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Source-sink connectivity: a novel interictal 
EEG marker for seizure localization
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Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care 
treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the 
brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically 
validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and 
time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visu
ally inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures 
or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small 
proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus 
days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose 
and treat patients.
IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases 
patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by devel
oping a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient 
is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algo
rithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting 
a set of neighbouring nodes (‘sources’) and the inhibited nodes themselves (‘sinks’). Specifically, patient-specific 
dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top 
sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algo
rithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% 
accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further vali
dated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink me
trics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians’ predictions 
(surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that 
were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG 
feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 
1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.
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Introduction
Epilepsy is characterized by unprovoked, recurrent seizures and af
fects over 60 million people worldwide.1 Although about 70% of pa
tients’ seizures are controlled with medication, 30% have 
drug-resistant epilepsy.2–4

The most effective treatments for drug-resistant epilepsy are in
terventions that surgically remove the epileptogenic zone (EZ), de
fined as the minimal area of brain tissue responsible for initiating 
seizures and whose removal (or disconnection) is necessary for 
seizure-freedom.5 A seizure-free outcome depends on epilepsy 
type and accurate localization of the EZ, but seizure-free rates vary 
between 20% and 80%, depending on a variety of clinical factors.6,7

Before surgery, patients undergo a thorough process to deter
mine the location and extent of the EZ. First, non-invasive methods 
such as scalp EEG, MRI, PET and single-photon emission computer
ized tomography (SPECT) are used to hypothesize the location of 
the EZ. If non-invasive methods are discordant or inconclusive, in
vasive monitoring with intracranial EEG (iEEG) is often needed.8

Following electrode implantation, the patient remains in the hos
pital for several days to weeks. Clinicians wait for a sufficient num
ber of seizure (ictal) events to localize the EZ through visual 
inspection of the iEEG data.9,10 They look for various epileptic signa
tures such as repetitive spikes, rhythmic slow waves or rapid fast 
intracortical frequencies.6–115

Ictal iEEG data are of higher value for localization purposes, but 
interictal (between seizure) data are also inspected to identify epi
leptiform spikes. The area of cortex that generates interictal spikes 
is denoted as possible EZ,8 but distinguishing between propagated 
and locally generated discharges is often non-trivial, making inter
ictal spikes an unreliable iEEG marker for the EZ.9

Many computational approaches have been proposed to localize 
the EZ from iEEG data.13–44 In line with the standard of care visual 

analysis, most of the proposed methods depend on seizure 

data.13–24,44 Nevertheless, using interictal data has been of high 

interest as this could significantly improve the intracranial moni

toring when it is interpreted in conjunction with the ictal data. 

The most frequently proposed interictal marker of the EZ are high 

frequency oscillations (HFOs).25–30 However, the reliability of 

HFOs as an iEEG marker of the EZ is debatable45 and by treating 

each channel independently, HFOs fail to capture network 

properties of the brain. Additionally, HFOs depend on epileptiform 
signatures being observable in the signals rather than detecting the 
underlying dynamical properties of the epileptic network.

In this study, we leverage interictal data to localize the EZ by de
veloping a computational tool that (i) estimates patient-specific dy
namical network models from interictal iEEG data; and (ii) uses 
connectivity properties of the models, based on the principle of 
‘sources’ and ‘sinks’, to identify pathological network nodes (iEEG 
channels) that correspond to the EZ. Specifically, we hypothesized 
that when a patient is not having a seizure, it is because the EZ is 
being inhibited by neighbouring regions. We then developed and 
tested a new interictal iEEG marker of the EZ by identifying two 
groups of network nodes from a patient’s interictal iEEG network: 
those that are continuously inhibiting a set of their neighbouring 
nodes (denoted as ‘sources’) and the inhibited nodes themselves 
(denoted as ‘sinks’). We applied our algorithm to interictal iEEG 
snapshots from 65 patients treated across six clinical centres and 
evaluated performance by (i) comparing the EZ channels identified 
by our algorithm to those identified by clinicians; and (ii) predicting 
surgical outcomes as a function of source-sink metrics by employ
ing the random forest framework.

Materials and methods
Patient population

Sixty-five adults [mean age 33.5 ± 13.0 (mean ± standard deviation, 
SD) years] with drug-resistant epilepsy who underwent intracranial 
EEG monitoring with stereotacticly placed depth electrodes 
[stereo-EEG (sEEG)] and received subsequent surgical treatment 
were selected retrospectively for the study. Post-sEEG surgical 
treatments included resective surgery (39 patients), laser ablation 
(17 patients) or responsive neurostimulation (nine patients). 
Patients were treated at one of the following institutions: 
Cleveland Clinic (CC), Johns Hopkins Hospital (JHH), University of 
Kansas Medical Center (KUMC), University of Miami Hospital 
(UMH), National Institutes of Health (NIH) and University of 
Pittsburgh Medical Center (UPMC). All patients had a minimum of 
1 year follow-up to determine treatment outcomes. Patient popula
tion statistics are summarized in Table 1. For more detailed clinical 
data of each patient, see Supplementary Table 1. The study was 
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approved by the Institutional Review Board (IRB) at each clinical in
stitution and all patients provided informed consent prior to enrol
ment. All clinical decisions were made independently of this study.

Data collection

Stereo-EEG recordings

SEEG data were recorded using Nihon Kohden or Natus (Natus 
Medical Inc.) EEG monitoring and diagnostic systems at a typical 
sampling frequency of 1 or 2 kHz. A small subset of sEEG was re
corded at 500/512 Hz. The placement of each electrode was deter
mined by the clinical team at each centre. For each patient, one 
interictal snapshot (average duration 5.3 ± 4.2 min) was randomly 
selected for analysis. Interictal periods were sampled at least 1 h 
away from seizures without application of specific selection criteria 
(such as the presence or absence of epileptiform activity).

Clinical annotations of the EZ

At each epilepsy centre, an EZ hypothesis was formulated inde
pendently of this study by the clinical team based on the non- 
invasive and invasive data gathered during presurgical evaluation 
for each patient. The clinically annotated EZ (CA-EZ) is defined as 
the anatomical area(s) to be treated (resected, ablated or stimu
lated). This includes sEEG channels demonstrating the earliest elec
trophysiological changes (generally characterized by low voltage 
fast activity) at the beginning of an ictal event (i.e. sEEG channels 
corresponding to the seizure onset zone), as well as channels in
volved in early propagation of the seizure. We note that because 
surgical treatment is based on the EZ hypothesis (with small varia
tions), there is generally a great overlap between the CA-EZ and the 
actual treated area(s) in each patient.

Clinical classification of surgical outcomes

Surgical outcomes were classified by each centre’s epileptologists 
according to the Engel Surgical Outcome Scale46 and the 
International League Against Epilepsy (ILAE) classification sys
tem.47 Successful surgical outcomes were defined as free of disab
ling seizures (Engel class I and ILAE scores 1–2) and failure 
outcomes as not free of disabling seizures (Engel classes II–IV and 
ILAE scores 3–6) at 12+ months post-operation. Of 65 patients, 28 
had a successful outcome, whereas 37 patients continued to experi
ence seizures after receiving treatment (failure outcome). Visible 
lesions on MRI are associated with higher success rates,48 whereas 
non-lesional patients, and patients with extra-temporal or multi- 
focal epilepsy have higher rates of non-seizure free out
comes.11,49–51 To define the clinical complexity of each patient, 
the clinical team categorized patients as follows: (i) lesional (visible 
lesions on MRI) or non-lesional; (ii) mesial temporal or non-mesial 
temporal; and (iii) focal or multi-focal.

Data preprocessing

Data were bandpass filtered between 0.5 and 300 Hz with a fourth 
order Butterworth filter, and notch filtered at 60 Hz and its harmo
nics with a stopband of 2 Hz. A common average reference was ap
plied to remove common noise from the signals. Final electrode 
locations were obtained by combining information from 
co-registered post-implantation CT and brain MRI scans (e.g. using 
BioImage Suite52). The clinical team at each centre then visually 
confirmed the electrode localizations for further accuracy. Finally, 
sEEG channels not recording from grey matter (e.g. located in white 
matter or outside of the brain) or otherwise deemed ‘bad’ (e.g. bro
ken or excessively noisy or artifactual) by the clinicians were dis
carded from each patient’s dataset, resulting in a total of 95 ± 32 
(mean ± SD) sEEG channels used per patient in the analysis. The 
sEEG recordings were divided into non-overlapping 500 ms win
dows for modelling and feature extraction (see details below). All 
data processing and analysis were performed using MATLAB 
R2020b (MathWorks, Natick, MA). Models for predicting surgical 
outcomes were built using Python3.6+ (Python Software 
Foundation, Wilmington, DE).

Sources and sinks in the epileptic brain network

We performed our analysis exclusively on interictal, seizure-free 
data, which leads to a fundamental question: how can one identify 
where seizures start in the brain without ever observing a seizure? 
Our source-sink hypothesis states that pathologic epileptogenic re
gions (denoted as sinks) are persistently inhibited by neighbouring 
regions (denoted as sources) during interictal periods to suppress 
seizures. The concept of sources and sinks within a network is 
well established and has been applied to many analyses of network 
systems.53 As schematically represented in Fig. 1, a ‘source’ node in 
our application is a region in the brain network that is highly influ
ential towards other nodes but is not being influenced by others. In 
contrast, a ‘sink’ node is a region that is being highly influenced by 
other nodes but is not influential itself. During rest, our conjecture 
was that seizure onset is prevented by a strong inhibition exerted 
on the EZ by its neighbouring brain regions (sources), which restrict 
onset and propagation of the seizure activity, i.e. EZ regions are 
sinks that cannot influence the rest of the network. When an epi
lepsy patient has a seizure however, the EZ is triggered and the 
EZ nodes transition into sources as they work together as a collect
ive group to initiate and spread seizure activity.

Dynamical network models

Dynamical network models (DNMs) are generative models that 
characterize how each iEEG channel dynamically influences the 
rest of the iEEG network. The interictal DNM takes the form of a lin
ear time-varying (LTV) model that mathematically describes how 
each observed brain region (iEEG channel signal) interacts with 

Table 1 Dataset demographic

CC KUMC JHU UMH NIH UPMC Total

Number of patients 29 9 5 8 9 5 65
Gender, male/female 15/14 4/5 2/3 6/2 7/2 3/2 37/28
Age, years 30.5 ± 12.3 39.7 ± 16.9 35.3 ± 18.3 35.3 ± 12.7 33.1 ± 9.3 36.6 ± 12.0 33.5 ± 13.0
Surgical outcome, successful/failed 13/16 4/5 3/2 1/7 4/5 3/2 28/37
MRI findings, normal/abnormal 26/3 6/3 0/5 5/3 5/4 4/1 46/19
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Figure 1 Source-sink hypothesis. Top: During interictal periods, epileptogenic nodes (shaded red region) are sinks that are strongly inhibited (influ
enced) by neighbouring regions (sources) to prevent seizures. Bottom: During ictal periods, however, epileptogenic nodes become sources as they 
work together as a tightly coupled group to initiate and spread epileptogenic activity to other regions of the brain.

Figure 2 Identifying sources and sinks in the interictal iEEG network. (A) An N-channel iEEG network example. (B) Signals obtained from the implanted 
iEEG channels. (C) Corresponding A matrix, estimated from the signals in B. (D) 2D source-sink representation of the iEEG network with sink index (sinki

), source influence (infli) and sink connectivity (conni) labelled. In this space, sources are channels located at the top left (blue circles), whereas sinks (pink 
circles) are located at the bottom right. Blue star = ideal source; pink star = ideal sink.
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other regions. The LTV DNM is composed of a sequence of linear 
time-invariant (LTI) DNMs derived from smaller windows of the 
data. Each LTI model takes the following form:

x(t + 1) = Ax(t) (1) 

Where x(t)ϵℝN represents the iEEG channels, AϵℝNxN is the state 
transition matrix, which describes iEEG channels’ interaction and 
evolution over time and N is the number of iEEG channels. Note 
that a multivariate autoregressive (MVAR) model, which has been 
widely used to study effective connectivity in brain networks,54–57

takes the form of an LTI system at each time lag. As such, the LTI 
DNMs are a special case of a first order MVAR model, i.e. where we 
only go back one time step. In our previous work, we showed how 
DNMs can be derived using least squares estimation and how they 
accurately reconstruct the iEEG data (Supplementary Fig. 1).58

Importantly, systems theory can be employed to uncover the dy
namics and properties of the DNMs to assist in accurately localizing 
the EZ. In these models, element Aij describes how the present activ
ity of channel j influences the future activity of channel i. More gen
erally, the i-th row of A dictates the iEEG network’s cumulative 
functional effect on node i, while the j-th column determines the 
functional effect that the activity of node j exerts on the entire net
work. We note that due to the spatial resolution of the iEEG record
ings, the DNMs cannot distinguish between excitatory and 
inhibitory connections in the network. Instead, we quantify the 
amount of ‘influence’ one node has on another.

Identifying sources and sinks in the iEEG dynamical 
network model

We defined two special groups of nodes in the iEEG DNM, subject to 
the source-sink hypothesis. Source nodes (blue nodes in Fig. 2A) are 
nodes that generally have high magnitude values in their columns 
of the A matrix (high influence on others) but low values across 
their rows (low influence from others). In contrast, sinks (pink 
nodes in Fig. 2A) exhibit the opposite pattern, high row values 
and low column values.

Computing source-sink metrics

Source-sink 2D-space

To identify the top sources and sinks in the DNM, we quantified each 
channel’s source-sink characteristics by computing the amount of 
influence to and from the channel based on the sum of the absolute 
values (the 1-norm) across its row and column in A (Fig. 2C), respect
ively. Once we obtained the total influence to/from each channel, 
we placed the channels in the source-sink 2D-space (SS-space, 
Fig. 2D). Finally, we computed three source-sink metrics (SSMs) sub
ject to the source-sink hypothesis for each channel.

Sink index

The first criterion from our source-sink hypothesis requires an EZ 
channel to be a top sink in the iEEG network. The sink index cap
tures how close channel i is to the ideal sink, which is defined as 
a channel whose row rank (rr) is equal to 1 and column rank (cr) is 
equal to 1

N (Fig. 2D, pink star). The sink index was computed as:

sinki =
��
2
√

− ‖(rri, cri) − 1,
1
N

􏼒 􏼓

‖ (2) 

The larger the sink index, the more likely the channel is a sink.

Source index

Similar to the sink index, the source index captures how close a 
channel is to the ideal source (rr = 1

N and cr = 1, blue star in 
Fig. 2D). The source index was defined as:

sourcei =
��
2
√

− ‖(rri, cri) −
1
N

, 1
􏼒 􏼓

‖ (3) 

The larger the source index, the more likely channel i is a source.

Source influence

The second criterion requires an EZ channel to be highly influenced 
by top sources. The source influence index quantifies how much 
the top sources influence channel i:

infli =
􏽘N

j=1

abs(Aij) × sourcej (4) 

A high source influence suggests that channel i receives strong 
influence from the top sources in the interictal DNM.

Sink connectivity

The third criterion requires an EZ channel to be highly connected to 
other sinks so that it can collaborate to generate a seizure. The sink 
connectivity index quantifies the strength of connections from the 
top sinks to channel i:

conni =
􏽘N

j=1

abs(Aij) × sinkj (5) 

The higher the sink connectivity, the stronger influence channel 
i receives from the top sinks in the network. All metrics were nor
malized by their maximum value.

We refer the reader to the Supplementary material for further 
details of the source-sink analysis and an example computation 
for a four-node network.

Predicting surgical outcomes using source-sink metrics

To evaluate the SSMs as interictal iEEG markers of the EZ, we 
tested their efficacy in predicting surgical outcomes following 
the same procedure as Li et al.14 (Supplementary Fig. 3) and com
pared performance against HFOs.59–61 Specifically, we modelled 
the probability of a successful surgical outcome, Ps, as a function 
of the three SSMs (sink index, source influence and sink connect
ivity) using an oblique random forest classifier.62 The SSMs were 
summarized with the mean and standard deviation across 
two sets of channels: (i) the CA-EZ; and (ii) all other channels 
not labelled as CA-EZ (CA-NEZ). For more details, see the 
Supplementary material. In general, the prediction of surgical 
outcomes using any feature (e.g. SSMs or HFO rate) conditioned 
on the CA-EZ enables us to evaluate the overall value of the fea
ture as a potential EZ marker. Next, we performed a 10-fold nested 
leave-patient-out cross-validation (CV) and performed statistical 
analysis as described below.

Predicting surgical outcomes using HFOs

HFO rate (number of HFOs per minute per channel) is amongst the 
most commonly used metrics to test the value of HFOs as a bio
marker of the EZ.25,29,35,63–68 Thus, we also modelled Ps as a function 
of HFO rate following the exact same paradigm as for the SSMs 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
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described above. We detected HFOs in the interictal data segments 
using two different automatic detectors for comparison: the Hilbert 
detector61 and the root-mean-square (RMS) detector67 (see the 
Supplementary material for full details).

Clinical annotations of CA-EZ and SSM correspondence

To evaluate the SSMs as an iEEG marker of the EZ, the clinical team 
at each centre reviewed the source-sink results for each patient and 
ranked the correspondence between the CA-EZ and the nodes that 
had high SSMs. Specifically, for each patient, clinicians were pre
sented with a 2D SS-space (Fig. 2D), which showed the location of 
each implanted iEEG channel in the SS-space as well as the stron
gest connections from the top sources and sinks. The clinical 
team then compared the source-sink results to the CA-EZ regions 
and rated the clinical correspondence between the two sets as ei
ther: (i) agreement, if there was some or significant overlap with 
the CA-EZ; or (ii) no agreement, defined as no overlap with CA-EZ 
regions.

Quantifying CA-EZ and SSM correspondence

Finally, to quantify the correspondence between the CA-EZ and 
regions with high SSMs, we used a logistic regression model to 
compute the probability of a particular channel belonging to the 
EZ or not (PEz) as a function of the three SSMs. The model was 
trained, validated and tested using a 10-fold CV. We note that 
this part of the performance evaluation was only performed on 
seizure-free patients as we can assume that the EZ was accurately 
localized in these patients. For full details, see the Supplementary 
material.

Statistical analysis

Each random forest model (SSM and HFO) was validated using a 
stratified shuffle 10-fold leave-patient-out CV by creating 10 ran
dom splits of the entire dataset into training and test sets. In each 
such split, the hyperparameters were tuned using the training 
data (70% of the dataset), and performance was then evaluated on 
the remaining 30% of patients in the test dataset by applying a vary
ing threshold to the model’s output and computing a receiver oper
ating characteristic (ROC) curve, which plots true positive rates 
against false positive rates for various threshold values. We then 
applied a threshold (α = 0.5) to Ps to predict each patient’s outcome 
and evaluated performance by comparing the predicted outcome to 
the actual outcome. The decision threshold was determined as the 
default threshold for any statistical classification model, as op
posed to choosing an optimal point on the ROC curve, to avoid 
the risk of overhyping (overfitting hyperparameters) and thus bias
ing the results of the final model.69

We used five metrics to measure model performance: (i) area 
under the curve (AUC) of the ROC; (ii) prediction accuracy; (iii) pre
cision; (iv) sensitivity; and (v) specificity. We report results of the 10 
CV folds (mean ± SD) below. We compared the performance metrics 
of the SSMs to those of HFO rates using a paired two-sample t-test. 
In all t-tests performed, the null hypothesis was that the two distri
butions have equal means, and the alternate hypothesis was that 
the means are different. Lastly, outcome predictions of the two 
models (Ps) were compared using a McNemar’s test for paired nom
inal data. For all tests, a P-value ≤ 0.05 was considered to be statis
tically significant.

Data availability

We released the raw iEEG data for patients from NIH, Miami and JHH 
in the OpenNeuro repository in the form of BIDS-iEEG (https:// 
openneuro.org/datasets/ds003876.). Because of restrictions on 
data sharing from CC, KUMC and UPMC, we were unable to release 
the iEEG data that we received from these centres. Datasets from 
these centres are available upon request from authors at the corre
sponding centre.

Results
The SSMs highlight CA-EZ regions in patients with 
successful outcomes

From each patient’s interictal DNM, we quantified source-sink 
characteristics of every iEEG channel by computing its SSMs in 
every 500 ms sliding-window of the interictal recording. To visual
ize the spatiotemporal SSM heatmaps, we combined the indices 
into a single source-sink index by taking the product of the three 
(SSI = sink × infl × conn), see Fig. 3A for examples of 1-min snapshot 
of iEEG data and the corresponding spatiotemporal SSM heat maps 
for three patients with different surgical outcomes. Figure 3B shows 
the average interictal SSM of each iEEG contact, overlaid on each 
patient’s implantation map, and the placement of each channel 
in the 2D source-sink space is shown in Fig. 3C.

A high SSI indicates that the channel is a top sink that is both 
highly connected to other sinks and strongly influenced by the 
top sources of the network. In Patient 1, the iEEG channels with 
the highest SSI matched the channels identified as the EZ by clini
cians (three out of three). In this patient, all three CA-EZ channels 
were included in the surgical treatment (laser ablation), which led 
to complete seizure freedom. In Patient 2, however, only 2 out of 
13 CA-EZ regions had high SSI values, whereas the other iEEG chan
nels with high values were not a part of the CA-EZ and thus were 
not treated during surgery. This patient did not become seizure 
free post-treatment. Finally, Patient 3 had two surgeries; first a laser 
ablation of superior frontal and cingulate gyri (contacts on L’ and G’ 
electrodes), which resulted in seizure recurrence, and later a resec
tion of pre-, post-central and supplementary motor areas (M’ elec
trode), which led to complete seizure freedom. Interestingly, when 
the iEEG channels first identified as CA-EZ (CA-EZ1) were consid
ered, none were amongst the channels with the highest 10% SSI va
lues. However, most of the channels with the highest SSI 
values corresponded to the second identified CA-EZ (CA-EZ2, M’ 
electrode) that ultimately led to a successful outcome in this 
patient.

Identifying channels with high SSMs

As Fig. 3A shows, the SSMs remained consistent with little variation 
of each channel’s metric values across the interictal recordings. 
Thus, we computed an average A matrix to represent each patient’s 
interictal DNM (Supplementary material). From this matrix, we 
identified the top sources and sinks in the iEEG network by placing 
the channels in the SS-space (see Fig. 3C for three patient examples) 
based on their total influence. In patients with successful surgical 
outcomes, the CA-EZ channels are expected to be a subset of the 
top sinks (Fig. 3C, top). The most likely candidates of the true EZ, 
based on the source-sink hypothesis, are the subset of top sinks 
that are highly connected to other sinks and strongly influenced 
by top sources. In general, the top sources and sinks pointed to 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
https://openneuro.org/datasets/ds003876
https://openneuro.org/datasets/ds003876
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
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CA-EZ channels in patients with successful outcomes (Fig. 3C, top), 
whereas they may also connect to other channels in patients with 
failed surgical outcomes (Fig. 3C, middle). In Patient 3 (Fig. 3C, bot
tom), who continued to have seizures after the first surgery, the 
CA-EZ1 were not amongst the top sinks in the iEEG network, where
as the majority of CA-EZ2, the set of channels that led to seizure- 
freedom post-surgery, were top sinks. In addition, the latter set of 
channels were highly influenced by the top sources and sinks in 
the network and thus were considered likely candidates of the 
true EZ by the source-sink algorithm.

Temporal stability of sources and sinks during 
interictal periods

To verify the stationarity of the SSMs over time, we tested the sen
sitivity of the indices to duration and timing of the interictal snap
shot. Specifically, we computed how many of the channels with 
10% highest constant SSMs were captured in windows of five differ
ent sizes, ws = {1,2,3,5,10} min and compared this with how many 
channels were captured by chance (see full details in the 
Supplementary material). As Fig. 4 shows, over 90% of the top chan
nels were captured on average for all indices—independent of the 
timing or duration of the interictal snapshot—compared with far 
fewer channels (around 10%) captured by chance (P << 0.05 for all 
metrics). This suggested that, given any snapshot of interictal 
data, even as short as 1 min, the results would be highly compar
able to those obtained from the entire interictal snapshot for each 
patient.

SSMs outperform HFOs in predicting surgical 
outcomes

As stated above, the source-sink metrics (and consequently the 
product of the three metrics, denoted as SSI) were significantly 
higher in CA-EZ channels compared with the rest of the iEEG net
work in patients with successful outcomes but not necessarily in 
patients with failed outcomes (Psuccess

SSI = 8.26 × 10−7 and 
Pfailure

SSI = 0.151, see other P-values in Supplementary Table 2). 
Taking advantage of this assumption, we built a random forest model 
to predict the probability of a successful surgical outcome (Ps) for each 
patient using (i) the source-sink metrics; and (ii) HFO rate, for com
parison. The performances of both HFO detectors were highly com
parable. We report results of the Hilbert detector below. Results of 
the RMS detector are shown in the Supplementary material. The re
sulting test-set ROC curves are shown in Supplementary Fig. 4. 
Figure 5A and B show Ps distributions across all CV-folds, using the 
SSMs and the HFO model, respectively. The dots are colour-coded 
based on each patient’s surgical outcome. A decision threshold of α 
= 0.5 was applied to the estimated probabilities (Ps) to predict each pa
tient’s outcome. Using the SSMs (Fig. 5A), most patients with a su
cessful outcome were above the threshold, with Ps > 0.5, whereas 
most patients with a failed outcome were below it. In contrast, there 
was no clear separation between patients with successful or failed 
outcomes using the HFO rate (Fig. 5B).

Figure 5C compares the performance of the SSMs and HFOs in 
predicting surgical outcomes. The SSMs outperformed HFO rate 
with significantly higher AUC, accuracy, average precision and sen
sitivity (PAUC = 0.0015, Paccuracy = 0.0335, Pprecision = 8.33 × 10−4 and 
Psensitivity = 0.0066). Although the SSMs had a higher specificity on 
average, both models performed similarly (Pspecificity = 0.537).

Note that HFO rate was computed across the entire interictal 
snapshot provided for each patient. The longer the snapshot, the 

more likely it is to capture HFOs. In contrast, although the SSMs 
were also computed by averaging across the same recordings for 
each patient, we showed above that the results remain consistent 
independent of both timing and length of the recording.

SSMs are correlated with treatment outcomes

The separation between the Ps distributions of patients with suc
cessful or failed outcomes was greater for the source-sink model 
compared with the HFO model, and consequently so was the mod
el’s ability to discriminate between the two outcome possibilities 
(Fig. 6A). In fact, we compared the performance of the two models 
with a contingency table (confusion matrix) and observed that 
the SSM model was statistically better with a P-value of P = 0.006. 
When further broken down by Engel class (Fig. 6B) or ILAE score 
(Fig. 6C), we observed a decreasing trend of Ps as the outcome score 
(and thus also the severity of postoperative seizure outcome) in
creased using the SSMs. In contrast, we did not see this clear separ
ation of Ps-values using the HFO model, which had a much greater 
overlap between classes.

Top SSM regions correspond highly to CA-EZ in 
patients with successful surgical outcome

For each patient, the treating neurologist rated the correspondence 
between the CA-EZ and regions with top SSMs based on the pa
tient’s 2D SS-map. Figure 7 shows the clinical correspondence 
scores between the two sets of regions for patients with successful 
versus failed outcomes. In general, there was more agreement be
tween the CA-EZ and regions with high SSMs in patients with suc
cessful surgical outcomes compared to those with failed outcomes, 
indicating that the source-sink analysis often highlighted other, 
non-treated potential onset regions in patients with failed out
comes. In fact, clinicians agreed with the algorithm in 26 of 28 
(93%) seizure-free patients, whereas only 54% of patients with 
failed outcomes were considered to be in agreement. When cate
gorized by Engel scores, the rate of agreement decreased as the 
Engel class increased, which likely also reflects the increased diffi
culty of treatment in these patients. A similar trend was observed 
for the ILAE scores, with a higher rate of disagreement correspond
ing to a higher ILAE score.

Finally, to quantify the overlap between SSM and CA-EZ regions, 
we used them as inputs to a logistic regression model to predict 
whether a particular sEEG channel belongs to the EZ or 
not (Supplementary material). Supplementary Fig. 13A and B
show the resulting training and test set ROC curves. The SSMs 
achieved a test set AUC of 0.77 ± 0.01 and the overall agreement be
tween the high-SSM and CA-EZ regions was 72.5 ± 1.2. Distributions 
of PEz-values are shown in Supplementary Fig. 14. Although the pre
dicted EZ probability was generally lower for channels outside of 
the EZ (non-EZ channels), PEz had a wide range of values for this 
group (right box in Supplementary Fig. 14), contributing to a lower 
prediction accuracy. In fact, we found that a large proportion of 
non-EZ channels with the highest PEz were located in early spread 
regions and other regions in close proximity to the CA-EZ, thus po
tentially having higher epileptogenicity, although not directly clas
sified as EZ by clinicians.

Discussion
We proposed novel source-sink metrics as interictal iEEG markers 
to assist in EZ localization. The SSMs are based on the hypothesis 

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
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http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
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that seizures are suppressed when the epileptogenic regions are ef
fectively being inhibited by neighbouring regions. We sought to 
evaluate the performance of the SSMs on a diverse group of pa
tients, reflecting different epilepsy aetiologies, treatment methods 
and post-treatment outcomes. We collected our iEEG data from six 
different clinical centres. As such, our dataset comprised a hetero
geneous patient population, spanning varying case complexities 
(such as lesional or non-lesional, and temporal or extra-temporal 
epilepsy), epilepsy types (focal and multi-focal) and clinical prac
tices, while at the same time reflecting the standard of care success 
rates of ∼50% on average.

Of 28 success patients in our dataset, the source-sink algorithm 
agreed with clinicians in 26 (93%) of patients. In contrast, only 54% 

of patients with failed outcomes were considered in agreement with 
clinicians, suggesting that in these patients, the source-sink algo
rithm highlighted other potentially epileptogenic areas than the 
ones identified and treated. Furthermore, in terms of predicting sur
gical outcomes, the SSMs outperformed the HFO rate, a frequently 
proposed interictal biomarker of the EZ, predicting 79% outcomes 
correctly, compared with the 67% accuracy of the HFO model.

Generalizability of the SSMs

Importantly, although not shown here, we show in Supplementary 
Figs 8–12 that the SSMs were agnostic to the clinical complexity of 
each patient (as defined by our clinical team), size of the network 

Figure 3 Three patient examples. Patient 1 (top) had a successful surgical outcome. Patient 2 (middle) had a failed surgical outcome. Patient 3 (bottom) 
had two surgeries. After the first surgery, the patient continued to have seizures (failed outcome) but became seizure-free (successful outcome) after 
the second surgery. (A) A 1-min interictal iEEG snapshot (left) and the resulting SSI (computed as the product of the three SSMs) of every channel (right). 
Channels are arranged from highest to lowest average interictal SSI. CA-EZ channels are coloured red. For Patient 3, the CA-EZ from the second surgery 
is coloured orange. Only the top 30% of channels are shown for better visualization purposes, and all channels not shown have low SSI values. In Patient 
1 (top), CA-EZ channels had the highest SSI values, whereas only 2 of 13 CA-EZ channels had a high SSI in Patient 2 (middle). In Patient 3 (bottom), the 
CA-EZ that rendered the patient seizure-free had the highest SSI values. (B) Average SSI of each channel overlaid on the patients’ implantation 
maps. Red/orange boxes outline CA-EZ channels. (C) 2D source-sink space. Top sources are located in the top left and top sinks in the bottom right. 
CA-EZ channels are coloured red. The second CA-EZ in Patient 3 is coloured orange in the bottom panel. The blue and pink arrows indicate the strongest 
connections from the top sources and sinks, respectively, and the channels they point to. The most influential connections from sources (blue arrows) 
point to the sinks and the strongest connections from sinks (pink arrows) point to other sinks in Patient 1 (top), whereas the top sources point to nodes 
other than top sinks in Patient 2 (middle). Top sinks also point to these other nodes.

http://academic.oup.com/brainj/article-lookup/doi/10.1093/brain/awac300#supplementary-data
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(i.e. number of sEEG channels), as well as treatment methods, sug
gesting that the tool is highly generalizable. Furthermore, the per
formance was very similar across all centres (Supplementary Figs 
9 and 11), indicating that the tool generalized well across different 
datasets and the overall probabilities and scores were not biased by 
any centre.

Biological evidence supporting the source-sink 
hypothesis

From a cytological perspective, the source-sink hypothesis is sup
ported by evidence that seizures are prevented when the EZ is effect
ively inhibited by other brain regions. Glutamate, the primary 
excitatory neurotransmitter in the brain, has been implicated as a 
neurotoxic agent in epilepsy, and studies have suggested that a rela
tive imbalance between glutamate and the inhibitory neurotrans
mitter GABA plays a central role in epilepsy.70 Healthy brain 
function requires a balance between glutamate uptake and release 
to maintain the concentration of extracellular glutamate within a 
homeostatic range.71 Several studies have demonstrated the exist
ence of elevated levels of extracellular glutamate in animal models 
of epilepsy72 and in human epilepsy patients.73 Additionally, sodium 
dependent glutamate transporters (GLTs) are thought to be crucial in 
preventing accumulation of neurotoxic levels of glutamate in the 
extracellular space by clearing unbound extracellular glutamate. 
This suggests that fluctuations in the expression of GLTs may modu
late epileptogenicity.74 In fact, previous studies have shown an in
creased number of GLTs in human dysplastic neurons and posit 
that this enables a ‘protective’ inhibitory mechanism surrounding 
the epileptogenic cortex.75 Taking this together, the inhibitory 
(sink phenomena) and the excitatory (source phenomena) events 
within the potential EZ may have a biological substrate in the differ
ential expression of glutamate transporters within the EZ.

IEEG studies supporting the source-sink hypothesis

IEEG studies also provide evidence that support a source-sink hy
pothesis. Several studies have demonstrated a high inward directed 

influence to the EZ at rest.63,76–78 In a recent study, Narasimhan 
et al.76 stated that high inward connectivity may reflect inhibitory 
input from other regions to prevent the onset and spread of seizure 
activity, but the direction of these signals may flip when seizure ac
tivity begins. This is supported by iEEG studies in neocortical epi
lepsy demonstrating functional isolation of epileptogenic areas at 
rest79,80 and that increased synchronization in seizure-onset re
gions may be suggestive of an inhibitory surround.81 It has also 
been hypothesized that widespread network inhibition seen in tem
poral lobe epilepsy may have evolved to prevent seizure propaga
tion81 and that a reduction of the inhibitory influence may lead to 
increased excitability and propagation of seizure activity.82,83

Taken together, other iEEG studies are consistent with the findings 
of the source-sink analysis. The biggest difference to the source- 
sink algorithm, however, is the way connectivity is measured within 
the brain network. Many studies use measures of connectivity that 
require the selection of a frequency range over which the analysis is 
performed.63,76,77,79,83 As there are numerous possibilities for select
ing these frequency bands, some of which may lead to different out
comes, results will depend on the selection of the appropriate 
frequencies to capture the true characteristics of the brain activity. 
In contrast, the source-sink algorithm operates in the time-domain 
and thus does not rely on any parameters to be specified a priori.

Source-sink results in line with the source-sink 
hypothesis

We also investigated source-sink properties of the iEEG network 
during ictal periods (Supplementary material). We found that in pa
tients with a successful outcome (Supplementary Figs 16 and 17), 
CA-EZ channels had significantly higher SSM values compared 
with the rest of the channels during interictal periods, suggesting 
they were top sinks strongly influenced by top sources. However, 
during and right after seizure, the same channels had low SSMs, 
that is, they exhibited a strong source-like behaviour, which is in 
line with the source-sink hypothesis.

Challenges

Why the source-sink algorithm may disagree with 
clinicians in patients with a successful surgical outcome

For most patients with a successful outcome, the source-sink algo
rithm was in agreement with the clinicians regarding the location 
of the EZ (Fig. 7); the algorithm and clinicians were deemed to dis
agree in only 2 of 28 cases. In addition to completely removing the 
EZ, a disconnection of the EZ from the rest of the epileptogenic net
work or removal of the regions responsible for early spread of the 
seizure activity may also lead to a successful surgical outcome. 
Thus, it is possible that in these patients, the treated areas may 
have included the early spread regions instead of the onset zone 
and therefore did not overlap with the areas highlighted by the 
source-sink algorithm.

Why the source-sink algorithm may agree with clinicians 
in patients with a failed surgical outcome

Surgical treatment may fail for various reasons and, in more com
plex cases, removing the EZ may not be sufficient to achieve seizure 
freedom (e.g. a removal of the primary focus in multi-focal patients 
may lead to post-surgical emergence of seizures from a location 
that was previously not clinically evident). Consequently, the 
source-sink algorithm may be in full or some agreement with the 

Figure 4 Temporal stability of the source-sink metrics. Darker colours 
represent distributions of SSMs, whereas lighter (transparent) colours 
represent channels captured by chance. On average, over 90% of chan
nels are captured for all metrics, independent of the timing or duration 
of the interictal snapshot selected. Increasing the window size does not 
significantly change the percentage of top channels captured. In com
parison, only around 10% of top channels are captured by chance. The 
asterisks indicate a statistically significant difference.
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treated areas, even in patients with failed outcomes. Additionally, 
incorrect or inaccurate localization of the EZ and incomplete treat
ment of these regions most likely leads to seizure recurrence after 
surgery. This can occur in cases where the implanted electrodes do 
not cover the true EZ, in which case it is impossible (for clinicians 
and algorithms) to detect the true EZ or whether the EZ is widely 
spread. Finally, in some patients, a complete resection of the EZ 
cannot be performed without causing a new, unacceptable deficit 
to the patient (e.g. if the EZ is in eloquent cortex). Instead, palliative 
treatments, including responsive neurostimulation or deep brain 
stimulation, have been used increasingly in patients who are not 
candidates for resective surgery or choose not to undergo resection. 
These treatments can be effective in reducing seizure frequency, 
but only a minority of patients experience complete seizure 

control.84–86 Thus, since responsive neurostimulation treatment 
may be selected for reasons that preclude resection of the EZ, the 
patient may have had a failed outcome even when the areas high
lighted by the source-sink algorithm overlap with the CA-EZ.

Limitations of the most common interictal iEEG 
markers of the EZ

HFOs are some of the most studied iEEG features as a potential in
terictal marker of the EZ.25,28,29,35,60,61,87–101 However, there still re
mains considerable controversy surrounding HFOs as a valid EZ 
marker. Although there is evidence that regions belonging to the 
EZ have higher HFO rates compared with non-epileptogenic re
gions,29,66,87,88,90–92,99,100 other studies have not found a predictive 

Figure 5 Performance of the source-sink and HFO metrics in predicing surgical outcomes. (A) Predicted probability of success (Ps) using the source-sink 
model across all CV folds. Each dot represents one patient and dots are colour-coded by surgical outcome. S = success, F = failure. Note that Ps-values 
from all 10 CV folds are shown, resulting in more data-points than the number of patients used in the study. The dashed line represents the decision 
threshold applied to Ps to predict outcomes. For the source-sink model, the majority of patients with a successful outcome (red dots) had Ps-values 
above the threshold, whereas patients with a failed outcome (black dots) generally had Ps-values below the threshold. (B) Predicted probability of suc
cess (Ps) using the HFO model across all CV folds. For the HFO model, there was no clear separation between the patients with successful or failed out
comes, with both groups having Ps-values above and below the decision threshold, thus resulting in lower prediction accuracy. (C) Performance 
comparison of the SSMs (red) to HFO rate (black). Boxes show distributions of each metric across the 10 CV folds. The asterisks indicate a statistically 
significant difference. The SSMs outperformed the HFO rate with significantly higher AUC, accuracy, average precision and sensitivity. The SSMs had 
an AUC of 0.86 ± 0.07 compared with an AUC of 0.72 ± 0.07 using the HFO rate. The source-sink model also outperformed HFOs in terms of average 
precision, which weighs the predictive power in terms of the total number of patients, with an average precision of 0.88 ± 0.06 compared with 0.72 
± 0.11 for the HFO rate. Using the SSMs, a threshold of α = 0.5 applied to Ps for each subject rendered a test-set accuracy of 78.9 ± 8.5%, compared 
with a considerably lower accuracy of 66.6 ± 10.1%  using HFOs and an even lower clinical success rate of 43% in this dataset. The biggest performance 
difference between the two models was in terms of sensitivity (true positive rate), where the SSMs outperformed the HFO rate by 35%, with a sensitivity 
of 0.78 ± 0.09. However, both models performed similarly in predicting failed outcomes correctly, where the source-sink model had a marginally higher 
specificity of 0.80 ± 0.16 compared with 0.75 ± 0.13 for the HFOs.
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value in the removal of these regions,88,92 and two meta-analyses of 
existing studies concluded that the evidence of HFOs as a predictor 
of surgical outcome is weak.89,102

Furthermore, several studies have questioned the reproduci
bility and reliability of HFOs as a EZ marker.45,91,92,103–108 First, 
there is variability in the exact features used to define HFOs,91,109

and second, HFOs can occur in non-epileptogenic regions and 
even in patients without epilepsy.45,110–112 Finally, HFO rates are 
not stable over time. Gliske et al.45 tested the consistency of chan
nels exhibiting the highest number of HFOs across different 
10 min segments of data. They showed that the location of the 
highest HFO-rate channels varied greatly when different seg
ments were used. In contrast, we showed above that the source- 
sink analysis returns consistent results independent of recording 
length and is in fact, robust to any random selection of interictal 
activity (Fig. 4). Furthermore, we repeated the analysis with and 

without the removal of large artifacts from the sEEG snapshots 
and found that the results held.

Limitations and future directions

In this study, we performed a direct comparison between SSMs and 
HFOs on the same datasets. However, it is important to note that 
the sEEG snapshots in this study were short in duration compared 
with other HFO studies that often use hours of interictal 
data.25,28,45,64,67,68 While generating quantitative markers on short 
snapshots of sEEG data is an advantage of the SSM approach, the 
same comparison should be performed on longer datasets where 
HFO rates are more accurately captured. It may be the case that 
HFOs become comparable or better than SSMs when computed 
from longer snapshots, and thus both markers may have their 
pros and cons. That is, one computational marker may be more 

Figure 6 Predicted probability of success categorized by surgical outcomes. (A) Distributions of Ps as predicted by the source-sink model (red) and HFO 
model (black). Each box represents the distribution of Ps-values across all 10 CV folds. There was a clear separation between the distributions of patients 
with successful versus failed outcomes for the SSM model, whereas the distributions obtained using the HFO rate overlapped, and consequently the 
predictive power of the HFO rates was lower. (B) Distributions of Ps stratified by Engel Class (Engel I = successful outcome; Engel 2–4 = failed outcome). 
For the SSMs, there was a general trend of decreasing Ps-values as the Engel class (and thus also severity of surgical outcome) increased. In contrast, this 
did not hold for the HFO rate. (C) Distributions of Ps stratified by ILAE scores (ILAE 1–2 = successful outcome; ILAE 3–5 = failed outcome) followed a simi
lar trend to those observed for the Engel class in B. F = failed surgical outcome; S = successful surgical outcome.

Figure 7 Clinical correspondence between CA-EZ and top SSM regions. (A) Clinical correspondence stratified by surgical outcome. For almost all pa
tients with a successful outcome, the clinicians agreed with the channels with the highest SSM scores. This agreement was much lower for the patients 
with a failed outcome. Note that in some failed-outcome patients, clinicians may not have been able to treat all of the CA-EZ (e.g. if it is located in elo
quent cortex). In those cases, the source-sink algorithm may agree with clinicians even though the patient had a failed surgical outcome. (B) Clinical 
correspondence stratified by Engel class. The rate of agreement was highest for Engel 1 (complete seizure-freedom) but decreased as the Engel class 
increased. No-agreement scores followed the opposite trend. (C) Clinical correspondence categorized by ILAE scores followed an overall similar trend 
with decreasing agreement (and increasing disagreement) as ILAE score increased.
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accurate for short snapshots and another for long snapshots. This 
is an important next step to pursue.

Validation of any iEEG marker remains challenging, because the 
EZ is a theoretical concept that cannot be directly measured,8 and 
thus no ground truth of its exact location exists. Instead, the best 
estimate that can be obtained is retrospectively, by assuming the 
EZ was included in the treated regions if surgical treatment renders 
the patient seizure free. Although the EZ hypothesis and treated 
areas may not always overlap completely, especially in patients 
treated with responsive neurostimulation, we defined the CA-EZ 
based on the presurgical EZ hypothesis and not the treated areas 
for two reasons. First, postoperative MRI data were not available 
for research purposes from all centres, and thus we were unable 
to confirm the precise locations of treated areas in some patients. 
Second, we envision the tool as an assistive computational tool to 
help clinicians form their EZ localization hypothesis. As such, the 
tool is designed to provide an additional source of information as 
they look for concordance with all other data regarding the location 
of the EZ. However, we note that generally the CA-EZ and treated 
areas greatly overlap, because surgical treatment is based on the 
CA-EZ, with small variations. Thus, we do not expect the definition 
of the EZ to bias the metrics used to evaluate the performance of the 
source-sink algorithm.

Because of the spatial resolution of the iEEG contacts, the DNMs 
cannot distinguish between excitatory and inhibitory connections, 
and thus the only information we can glean from the models is the 
amount of influence between any two nodes in the network. The 
high predictive performance of the SSMs does, however, suggest 
that the sources are likely dominated by inhibitory influence, con
sistent with the source-sink hypothesis. To understand the excita
tory or inhibitory nature of the connections, future work may entail 
complementing the iEEG data with interictal functional MRI 
(rs-fMRI), which has a poorer temporal resolution, but generally a 
higher spatial resolution compared with iEEG.113 Thus, combining 
iEEG and rs-fMRI could provide a better understanding of the direc
tionality of the network connections.114

In patients with electrodes targeting the hippocampal region, 
the hippocampal contacts were frequently identified as top sinks 
in the iEEG network. The hippocampus is a highly connected struc
ture,78,115 and studies of mesial temporal lobe epilepsy (MTLE) have 
demonstrated the existence of strong connections within the hip
pocampal network in both epileptogenic as well as 
non-epileptogenic hippocampi.78,116,117 As such, the hippocampus 
is a structure that is highly influenced by other regions and by its 
nature acts as a sink in the brain network regardless of its epilepto
genicity. Moreover, we found that in MTLE patients, contacts re
cording from the contralateral hippocampus commonly exhibited 
a stronger sink-like behaviour than the epileptogenic hippocam
pus. This connectivity asymmetry across hemispheres is in line 
with findings of other studies, which have demonstrated a de
creased functional connectivity within the epileptogenic hippo
campal networks with a concurrent increased connectivity in 
contralateral hippocampal pathways, possibly reflecting compen
satory mechanisms with strengthening of alternative path
ways.78,118–120 To that end, the connectivity patterns and sink-like 
behaviour of the hippocampus need to be taken into consideration 
as results of the source-sink analysis are reviewed and interpreted. 
Although the tool performs well with the hippocampal electrodes 
included in the datasets, as reflected by our results, there might 
be cases where these electrodes could be removed (e.g. hippocampi 
were sampled but were not suspected to be involved in seizure on
set). Our preliminary testing has shown that inclusion or removal of 

hippocampal electrodes does not alter the source-sink behaviour of 
other contacts in the iEEG network and thus, a future augmentation 
of the tool could include an option to remove these electrodes be
fore visual interpretation of the source-sink results is performed 
by clinicians.

Finally, the algorithm was developed and validated on adult pa
tients only. Although we expect the results to hold in the paediatric 
population, an important next step would be a robust evaluation of 
the SSMs on interictal iEEG data from a large population of children 
with drug-resistant epilepsy.

In conclusion, our results suggest that the SSMs, metrics entire
ly based on the properties of the iEEG network at rest, capture the 
characteristics of the regions responsible for seizure initiation. 
The SSMs could significantly improve surgical outcomes by in
creasing the precision of EZ localization.
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