.e., facing pathologies in the LBD spectrum, other forms of dementia, or having specific clinical scores) in which dopaminergic scintigraphic imaging is efficient.

According to the 2017 DLB consensus criteria, decreased uptake on SPECT is an indicative biomarker that supports the diagnosis of DLB, in addition to the four core clinical features [3]. In our systematic review, we noted that these criteria were respected, and the use of indicative biomarkers for DLB is clearly supported by direct biological biomarkers. There has been no updated consensus criterion since 2017. We identified studies where prodromal DLB could be identified and form a clinical entity, as some studies have shown that screening using SPECT imaging is possible in healthy or paucisymptomatic patients, even years before the diagnosis of DLB [62, 65]. Future research perspectives and biomarker-based research could be anchored towards potential treatment trials in the identified prodromal DLB patients and pave the way for early intervention in pre-dementia syndromes.

Limitations

We identified several limitations in the various studies we analyzed, such as the heterogeneity of radiotracers that were sometimes used. Furthermore, study designs and outcome measures varied considerably between studies. Extraction of accurate data on true negatives/positives and false negatives/ positives was not systematically possible, and a pooled analysis of the studies would most probably entail a large heterogeneity, which is why we decided not to pursue a meta-analysis.

Regarding the technical aspects, image acquisition was usually precisely reported, with details on the injected doses of radiotracers, time-intervals between injection and imaging, types of reconstructions, and algorithms used.

In all the reviewed studies, image analysis was performed either by visual rating alone, semi-quantitative measures using specific binding ratios of the radiotracer in the striatum, or a combination of both methods. However, these methods have the limitation of being user-dependent and lack anatomical standardization. In fact, a few studies in the literature address this issue and point to a promising role of quantitative assessment of DAT loss in the striatum using computer tomography (CT) data acquired on hybrid SPECT/CT equipment [79]. Using CT in order to apply anatomical standardization to dopaminergic scintigraphic imaging, authors like Yokoyama et al. proposed a method that avoids deformation errors due to DaTscan-specific templates lacking structural information [79]. Further research using quantitative assessment is thus required in order to more accurately discriminate Dementia with Lewy bodies and better understand the physiopathology of its distinct clinical features.

Conclusions

Dopaminergic scintigraphic imaging is an efficient method to diagnose dementia with Lewy bodies and distinguish it from other forms of dementia. This is done through semiquantitative and visual methods, and very little work has been done including the use of absolute tracer uptake quantification or the CT-guided anatomically standardized methods to accurately measure dopamine transporter decrease in the striatum. Therefore, further research is needed in order to assess dopaminergic degeneration more accurately and to possibly predict the degree of severity and progression of dementia with Lewy bodies. **Supplementary Information** The online version contains supplementary material available at https://doi.org/10.1007/s00259-023-06154-y.

Funding Open access funding provided by University of Lausanne

Declarations

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- 1. Geser F, Wenning GK, Poewe W, McKeith I. How to diagnose dementia with Lewy bodies: State of the art. Mov Disord. 2005;20:S11–20.
- Walker Z, Possin KL, Boeve BF, Aarsland D. Lewy body dementias. Lancet. 2015;386:1683–97.
- McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor J-P, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.
- Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging. 2020;47:1885–912.
- Taylor J-P, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, et al. New evidence on the management of Lewy body dementia. Lancet Neurol. 2020;19:157–69.
- Nihashi T, Ito K, Terasawa T. Diagnostic accuracy of DAT-SPECT and MIBG scintigraphy for dementia with Lewy bodies: an updated systematic review and Bayesian latent class model meta-analysis. Eur J Nucl Med Mol Imaging. 2020;47:1984–97.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, The PRISMA, et al. statement: an updated guideline for reporting systematic reviews. BMJ. 2020;2021:n71.
- Whiting PF. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529.
- Gupta V, Verma R, Ranjan R, Belho ES, Seniaray N, Dinand V, et al. Metabolic imaging patterns in posterior cortical atrophy and Lewy body dementia. Nucl Med Commun. 2019;40:1275–82.
- Huber M, Beyer L, Prix C, Schönecker S, Palleis C, Rauchmann B, et al. Metabolic correlates of dopaminergic loss in dementia with Lewy bodies. Mov Disord. 2020;35:595–605.
- Iizuka T, Kameyama M. Metabolic correlate of memory-deficit awareness in dementia with Lewy bodies: implication in cortical midline structure. Psychiatry Res Neuroimaging. 2017;269:43–7.
- Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The ¹⁸ F-FDG PET cingulate island sign and comparison to ¹²³ I-β-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50:1638–45.

- Miyagawa T, Przybelski SA, Maltais D, Min H-K, Jordan L, Lesnick TG, et al. The value of multimodal imaging with 123I-FP-CIT SPECT in differential diagnosis of dementia with Lewy bodies and Alzheimer's disease dementia. Neurobiol Aging. 2021;99:11–8.
- Nicastro N, Stripeikyte G, Assal F, Garibotto V, Blanke O. Premotor and fronto-striatal mechanisms associated with presence hallucinations in dementia with Lewy bodies. NeuroImage Clin. 2021;32:102791.
- Chen Q, Lowe VJ, Boeve BF, Przybelski SA, Miyagawa T, Senjem ML, et al. β-Amyloid PET and ¹²³ I-FP-CIT SPECT in mild cognitive impairment at risk for Lewy body dementia. Neurology. 2021;96:e1180–9.
- 16. Inagawa Y, Kanetaka H, Tsugawa A, Sakurai S, Serisawa S, Shimizu S, et al. Efficacy of olfactory and pareidolia tests compared with that of indicative biomarkers in diagnosis of dementia with Lewy bodies. Front Neurol. 2020;11:540291.
- 17. Kobayashi S, Makino K, Hatakeyama S, Ishii T, Tateno M, Iwamoto T, et al. The usefulness of combined brain perfusion singlephoton emission computed tomography, dopamine-transporter single-photon emission computed tomography, and ¹²³ I-metaiodobenzylguanidine myocardial scintigraphy for the diagnosis of dementia with Lewy bodies: The usefulness of neuroimaging for DLB. Psychogeriatrics. 2017;17:247–55.
- Nakahara A, Sengoku R, Umehara T, Matsuno H, Yamazaki M, Oka H. Frontal lobe dysfunction is associated with reduced DAT-SPECT accumulation in Lewy body disease. J Neurol Sci. 2021;430:119998.
- Roberts G, Durcan R, Donaghy PC, Lawley S, Ciafone J, Hamilton CA, et al. Accuracy of cardiac innervation scintigraphy for mild cognitive impairment with Lewy bodies. Neurology. 2021;96:e2801–11.
- Sakamoto F, Shiraishi S, Ogasawara K, Tsuda N, Nakagawa M, Tomiguchi S, et al. A diagnostic strategy for Lewy body disease using DAT-SPECT, MIBG and Combined index. Ann Nucl Med. 2020;34:415–23.
- Shimizu S, Hirao K, Kanetaka H, Namioka N, Hatanaka H, Hirose D, et al. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer's disease. Eur J Nucl Med Mol Imaging. 2016;43:184–92.
- 22. Shimizu S, Kanetaka H, Hirao K, Fukasawa R, Namioka N, Hatanaka H, et al. Neuroimaging for diagnosing dementia with Lewy bodies: what is the best neuroimaging technique in discriminating dementia with Lewy bodies from Alzheimer's disease?: Neuroimaging for diagnosing DLB. Geriatr Gerontol Int. 2017;17:819–24.
- 23. Tiraboschi P, Corso A, Guerra UP, Nobili F, Piccardo A, Calcagni ML, et al. ¹²³ I-2β-carbomethoxy-3β-(4-iodophenyl)- N-(3-fluoro-propyl) nortropane single photon emission computed tomography and ¹²³ I-metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with lewy bodies from other dementias: A comparative study. Ann Neurol. 2016;80:368–78.
- 24. Treglia G, Cason E, Cortelli P, Gabellini A, Liguori R, Bagnato A, et al. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 Ioflupane single photon emission computed tomography in Lewy Body diseases: complementary or alternative techniques?: MIBG and FP-CIT Scintigraphy in Lewy Body Diseases. J Neuroimaging. 2014;24:149–54.
- 25. Colloby SJ, Firbank MJ, Pakrasi S, Lloyd JJ, Driver I, McKeith IG, et al. A comparison of 99mTc-exametazime and 123I-FP-CIT SPECT imaging in the differential diagnosis of Alzheimer's disease and dementia with Lewy bodies. Int Psychogeriatr. 2008;20:1124.
- 26. Iwabuchi Y, Shiga T, Kameyama M, Miyazawa R, Seki M, Ito D, et al. Striatal dopaminergic depletion pattern reflects pathological brain perfusion changes in lewy body diseases. Mol Imaging Biol [Internet]. 2022 [cited 2022 Jul 4]; Available from: https://link. springer.com/10.1007/s11307-022-01745-x
- 27. Colloby SJ, Williams ED, Burn DJ, Lloyd JJ, McKeith IG, O'Brien JT. Progression of dopaminergic degeneration in

dementia with Lewy bodies and Parkinson's disease with and without dementia assessed using 123I-FP-CIT SPECT. Eur J Nucl Med Mol Imaging. 2005;32:1176–85.

- Colloby SJ, O'Brien JT, Fenwick JD, Firbank MJ, Burn DJ, McKeith IG, et al. The application of statistical parametric mapping to 123I-FP-CIT SPECT in dementia with Lewy bodies, Alzheimer's disease and Parkinson's disease. NeuroImage. 2004;23:956–66.
- 29. Joling M, Vriend C, van der Zande JJ, Lemstra AW, van den Heuvel OA, Booij J, et al. Lower 123I-FP-CIT binding to the striatal dopamine transporter, but not to the extrastriatal serotonin transporter, in Parkinson's disease compared with dementia with Lewy bodies. NeuroImage Clin. 2018;19:130–6.
- 30. Joling M, Vriend C, Raijmakers PGHM, van der Zande JJ, Lemstra AW, Berendse HW, et al. Striatal DAT and extrastriatal SERT binding in early-stage Parkinson's disease and dementia with Lewy bodies, compared with healthy controls: An 123I-FP-CIT SPECT study. NeuroImage Clin. 2019;22:101755.
- 31. Kamagata K, Nakatsuka T, Sakakibara R, Tsuyusaki Y, Takamura T, Sato K, et al. Diagnostic imaging of dementia with Lewy bodies by susceptibility-weighted imaging of nigrosomes versus striatal dopamine transporter single-photon emission computed tomography: a retrospective observational study. Neuroradiology. 2017;59:89–98.
- Kasanuki K, Iseki E, Ota K, Kondo D, Ichimiya Y, Sato K, et al. 123I-FP-CIT SPECT findings and its clinical relevance in prodromal dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2017;44:358–65.
- 33. Lamotte G, Morello R, Lebasnier A, Agostini D, Bouvard G, De La Sayette V, et al. Influence of education on cognitive performance and dopamine transporter binding in dementia with Lewy bodies. Clin Neurol Neurosurg. 2016;146:138–43.
- Morgan S, Kemp P, Booij J, Costa DC, Padayachee S, Lee L, et al. Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J Neurol Neurosurg Psychiatry. 2012;83:1063–70.
- 35. Nicastro N, Garibotto V, Allali G, Assal F, Burkhard PR. Added value of combined semi-quantitative and visual [1231]FP-CIT SPECT analyses for the diagnosis of dementia with Lewy bodies. Clin Nucl Med. 2017;42:e96–102.
- 36. O'Brien JT, Colloby S, Fenwick J, Williams ED, Firbank M, Burn D, et al. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch Neurol. 2004;61:919.
- O'Brien JT, McKeith IG, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Diagnostic accuracy of ¹²³ I-FP-CIT SPECT in possible dementia with Lewy bodies. Br J Psychiatry. 2009;194:34–9.
- Pilotto A, Schiano di Cola F, Premi E, Grasso R, Turrone R, Gipponi S, et al. Extrastriatal dopaminergic and serotonergic pathways in Parkinson's disease and in dementia with Lewy bodies: a 1231-FP-CIT SPECT study. Eur J Nucl Med Mol Imaging. 2019;46:1642–51.
- Ransmayr G, Seppi K, Donnemiller E, Luginger E, Marksteiner J, Riccabona G, et al. Striatal dopamine transporter function in dementia with Lewy bodies and Parkinson's disease. Eur J Nucl Med Mol Imaging. 2001;28:1523–8.
- 40. Roselli F, Pisciotta NM, Perneczky R, Pennelli M, Aniello MS, De Caro MF, et al. Severity of neuropsychiatric symptoms and dopamine transporter levels in dementia with Lewy bodies: A ¹²³ I-FP-CIT SPECT study: DAT Levels and Neuropsychiatric Symptoms in DLB. Mov Disord. 2009;24:2097–103.
- 41. Siepel FJ, Dalen I, Grüner R, Booij J, Brønnick KS, Buter TC, et al. Loss of Dopamine Transporter Binding and Clinical Symptoms in Dementia With Lewy Bodies: DAT SCAN in Dementia with Lewy Bodies. Mov Disord. 2016;31:118–25.
- 42. Spehl TS, Frings L, Hellwig S, Weiller C, Hüll M, Meyer PT, et al. Role of semiquantitative assessment of regional binding potential in 123I-FP-CIT SPECT for the differentiation of frontotemporal

🖄 Springer

dementia, dementia with Lewy bodies, and Alzheimer's dementia. Clin Nucl Med. 2015;40:e27–33.

- 43. Taylor J-P, Colloby SJ, McKeith IG, Burn DJ, Williams D, Patterson J, et al. Cholinesterase inhibitor use does not significantly influence the ability of 123I-FP-CIT imaging to distinguish Alzheimer's disease from dementia with Lewy bodies. J Neurol Neurosurg Amp Psychiatry. 2007;78:1069–71.
- 44. van de Beek M, van Steenoven I, van der Zande JJ, Porcelijn I, Barkhof F, Stam CJ, et al. Characterization of symptoms and determinants of disease burden in dementia with Lewy bodies: DEVELOP design and baseline results. Alzheimers Res Ther. 2021;13:53.
- 45. van der Zande JJ, Booij J, Scheltens P, Raijmakers PGHM, Lemstra AW. [123]FP-CIT SPECT scans initially rated as normal became abnormal over time in patients with probable dementia with Lewy bodies. Eur J Nucl Med Mol Imaging. 2016;43:1060–6.
- 46. van der Zande JJ, Joling M, Happach IG, Vriend C, Scheltens Ph, Booij J, et al. Serotonergic deficits in dementia with Lewy bodies with concomitant Alzheimer's disease pathology: An 123I-FP-CIT SPECT study. NeuroImage Clin. 2020;25:102062.
- Walker Z, Costa DC, Walker RWH, Lee L, Livingston G, Jaros E, et al. Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology. 2004;62:1568–72.
- Ziebell M, Andersen BB, Pinborg LH, Knudsen GM, Stokholm J, Thomsen G, et al. Striatal dopamine transporter binding does not correlate with clinical severity in dementia with Lewy bodies. J Nucl Med. 2013;54:1072–6.
- Ceravolo R, Volterrani D, Gambaccini G, Rossi C, Logi C, Manca G, et al. Dopaminergic degeneration and perfusional impairment in Lewy body dementia and Alzheimer?s disease. Neurol Sci. 2003;24:162–3.
- Kemp PM, Clyde K, Holmes C. Impact of 123I-FP-CIT (DaTS-CAN) SPECT on the diagnosis and management of patients with dementia with Lewy bodies: a retrospective study. Nucl Med Commun. 2011;32:298–302.
- Lloyd JJ, Petrides G, Donaghy PC, Colloby SJ, Attems J, O'Brien JT, et al. A new visual rating scale for Ioflupane imaging in Lewy body disease. NeuroImage Clin. 2018;20:823–9.
- Maltais DD, Jordan LG, Min H-K, Miyagawa T, Przybelski SA, Lesnick TG, et al. Confirmation of ¹²³ I-FP-CIT SPECT Quantification methods in dementia with Lewy bodies and other neurodegenerative disorders. J Nucl Med. 2020;61:1628–35.
- Nicastro N, Burkhard PR, Garibotto V. Scan without evidence of dopaminergic deficit (SWEDD) in degenerative parkinsonism and dementia with Lewy bodies: a prospective study. J Neurol Sci. 2018;385:17–21.
- Roberts G, Donaghy PC, Lloyd J, Durcan R, Petrides G, Colloby SJ, et al. Accuracy of dopaminergic imaging as a biomarker for mild cognitive impairment with Lewy bodies. Br J Psychiatry. 2021;218:276–82.
- 55. Thomas AJ, Donaghy P, Roberts G, Colloby SJ, Barnett NA, Petrides G, et al. Diagnostic accuracy of dopaminergic imaging in prodromal dementia with Lewy bodies. Psychol Med. 2019;49:396–402.
- 56. Walker Z, Jaros E, Walker RWH, Lee L, Costa DC, Livingston G, et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Amp Psychiatry. 2007;78:1176–81.
- 57. Walker Z, Moreno E, Thomas A, Inglis F, Tabet N, Rainer M, et al. Clinical usefulness of dopamine transporter SPECT imaging with ¹²³ I-FP-CIT in patients with possible dementia with Lewy bodies: Randomised study. Br J Psychiatry. 2015;206:145–52.
- 58. Miyamoto T, Miyamoto M, Numahata K, Onoue H, Akaiwa Y, Sairenchi T. Reduced dopamine transporter binding predicts early transition to Lewy body disease in Japanese patients with

idiopathic rapid eye movement sleep behavior disorder. J Neurol Sci. 2020;414:116821.

- Oliveira FPM, Walker Z, Walker RWH, Attems J, Castanheira JC, Silva Â, et al. ¹²³ I-FP-CIT SPECT in dementia with Lewy bodies, Parkinson's disease and Alzheimer's disease: a new quantitative analysis of autopsy confirmed cases. J Neurol Neurosurg Psychiatry. 2021;92:662–7.
- 60. Chiu P-Y, Wei C-Y, Hung G-U, Wu S-L. Motor dysfunction questionnaire and dopamine transporter imaging composite scale improve differentiating dementia with Lewy bodies from Alzheimer's disease with motor dysfunction. Front Aging Neurosci. 2021;13:709215.
- Del Sole A, Perini G, Lecchi M, Mariani C, Lucignani G, Clerici F. correlation Between 123I-FP-CIT brain SPECT and Parkinsonism in dementia with Lewy bodies: caveat for clinical use. Clin Nucl Med. 2015;40:32–5.
- Donaghy PC, Taylor J-P, O'Brien JT, Barnett N, Olsen K, Colloby SJ, et al. Neuropsychiatric symptoms and cognitive profile in mild cognitive impairment with Lewy bodies. Psychol Med. 2018;48:2384–90.
- Durcan R, Donaghy PC, Barnett NA, Olsen K, Yarnall AJ, Taylor J-P, et al. Prevalence and severity of symptoms suggestive of gastroparesis in prodromal dementia with Lewy bodies. Int J Geriatr Psychiatry. 2019;34:990–8.
- Hansen N, Lange C, Timäus C, Wiltfang J, Bouter C. Assessing nigrostriatal dopaminergic pathways via 123I-FP-CIT SPECT in dementia with Lewy bodies in a psychiatric patient cohort. Front Aging Neurosci. 2021;13:672956.
- Siepel FJ, Rongve A, Buter TC, Beyer MK, Ballard CG, Booij J, et al. (123 I)FP-CIT SPECT in suspected dementia with Lewy bodies: a longitudinal case study. BMJ Open. 2013;3:e002642.
- Walker Z. Differentiation of dementia with Lewy bodies from Alzheimer's disease using a dopaminergic presynaptic ligand. J Neurol Neurosurg Psychiatry. 2002;73:134–40.
- Tiraboschi P, Salmon DP, Hansen LA, Hofstetter RC, Thal LJ, Corey-Bloom J. What best differentiates Lewy body from Alzheimer's disease in early-stage dementia? Brain. 2006;129:729–35.
- McKeith I, O'Brien J, Walker Z, Tatsch K, Booij J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. 2007;6:305–13.
- Howard E, Irwin DJ, Rascovsky K, Nevler N, Shellikeri S, Tropea TF, et al. Cognitive profile and markers of Alzheimer disease–type pathology in patients with Lewy body dementias. Neurology. 2021;96:e1855–64.

- Schumacher J, Gunter JL, Przybelski SA, Jones DT, Graff-Radford J, Savica R, et al. Dementia with Lewy bodies: association of Alzheimer pathology with functional connectivity networks. Brain. 2021;144:3212–25.
- Treglia G, Cason E, Gabellini A, Giordano A, Fagioli G. Recent developments in innervation imaging using iodine-123-metaiodobenzylguanidine scintigraphy in Lewy body diseases. Neurol Sci. 2010;31:417–22.
- 72. Antonini A, Benti R, De Notaris R, Tesei S, Zecchinelli A, Sacilotto G, et al. 123I-Ioflupane/SPECT binding to striatal dopamine transporter (DAT) uptake in patients with Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy. Neurol Sci. 2003;24:149–50.
- McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94:743–55.
- Coughlin DG, Ittyerah R, Peterson C, Phillips JS, Miller S, Rascovsky K, et al. Hippocampal subfield pathologic burden in Lewy body diseases vs. Alzheimer's disease Neuropathol Appl Neurobiol. 2020;46:707–21.
- 75 Bernasconi F, Blondiaux E, Potheegadoo J, Stripeikyte G, Pagonabarraga J, Bejr-Kasem H, et al. Robot-induced hallucinations in Parkinson's disease depend on altered sensorimotor processing in fronto-temporal network. Sci Transl Med. 2021;13:eabc8362.
- Fenelon G, Soulas T, de Langavant LC, Trinkler I, Bachoud-Levi A-C. Feeling of presence in Parkinson's disease. J Neurol Neurosurg Psychiatry. 2011;82:1219–24.
- 77. Llorca PM, Pereira B, Jardri R, Chereau-Boudet I, Brousse G, Misdrahi D, et al. Hallucinations in schizophrenia and Parkinson's disease: an analysis of sensory modalities involved and the repercussion on patients. Sci Rep. 2016;6:38152.
- Mishima A, Nihashi T, Ando Y, Kawai H, Kato T, Ito K, et al. Biomarkers Differentiating dementia with lewy bodies from other dementias: a meta-analysis. J Alzheimers Dis. 2015;50:161–74.
- Yokoyama K, Imabayashi E, Sumida K, Sone D, Kimura Y, Sato N, et al. Computed-tomography-guided anatomic standardization for quantitative assessment of dopamine transporter SPECT. Eur J Nucl Med Mol Imaging. 2017;44:366–72.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Mario Jreige¹ · George K. Kurian¹ · Jérémy Perriraz^{1,2} · Jevita Potheegadoo³ · Fosco Bernasconi³ · Sara Stampacchia³ · Olaf Blanke³ · Griffa Alessandra⁴ · Noemie Lejay⁴ · Paolo Salvioni Chiabotti^{4,2} · Olivier Rouaud⁴ · Marie Nicod Lalonde^{1,2} · Niklaus Schaefer^{1,2} · Giorgio Treglia^{1,2,5,6} · Gilles Allali^{2,4} · John O. Prior^{1,2}

- ¹ Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011 Lausanne, Switzerland
- ² Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- ³ Laboratory of Cognitive Neuroscience, Neuro-X Institute & Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- ⁴ Leenaards Memory Center, Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
- ⁵ Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- ⁶ Faculty of Biomedical Sciences, Università Della Svizzera Italiana, 6900 Lugano, Switzerland