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Amorphous materials have no long-range order in
their atomic structure. This makes much of the
formalism for the study of crystalline materials
irrelevant, and so elucidating their structure and
properties is challenging. The use of computational
methods is a powerful complement to experimental
studies, and in this paper we review the use of high-
performance computing methods in the simulation of
amorphous materials. Five case studies are presented
to showcase the wide range of materials and
computational methods available to practitioners in
this field.

This article is part of a discussion meeting issue
‘Supercomputing simulations of advanced materials’.

1. Introduction to amorphous materials
A full description of the structure and properties
of amorphous materials is beyond the scope of this
paper, but see e.g. [1,2] for more discussion. We
will use the definition that an amorphous material is
one which has no long-range structural order. This
lack of order has important consequences: without
long-range order, the material has no unit cell, no
reciprocal lattice, no Bragg peaks in its diffraction
pattern. A substantial part of the formalism used to
study more ordered, crystalline materials is no use.
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The biggest class of amorphous materials are glasses, and the words ‘glass’ and ‘amorphous
material’ are often used synonymously, although this is not quite correct, as there are materials
which are structurally amorphous (such as amorphous silicon (a-Si)) which do not undergo a
glass transition.

Amorphous materials are disordered, but their structure is not random, and is still governed
by the physics and chemistry present in the crystalline counterparts. It is common, for example,
for the nearest-neighbour bond lengths to be similar in amorphous and crystalline phases of the
same material, but for more disorder to arise in the distribution of bond angles, and at larger
length scales.

Glasses are often described by the ‘continuous random network’ model [3], first formulated
by Zachariasen. His rules for glass formation for oxide glasses state that the cations must have
low coordination numbers (typically 3 or 4), sitting at the centre of polyhedra with the negatively
charged oxygen anions at the corners. No oxygen atom can be bound to more than two cations,
and those which are bound to two are known as bridging oxygen (BO) atoms, while those that
are bound to less than two are known as non-bridging oxygen (NBO) atoms. The number n in the
Qn distribution refers to the number of BO atoms bound to a glass-forming cation (also known as
a network former, examples including Si, P and B), and the network connectivity (NC) of a glass
is the average value of n.

Oxides which cannot form glasses on their own, for example Na2O and CaO, can be a
component of glassy systems, but these cations violate the rule of low coordination number so
do not contribute to the network directly, and are almost completely surrounded by NBO atoms;
they are known as network modifiers, and can be distributed homogeneously in the glass, but
can also cluster, leading to a material with different properties in different regions [4].

We can draw a distinction between short-range order (SRO) and medium-range order (MRO)
[1]. There is no sharp dividing line, but broadly SRO is the order present in the first one or two
nearest-neighbour distances, and MRO is the order at distances of approximately 2–20 nearest-
neighbour distances. It is very common for an amorphous material to have strong SRO in the
form of narrow distributions of nearest-neighbour bond lengths and angles, but the amount of
MRO varies by material much more.

A very common way to prepare glasses experimentally is through the ‘melt-quench’ method
[1]. The components of the glass are mixed together, and heated to a temperature above the
melting point of the composition. The mixture is then cooled quickly and the material settles into
a disordered (amorphous) solid state. To make a glass in this way, the cooling must occur quickly
enough that the material cannot find its lower-energy crystalline state. The ease with which it can
do this varies between materials.

Other methods of making a glass include the sol-gel method [5], in which the glasses are built
up from smaller molecules, which condense together to form a porous structure, often containing
substantial amounts of water. Crystalline materials can also be made amorphous through the
application of pressure [6], or through bombardment by radiation.

2. Molecular dynamics simulations of amorphous materials
To simulate amorphous materials, the most common method is to mimic the experimental
‘melt-quench’ preparation, with a molecular dynamics (MD) simulation [7]. In MD simulations,
the positions of the atoms are individually defined, and at each time step, a computation of
the interatomic forces is made. The atomic positions are updated by F = ma, where F is the
atomic force on an atom of mass m, which subjects it to an acceleration a, before computing
the interatomic forces in their new positions, which starts the next time step. By starting this
simulation at a temperature above the melting point Tm, and cooling it down through the
glass transition temperature Tg to the temperature of interest (typically room temperature), an
approximation to the experimental ‘melt-quench’ approach can be achieved.
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The success or otherwise of this approach is strongly dependent on how well the interatomic
forces are modelled, and there are several ways of doing this. The most accurate methods with
which one could plausibly run an MD simulation are those methods based on density-functional
theory (DFT) [8], in which the quantum-mechanical nature of the interatomic forces is explicitly
included. These simulations, although accurate, are very computationally expensive, and limited,
therefore, to small length- and timescales.

It is possible to approximate the interatomic forces through the generation of empirical
expressions, usually called potentials. These expressions are deliberately designed to be
computationally cheap to compute, at the expense of some accuracy, but they are, therefore,
accessible to larger length- and timescales than DFT simulations. As they do not involve
quantum-mechanical behaviour, they are often referred to as ‘classical’ potentials.

There is a hierarchy of potentials; as they become less complicated, they become less accurate,
but also less computationally expensive. The investigator must decide for themselves where in
the trade-off between accuracy and expense they need to be to extract the information they need
from the simulations. Probably the most complex classical potentials are the machine-learned
(ML) potentials [9], which do have an analytic form, albeit a very complicated one. Less complex
are potentials for metals, such as those based on the embedded-atom techniques [10,11], which
are explicitly many-body in forms. Non-metallic amorphous materials are often represented with
polarizable potentials [12,13], in which the oxide anions (and possibly others) are represented
as polarizable. It has been shown that the use of the shell model to incorporate polarizability
is vital to get the correct NC and Qn distribution which control the in vivo activity of bioactive
glasses, for example [14]. The simplest and cheapest potentials are rigid-ion, in which the atoms
are represented as simple points.

The scope of this review is limited to those simulations which require high-performance
computing (HPC) facilities to carry out, and I define this scope here. All but the very smallest
DFT-based MD simulations will require HPC facilities. Data from DFT, typically in the form of
energies, interatomic forces and stresses, are often used as a training set to fit classical potentials
of all types, in the hope of getting a potential which is computationally cheap to compute but very
accurate. In that sense, potential fitting is also dependent on HPC. As we go down the hierarchy
of potentials, it is easier to conduct the simulations on smaller computing facilities, but HPC
simulations are still required for large-scale simulations, as we will see.

3. Methodologies and computing observable quantities
As above, an amorphous material does not have any long-range structural order; therefore, it has
no unit cell. It is usual, therefore, to begin the simulation with a cell containing the appropriate
amount of atoms at some experimental density, above the melting temperature. The atoms are
typically randomly arranged, usually with a constraint that they not be too close (as in e.g. [15]), to
prevent unphysical configurations which might crash the simulation at the start. Melting from the
crystal structure directly can also be done, but this can lead to unphysical remnants of the crystal
structure still present in the glass. The cell is usually subject to periodic boundary conditions. The
lack of long-range order usually means an amorphous material is isotropic, so for computational
convenience, the simulation cell is often cubic.

The simulation cell is equilibrated at this high temperature, using either NPT or NVT
ensembles, and then cooled through a series of temperatures until the solid state is formed.

The cooling rate is a well-known problem in the simulation of glasses, either DFT or classically.
The cooling rate during an experimental quench of a glass depends on the material used,
but would typically be approximately 1–1000 K s−1 for oxide glasses, and perhaps as high as
106 K s−1 for metallic glasses. This is substantially slower than typical cooling rates obtained
during simulations, for which 1011 K s−1 would be a good cooling rate for a classical simulation
[16], and for which DFT simulations hover around 1013 K s−1 [17]. There is evidence that at least
the short-range structure of an amorphous material is well converged at cooling rates as high as
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1012 K s−1 [18,19], but this is typically slower than cooling rates achieved in DFT simulation, and
the medium-range structure of glass may need slower cooling rates still [20].

Mixed approaches, e.g. using classical MD to perform the quenching part of the simulation
before swapping to DFT for the conditions of interest, have been used with some success.
Caution must be employed, however, as the system will solidify as it goes through Tg with the
structure dependent on the potential being used at that time. This structure will be ‘baked in’
to the simulation as the simulation is too short to allow for large-scale rearrangements at low
temperature, and if this structure is less accurate, this lack of accuracy will also occur in the
room temperature simulations.

Thapa & Drabold [21] identify four potential problems with DFT simulations of glasses,
including the cooling rate. The other three are their small size, the effects of PBCs, and whether it
is appropriate to use only the Γ point of the Brillouin zone for computations. There is little that
can be done about any of these last three, short of using more computational resources.

The only way to verify a computer simulation of any material is by comparison to
data obtained experimentally. In amorphous materials, the two most common experimental
techniques by which this is done are diffraction (either X-ray or neutron), and solid-state nuclear
magnetic resonance (NMR) measurements.

The positions of all the atoms are known at all times in simulation, so the pair-distribution
function g(r) or the diffraction pattern S(k) (which are related to each other via a Fourier transform)
can be computed and directly compared; a quantitative value on how close the agreement
is can be obtained through computing the Rx parameter [22]. From simulation, it is easy to
decompose these into partial functions, related to two species in a multicomponent glass, and
this can be compared with neutron diffraction spectra obtained through e.g. isotopic substitution
experiments [23]. Such approaches have led to elucidating the distances over which chemical
ordering can be found in glass, in some cases many tens of Angstroms [24]. Comparison with
solid-state NMR spectra is also very useful, and this is discussed in one of the examples below.

It is also straightforward to compute, from simulation trajectories, structural properties
which give insight into the simulation, but which are challenging or impossible to access from
experiment. These include bond-angle distributions (e.g. [25]), and topological properties such as
the distribution of ring sizes.

Owing to their structural disorder, amorphous materials often have lower conductivities than
their crystalline counterparts. Amorphous metals are often electrically conductive, but other
amorphous materials, e.g. oxides, are usually insulators or semiconductors. The electronic density
of states can be computed down to the level of orbitals [26], as for crystalline materials, and
the computation of the electronic structure has the same advantages and disadvantages, e.g. the
known effect of different functionals on the value of the band gap.

The use of PBCs allows for the study of bulk glasses, but one can also turn off PBCs in one
direction to allow for the study of the surface of glasses, or the glass interaction with, for example,
water or biomolecules [27]. Often the surrounding environment changes the surface chemistry of
the glass, for example, by hydroxylating dangling bonds on a silica surface [28].

4. Applications
In this section, I describe some specific studies where the use of HPC has illuminated some aspect
of the study of amorphous materials. I make no pretence that this section includes every piece of
work in the field, and I have chosen these examples based on two criteria: (i) they are active fields
of research at the time of writing and (ii) taken as a whole, the examples illuminate the broad
range of amorphous materials and HPC methods being studied and used.

(a) Charge trapping in amorphous oxides
The use of thin films of amorphous oxides is common across a very wide range of devices,
including solar cells, superconductors, transistors and photocatalysts, among others [29].
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These films can be polycrystalline, in which case understanding the structure of the grain
boundaries is crucial to understand the material’s behaviour [29], or they can be amorphous
[30]. In both cases, the electronic properties are quite different to that of the bulk material,
and can be very difficult to disentangle by experiment; computer simulation has played a
vital role.

The study of charge trapping, where an electron or hole is localized to a region of a material,
typically surrounding a defect in the material structure, presents interesting methodological
challenges for the simulation of amorphous materials. Mora-Fonz et al. [31] state that ‘accurate
prediction of polaron states is challenging due to the self-interaction error inherent in DFT’. It
is usual to use hybrid functionals, in which an amount of Hartree–Fock exchange is combined
with another exchange–correlation functional. The use of hybrid functionals is computationally
demanding, and so it would be prohibitively expensive to use them throughout the full
MD trajectory, especially if multiple simulations are required to obtain accurate statistics.
The approach adopted is to run an ensemble of simulations using classical MD and a full
melt-quench trajectory, followed by relaxation with a hybrid functional (sometimes preceded
by a relaxation with a non-hybrid functional) to give accurate electronic properties. This
has been successfully applied to amorphous SiO2 [32], TiO2, ZnO [33], Sm2O3 [34], Al2O3
[35] and HfO2 [36,37], to compute e.g. defect formation energies, and activation energies
for diffusion. This is a case where mixed simulation methods are being used successfully,
presumably because there is little dependence of the local energies on the medium-range
structure.

Strand et al. [30] emphasize that comparison with experimental results is very important, not
just because of the difficulty of correctly simulating electronic structures as discussed above, but
also because the disordered amorphous structure allows for a variety of atomic environments.
One constant seems to be that electrons and holes are more deeply trapped in amorphous films
than in crystalline ones [30].

(b) Machine-learned interatomic potentials
In recent years, the development of ML potentials has come to the fore. This refers to the use of
ML techniques to fit, for example, energies, interatomic forces and stresses calculated from DFT
simulations to a ML interatomic potential. The exact functional form of this potential will be very
complicated, but should be able to be an effective approximator to any realistic dependence.

The fitting of the potentials can be done in a variety of ways which are generally applicable
across many types of materials. One popular method in amorphous materials is the Gaussian
approximation potential (GAP) method, the first applications of which were to crystalline carbon
(as diamond), silicon and iron [38].

The first application of these potentials to amorphous materials was to amorphous (and
liquid) carbon [39]. The ML potential was seen to outperform other classical non-ML potentials,
particularly at reproducing the proportions of sp2 and sp3 carbon atoms as a function of density,
where the results were comparable to DFT and certainly superior to less advanced potentials (see
figure 1). The same potential was subsequently applied to studying the deposition of tetrahedral
(i.e. sp3) amorphous carbon [40], at a range of different deposition energies [41]. An improved
potential was subsequently developed by the same investigators [42,43].

The MRO in a-Si is shown experimentally by the presence of a first sharp diffraction peak
(FSDP) in the diffraction pattern, a characteristic sign of MRO and one which is often difficult
to reproduce in computer modelling. An ML potential was able to generate a-Si structures
from a melt-quench trajectory at slower cooling rates than DFT simulations, with structures and
properties in good agreement with experiment, including the height of the FSDP [44], allowing
for thorough analysis of individual atomic environments and energies [45] and elucidating the
structural and electronic transitions that occur as amorphous silicon is put under pressure [46].
The FSDP present in amorphous phosphorus (a-P) is also reproduced by an ML potential fitted to
that material [47,48].
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Figure 1. Count of sp3 (fourfold coordinated) carbon atoms in quenched a-C structures as a function of density. Ten independent
melt-quench cycles were performed at each density for the empirical and GAP models; three independent ones were done for
DFT. Error bars represent standard deviations. Lines between data points are only guides to the eye. Reprinted figure from [39].
Copyright (2017) by the American Physical Society. (Online version in colour.)

Other than the amorphous phases of single elements, ML potentials have also been applied to
phase-change materials (PCM), which are a sub-group of chalcogenide glasses, which crystallise
very quickly, typically on the scale accessible even to DFT MD simulations, and reversibly, with
large property differences between the amorphous and crystalline states [49]. An ML potential has
been applied to the prototypic PCM, Ge2Sb2Te5 [50], allowing simulations of many thousands of
atoms, much bigger than those performed by previous DFT work [49], and revealing more details
about the MRO on the length scales at which the crystallization takes place, and the precursors to
this crystallization.

Although ML potentials have had some notable successes, enthusiasm for them must
be tempered, at least for the moment. It is important that the training set contains the
appropriate inputs, as ML potentials, as with all fitting methods, are more likely to
fail when extrapolated to structural configurations which do not appear in the training
set [51].

The materials studied above are either single elements, or comprise elements of similar
electronegativities. This means that the bonding is essentially completely covalent, and the
contribution of long-range electrostatic forces is negligible. The fitting of these potentials is
usually done to data taken at the short range (e.g. neighbours and nearest neighbours in the
case of the smooth overlap of atomic positions kernel, as used in the GAP method [45]) and
long-range forces are neglected. As these forces are not in the training set to fit the potential, the
final potential is not necessarily able to represent them well. This presents a problem for a great
many amorphous materials, e.g. most oxides, nitrides and sulfides, as ionic forces play a large
part in their structure. These forces are given by Coulomb’s law, in which the force due to two
charges drops off as 1/r, where r is the interatomic distance, which can lead to extended chemical
order over many tens of Angstroms [24], and which is neglected by the current methods of fitting
ML potentials. This can be most clearly seen in a recent work [52] on fitting an ML potential to
the prototypic glass-former SiO2, in which the properties of the various crystalline phases are
well reproduced, but the FSDP in amorphous SiO2 is not. This problem does not arise for all
amorphous oxides, however, as the structures of amorphous HfO2 [53] and TiO2 [54], including
the FSDP, are well represented by ML potentials.
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(a)

(b)

Figure 2. Positions of all newly created three coordinated Si–O atoms inside the simulation cell for (a) crystalline and
(b) amorphous zircon after six overlapping collision cascades. Reprinted from [56] under the terms of the Creative Commons
Attribution 4.0 licence. (Online version in colour.)

(c) Radiation damage and very large simulations
One well-known application of glass is as a long-term storage material for nuclear waste. Nuclear
waste remains radioactive over very long timescales (greater than 105 years) and anything in
which the waste is stored will be continuously bombarded by radiation for this length of time and
must remain stable under this bombardment to be a viable storage material. Amorphous materials
are good candidates for long-term storage because their disordered structure is thought to be less
affected by high-energy radiation than crystals; indeed, the effect of radioactive bombardment on
crystals is often to create structural defects and ‘amorphize’ the material.

Computer simulation can be used to study the effect of radioactive bombardment on glasses,
although there are two methodological challenges. Firstly, due to the very high energies of the
recoil atom following decay, a very large simulation cell is needed to capture its trajectory fully,
typically 108 atoms or larger. This is computationally very expensive, far beyond the reach of DFT,
and so classical empirical potentials are needed. Secondly, the energy of the recoil atom is so high
that, in its vicinity, the interatomic distances can become very small, far smaller than the distances
at which the interatomic potential is fitted, or works well. So, the conventional potential usually
has to be coupled to a potential accurate at very short range, such as the ZBL potential [55].

These techniques have recently been applied to understanding the structure of amorphous
zircon (ZrSiO4) under radioactive bombardment, with simulation cells containing more than ten
million atoms [56,57]. It is clear from this work that the amorphous state spreads the damage
due to the bombardment over a larger number of atoms than the crystalline state (figure 2), and
that this is not visible from experimental quantities like the pair-distribution function g(r) and
more detailed analysis of coordination statistics are needed to characterize the damage fully. The
structure continued to evolve during the trajectory of the simulation, and the final structure—
and ultimately the question of whether or not these materials are useful to encapsulate nuclear
waste—is still open.

(d) Clustering in phosphate glass: a cautionary tale
It is also instructive to consider where DFT simulations can lead us astray, and here I highlight an
example from my own work.
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Certain compositions of glass are bioactive, that is, they undergo chemical reactions when
implanted into the body. The most well-studied of these glasses is the silicate-based 45S5 Bioglass
[58] which undergoes a series of reactions after implantation and subsequently bonds chemically
to hard and soft tissues, including human bone [59,60]. Phosphate glasses are also bioactive,
and degrade quickly, making them potentially useful as drug delivery materials and in other
tissue engineering applications [61,62]. Both silicate- and phosphate-based bioactive glasses can
be synthesized containing ions which are useful therapeutically [62,63]. The inclusion of these
ions changes the structure and properties of the glass, including the reactions it undergoes after
implantation, and there has been considerable effort in attempting to uncover how the inclusion
of these ions changes the bioactivity; much of this effort has been computational [5,64–66], and
has included the use of HPC computing through DFT-based MD simulations [17,67–73].

When therapeutic ions are included in the glass, there is no requirement that they are
distributed uniformly throughout the material, and atomic clustering is thought to have
deleterious effects on the bioactivity [64]. Fluorine has applications in dentistry, and when
included in bioactive silicate-based glasses, its preference to bond to network-modifying ions (e.g.
sodium and calcium) leads it to cluster in regions which subsequently become rich in fluoride
ions, and also leave regions which are rich in network-forming ions (silicate in this case), which
may affect the bioactivity [74,75]. Although the models produced by DFT simulations are too
small to see clustering directly, the local bonding which leads to clustering was clear from DFT
simulations of these glasses [76,77].

It was natural to extend this work to phosphate glasses, and DFT simulations of small (approx.
200–300 atoms) models were performed [78]. By contrast to silicate glasses, it was impossible,
when looking at the local environments of the phosphorus atoms, to discern any preferential
bonding to network modifiers or otherwise, and the conclusion was drawn that fluoridated
phosphate glasses would not suffer any deleterious changes to their bioactivity due to clustering.
Later work used empirical potentials which allowed for larger models and showed the opposite to
be true: just as for silicate glasses, fluoridated phosphate glasses show clear clustering of fluoride
ions present in the glass [79] (figure 3). It seems likely that a combination of the fast cooling rate
and the small size of the models in the DFT simulations led us initially to the wrong conclusions.

(e) Combined simulation and NMR
Solid-state NMR experiments are a powerful technique toward understanding the structure of
glass, and can be particularly useful when combined with complementary computer simulations.
It is of course possible to conduct separate NMR experiments and computer simulations, and
analyse the results jointly, and this has been effective at unravelling even complicated glass
structure (as an example, see [80–82] investigating different connectivities and clustering in a
multicomponent glass), but this can usually be done with classical potentials and so does not
typically require HPC resources, thus falling outside the scope of this review.

Direct computation of the NMR spectrum can be done using the GIPAW method [83], which
rapidly became an important tool for the interpretation of NMR spectra [84], including that of
oxide glasses of several types: silicates, borates, germanates, phosphates and aluminates [85–87].
Different values of n in the Qn distribution can be resolved which provides vital information
about the connectivity of the glass, and the use of two-dimensional spectra can provide even more
precise detail about the interconnectivity of specific different pairs of ions, e.g. the differences
between Si–O–Si and Si–O–Na [86] (figure 4).

As above, a note of caution must be sounded: some models investigated in this way
are constructed with classical potentials during the melt-quench, and then relaxed with DFT
afterwards. This leads to models which have medium-range structural properties, for example,
NC, which are given by the classical potentials. In other words, while the DFT relaxation should
lead to accurate structures at the short range, it does not correct any inaccuracies due to the
classical potential at medium-range length scales. The overall electronic structures, and hence
NMR spectra, might not, therefore, be correct.
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Figure 3. View of a representative fluoridated phosphate glass composition (top) with shrunk oxygen and phosphorus atoms
and clusters highlighted (bottom)at 300 K. The colours are: phosphorus (green), oxygen (red), calcium(blue) andfluorine (pink).
Reprinted from [79] under the terms of the Creative Commons Attribution 4.0 licence. (Online version in colour.)

5. Conclusion
The computational study of amorphous materials is extremely important in helping to
understand their structure and properties. These models are typically prepared by mimicking
the experimental melt-quench procedure in the computer through a long-time MD simulation.
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There are a variety of choices about how the interatomic forces can be represented, and there is a
trade-off between the accuracy of this representation, and computational time and expense.

The simulations which require HPC resources are typically those using either very accurate
simulations, usually DFT, or those looking at very large models. One example of a very large
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model is the use of MD to investigate radiation damage in zircon glass, a possible material for
nuclear waste encapsulation. This glass seems to be more able to absorb radiation than crystalline
materials, but the simulations are still uncertain as to its ultimate fate.

The extent to which amorphous materials can trap holes and electrons has been extensively
investigated, as many devices contain a thin layer of amorphous oxide, and careful simulation
reveals that the traps are often deeper in amorphous materials than in crystalline ones. Another
application of glass is in drug delivery, and careful re-evaluation of existing DFT simulations of
fluoridated phosphate glass with larger models corrected previous errors and showed that these
materials might not be as suitable for implantation as first thought.

Methodological improvements in the simulation of amorphous materials is a very active field
of research. The development of interatomic potentials fitted by machine learning could offer
a very promising route to cheaper but accurate simulations; but these are not yet completely
applicable to materials with long-range ionic bonding, which includes almost all oxides. Extensive
links between simulation and NMR spectra are an excellent example of using complementary
experimental and simulation techniques to understand the behaviour of specific materials.
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