Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within *Bacillus anthracis*

P. KEIM,¹* L. B. PRICE,¹ A. M. KLEVYTSKA,¹ K. L. SMITH,^{1,2} J. M. SCHUPP,¹ R. OKINAKA,³ P. J. JACKSON,³ and M. E. HUGH-JONES²

Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona 86011-5640¹; Department of Epidemiology and Community Health, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803-8404²; and Environmental Molecular Biology Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545³

Received 6 December 1999/Accepted 24 February 2000

Bacillus anthracis is one of the most genetically homogeneous pathogens described, making strain discrimination particularly difficult. In this paper, we present a novel molecular typing system based on rapidly evolving variable-number tandem repeat (VNTR) loci. Multiple-locus VNTR analysis (MLVA) uses the combined power of multiple alleles at several marker loci. In our system, fluorescently labeled PCR primers are used to produce PCR amplification products from eight VNTR regions in the *B. anthracis* genome. These are detected and their sizes are determined using an ABI377 automated DNA sequencer. Five of these eight loci were discovered by sequence characterization of molecular markers ($vrrC_1$, $vrrC_2$, $vrrB_1$, $vrrB_2$, and CG3), two were discovered by searching complete plasmid nucleotide sequences (pXO1-aat and pXO2-at), and one was known previously (vrrA). MLVA characterization of 426 *B. anthracis* isolates identified 89 distinct genotypes. VNTR markers frequently identified multiple alleles (from two to nine), with Nei's diversity values between 0.3 and 0.8. Unweighted pair-group method arithmetic average cluster analysis identified six genetically distinct groups that appear to be derived from clones. Some of these clones show worldwide distribution, while others are restricted to particular geographic regions. Human commerce doubtlessly has contributed to the dispersal of particular clones in ancient and modern times.

2928

Anthrax is a disease that has plagued mankind for millennia. The earliest suspected reports occur in Sanskrit manuscripts and in the biblical book of Exodus (4). More recently, anthrax played an important role in the advancement of modern microbiology with the development of Koch's postulates and of the first vaccine using an attenuated bacterial strain (12, 16). While anthrax currently affects mostly livestock and wildlife around the world, it can and does kill humans (4). Indeed, the great current interest in anthrax is due to its potential as a bioterrorism and biowarfare agent (3, 4). Bacillus anthracis spores can remain stable for decades and can be readily packaged into biological weapons (3). This same longevity may greatly influence the ecology and evolution of this pathogen. The initiating spores for an anthrax outbreak may emanate from a single long-deceased victim. This resting stage probably greatly reduces the rate of evolutionary change, and this may contribute to the extremely homogeneous nature of B. anthracis (10).

Numerous studies have demonstrated the lack of molecular polymorphism within *B. anthracis* (6, 7, 10). Previous analyses using amplified fragment length polymorphisms (AFLP) revealed only 30 differences among >1,000 DNA fragments (10). In addition, many of these AFLP markers have low diversity values and little discriminatory power. Comparative analysis of the protective antigen gene sequence in 25 diverse strains found only five differences across 2,500 nucleotides (18). An exception to this trend was revealed by the work of Andersen et al. (1), who sequenced a previously identified arbitrarily primed PCR marker (7). They found the *vrrA* open reading frame (ORF), which contained a variable-number tandem repeat (VNTR) sequence. In contrast to the extremely monomorphic nature of the genome, five different allelic states were observed in the *vrrA* VNTR among diverse strains (1, 7, 8). This demonstrated that even highly similar *B. anthracis* strains could be differentiated if polymorphic genomic regions could be identified and analyzed. Such discrimination is essential if molecular epidemiology is to aid in the understanding and control of anthrax.

Molecular typing of pathogens has long been a part of pathogen identification and control and has recently been accelerating with new technologies. Traditionally, serotyping has been extremely valuable and has often been able to identify important cellular components associated with virulence. While serotyping will continue to be an important tool, it often has limited discriminatory power, resolving pathogens into only a few types. Multilocus enzyme electrophoresis provides a multiple-factor genetic analysis, with as many as 40 genetic loci analyzed (2). Moreover, enzyme loci frequently have more than two alleles, providing increased genetic resolution per locus. However, DNA typing is more rapid and less expensive and has an even greater capacity for genetic dissection of bacterial pathogens. It is limited only by the genome size and the technology. Because most microbial genomes consist of millions of nucleotides, technology is invariably limiting. Pulsed-field gel electrophoresis (PFGE) can resolve very large and sometimes polymorphic DNA restriction fragments. PFGE typing has proven generally applicable to many pathogens and has notable successes in epidemiological tracking (14). However, this is a cumbersome technology that cannot easily handle very large sample sets. Moreover, PFGE data sets are not easily standardized for transfer throughout the public health community. Ribotyping uses restriction fragment length polymorphisms associated with rRNA genes (17) and, again, is generally applicable to all bacteria. However, it is limited by the number of ribosomal loci in the genome. Such methods

^{*} Corresponding author. Mailing address: Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640. Phone: (520) 523-1078. Fax: (520) 523-0639. E-mail: Paul.Keim@nau .edu.

often do not distinguish among closely related species, and many strains within a species show identical patterns (e.g., *Bacillus cereus* and *B. anthracis*).

Recently, PCR-based methods have become increasingly important to molecular typing efforts. These approaches include AFLPs, repetitive element polymorphisms-PCR, randomly amplified polymorphic DNA, and arbitrarily primed PCR (24, 26, 27). The power of PCR-based methods is the ease with which they can be applied to many bacterial pathogens and their multilocus discrimination. These methods have proven valuable for genetic dissection of pathogens for which other approaches have failed. However, a limitation of many PCRbased approaches is the biallelic (binary) nature of their data, frequently, the presence or absence of a marker fragment. Finally, comparative gene sequencing is becoming feasible for strain characterization and can be performed at multiple loci. In its best applications, multiple-locus sequence typing (MLST) can provide data for multiple alleles (haplotypes) spread across dispersed genomic locations (13). Nucleotide data are well understood, standardized into four defined categories, and easily analyzed using phylogenetic approaches. If sufficient nucleotide diversity is present, MLST can distinguish among both species and strains. While routine clinical MLST is still unfeasible, hybridization arrays (e.g., chip technology) could make single-nucleotide polymorphisms a mainstream approach to pathogen typing in the future (22).

One of the most recent developments in molecular typing involves the analysis of VNTR sequences (5, 11, 23). Short nucleotide sequences that are repeated multiple times often vary in copy number, creating length polymorphisms that can be detected easily by PCR using flanking primers. VNTRs appear to contain greater diversity and, hence, greater discriminatory capacity than any other type of molecular typing system (19, 23). Many bacteria have VNTRs, although development of the PCR primers for these markers is specific to each pathogen. In this report, we describe a multiple-locus VNTR analysis (MLVA) system that uses eight marker loci to discriminate among different B. anthracis isolates. Five of these markers $(vrrC_1, vrrC_2, vrrB_1, vrrB_2, and CG3)$ were identified by the nucleotide sequence characterization of B. anthracis AFLP markers (10). One marker (vrrA) was identified previously (1), and two were identified by analysis of the pXO1 and pXO2 plasmid sequences (pXO1-aat and pXO2-at) (14). Because of the nearly monomorphic molecular nature of B. anthracis, MLVA may be the only reasonable method with which to study the diversity, evolution, and molecular epidemiology of this pathogen. Our analysis of a worldwide B. anthracis collection reveals 89 distinct MLVA genotypes that cluster into about six major genetic groups that represent worldwide clones.

MATERIALS AND METHODS

DNA preparation. In this study, we have analyzed 426 *B. anthracis* isolates from around the world (Table 1). These samples include previously described samples (8, 10) plus more than 300 additional clinical and environmental isolates (Table 1). DNA from each isolate was obtained by either large-batch procedures (8, 10) or a greatly simplified approach requiring only heat lysis of a single colony. In this abbreviated protocol, B. anthracis cells were streaked onto blood agar plates and then incubated at 37°C overnight. A single colony from each plate was transferred into a microcentrifuge tube containing 200 µl of TE (Tris-HCl [pH 8.0], 1.0 mM EDTA). The colony was resuspended by vortexing or repetitive pipetting. The cellular suspension was heated to 95°C for 20 min and then cooled to room temperature. Cellular debris was removed by centrifugation at 15,000 imesg for 1 min. Centrifugation was conducted inside a biosafety cabinet to contain any aerosols. The supernatant was then transferred to a new tube for storage. One microliter of the lysate contains sufficient template to support a single PCR, which means that this procedure can supply template for 200 reactions. We periodically optimize our reactions by titrating the heat lysate template concentrations using serial dilutions. Results obtained using either DNA preparation protocol gave the same MLVA results. However, the heat lysis procedure is

TABLE 1. B. anthracis isolates

Continent	Country	No. of isolates	No. of genotypes
Africa	Mozambique (MOZ)	5	4
	Namibia (NAM)	23	7
	South Africa (SAF)	127	9
	Tanzania (TANZ)	5	1
	Zambia (ZAM)	17	2
	Zimbabwe (ZIM)	4	2
	Subtotal	181	18
Asia	China	7	5
	India	3	2
	Indonesia (INDO)	5	4
	Pakistan (PAK)	4	4
	S. Korea (KOR)	4	2
	Turkey (TURK)	41	12
	Subtotal	64	31
Australia		30	3
Europe	Croatia (CRO) France (FRA) Germany (GER) Hungary (HUN) Ireland (IRE) Italy Norway (NOR) Poland (POL) Slovakia (SLO) Spain (SPA) Switzerland (SWI) United Kingdom (UK) Subtotal	1 8 9 3 1 3 5 1 3 2 2 19 57	1 3 5 2 1 2 5 1 2 5 1 2 1 2 10 32
North America	Canada (CAN)	51	7
	Haiti	1	1
	United States (USA)	32	16
	Subtotal	84	22
South America	Argentina (ARG)	2	2
	Brazil (BRA)	1	1
	Subtotal	3	3
All		419	89

much more rapid and easily adapted to large-scale processing of samples and was the method used for most of the samples in this study.

MLVA PCR. MLVA reaction primers (Table 2) were designed to provide uniquely labeled or sized amplicons for every allele at the eight VNTR loci. PCR amplification of all eight VNTR loci was routinely accomplished using four reactions. Two of the amplicons (vrC_1 and vrC_2) are significantly larger than the others and, in addition, are amplified using partially complementary primers. Likewise, vrB_1 and vrB_2 are amplified using complementary primers. Limited unique sequences in these repeated regions necessitated the overlap of these primers and thus required these amplicons to be divided into separate PCRs. Large amplicons tend to be outcompeted by small amplicons and thus require separate PCRs. These restraints led to a four-reaction design in which vrB_1 is grouped with CG3 and vrA, vrB_2 is grouped with pXO1-aat and pXO2-at, vrC_1 is amplified alone, and vrC_2 is amplified alone. Reaction 1 contained 1× PCR buffer (20 mM Tris-HCl [pH 8.4], 50 mM KCl);

Reaction 1 contained 1× PCR buffer (20 mM Tris-HCl [pH 8.4], 50 mM KCl); 2 mM MgCl₂; the four deoxynucleoside triphosphates (dNTPs; 0.2 mM each); 0.04 U of Platinum *Taq* DNA polymerase (Gibco-Life Technologies) per μ l; 0.1 μ M CG3-F1 and CG3-R1; 0.2 μ M each *vrrA*-F1, *vrrA*-R1, *vrrB*₁-F1, and *vrrB*₁-R1; and 0.04 to 0.2 ng of template DNA per μ l or simply 1 μ l of the single-colony lysate.

Reaction 2 contained $1 \times$ PCR buffer; 4 mM MgCl₂; dNTPs (0.2 mM each); 0.04 U of Platinum *Taq* DNA polymerase per μ l; 0.4 μ M each *vrrB*₂-F1, *vrrB*₂-R1, pXO1-aat-F1, pXO1-aat-R1, pXO2-at-F1, and pXO2-at-R1; and 0.04 to 0.2 ng of template DNA per μ l or simply 1 μ l of the single-colony lysate.

Reaction 3 contained 1× PCR buffer; 2 mM MgCl₂; dNTPs (0.2 mM each); 0.04 U of Platinum *Taq* DNA polymerase per μ l; 0.2 μ M each *vrrC*₁-F1 and

TABLE 2. MLVA primers used to DNA type B. anthracis

Marker locus	Primers	Primer sequence	Dye label ^a	T_m (°C)
vrrA	<i>vrrA</i> -f1-fam	CAC AAC TAC CAC CGA TGG CAC A	Fam	71.0
	<i>vrrA</i> -r1	GCG CGT TTC GTT TGA TTC ATA C	None	69.7
vnB_1	<i>vrrB</i> ₁ -f1-fam	ATA GGT GGT TTT CCG CAA GTT ATT C	Fam	70.0
	<i>vrrB</i> ₁ -r1	GAT GAG TTT GAT AAA GAA TAG CCT GTG	None	69.0
vrrB ₂	<i>vrrB</i> ₂ -f1-fam	CAC AGG CTA TTC TTT ATC AAA CTC ATC	Fam	72.0
	<i>vrrB</i> ₂ -r1	CCC AAG GTG AAG ATT GTT GTT GA	None	68.8
$vrrC_1$	$vrrC_1$ -f1	GAA GCA AGA AAG TGA TGT AGT GGA C	None	66.8
	$vrrC_1$ -r1-fam	CAT TTC CTC AAG TGC TAC AGG TTC	Fam	67.5
$vrrC_2$	<i>VrrC</i> ₂ -f1-hex	CCA GAA GAA GTG GAA CCT GTA GCA C	Hex	70.9
	<i>vrrC</i> ₂ -r1	GTC TTT CCA TTA ATC GCG CTC TAT C	None	70.6
CG3	CG3-f1-ned	TGT CGT TTT ACT TCT CTC TCC AAT AC	Ned	66.2
	CG3-r1	AGT CAT TGT TCT GTA TAA AGG GCA T	None	66.2
pXO1-aat	pXO1-AAT-f3-fam	CAA TTT ATT AAC GAT CAG ATT AAG TTC A	Fam	66.3
	pXO1-AAT-r3	TCT AGA ATT AGT TGC TTC ATA ATG GC	None	66.7
pXO2-at	pXO2-AT-f1-hex	TCA TCC TCT TTT AAG TCT TGG GT	Hex	64.4
	pXO2-AT-r1	GTG TGA TGA ACT CCG ACG ACA	None	65.8

^a PE Biosystem's 5' fluorescent phosphoramidite dyes: 6-Fam, Hex, and Ned.

 $vrrC_1$ -R1; and 0.04 to 0.2 ng of template DNA per μ l or simply 1 μ l of the single colony lysate.

Reaction 4 contained $1 \times$ PCR buffer; 2 mM MgCl₂; dNTPs (0.2 mM each); 0.04 U of Platinum *Taq* DNA polymerase per μ l; 0.2 μ M each *vrrC*₂-F1 and *vrrC*₂-R1; and 0.04 to 0.2 ng of template DNA per μ l or simply 1 μ l of the single-colony lysate.

The PCR thermocycling program for all four reactions was identical. Once the reactions were assembled, they were raised to 94° C for 5 min to activate the DNA polymerase. Thereafter, each temperature cycle was 94° C for 20 s, 60° C for 20 s, and 65° C for 20 s. These three steps were repeated 34 times. The final step was at 65° C for 5 min.

Automated genotype analysis. The MLVA PCR products were electrophoretically analyzed with a Perkin-Elmer Applied Biosystems 377 automated fluorescent DNA sequencer (Fig. 1). The four reactions were mixed in equal amounts prior to electrophoretic analysis, which provides relatively equal fluorescent signal from each amplicon. Genescan and Genotyper software packages (Perkin-Elmer, ABI) were used to analyze the gel images. Custom macro programs (available upon request) associated with Genotyper allow the automated scoring of alleles.

The apparent electrophoretic size of DNA fragments is not always exactly the same as the size determined by DNA sequencing. This could be due to DNA conformational differences, 3' adenine addition by the polymerase, migrational deviations of the size standard, or mass asymmetry between the amplicon strands that affect the comparison with the single-stranded standards. We have determined the actual nucleotide sequence of most marker alleles by DNA sequencing and report these values in all cases. These differences are usually only one or two nucleotides, but we recommend the use of standard genotypes selected from Fig. 2 as references.

Data analysis. Only genotypes generating data from all eight markers were included in these analyses. About 5% of the samples examined were missing one or both virulence plasmids, which precludes complete genotyping with this MLVA system. This includes the commonly used vaccine strains that lack the pXO2 plasmid. These important strains are annotated on Fig. 2 next to their seven-marker genotypic matches. Analysis of the raw genotype scores was accomplished by using a phenetic approach, unweighted pair group method arithmetic average (UPGMA) cluster analysis (26). UPGMA cluster analysis was performed with PAUP 4.0 (20) with a simple matching coefficient to estimate genetic differences. Individual marker diversity (*D*) was calculated as equal to $1 - \sum (allele frequency)^2 (25)$ and based upon allele frequencies in the 89 distinct *B. anthracis* genotypes, not the complete 426-isolate collection.

RESULTS

MLVA. We have developed an MLVA approach for molecular typing of *B. anthracis* strains. The system presented here uses eight genetic loci that provide high levels of discrimination

among different isolates. These marker loci were identified by DNA sequencing of variable AFLP marker fragments (CG3, $vrrB_1$, $vrrB_2$, $vrrC_1$, and $vrrC_2$), examination of virulence plasmid sequences (pXO2-at and pXO1-aat), and from the previously described vrrA VNTR locus (1). Five of the eight MLVA markers (vrrA, $vrrB_1$, $vrrB_2$, $vrrC_1$, and $vrrC_2$) are found in ORFs and variation in repeat number does not affect the translational reading frame (data not shown). The pXO1 and pXO2 VNTR markers allow monitoring for the presence or absence of the plasmids as well as for plasmid-based variation. This plus-minus assay provides important information about virulence because the lack of either plasmid attenuates a *B. anthracis* strain (21). Phylogenetic comparison of nucleotide variation did not detect natural horizontal transfer among strains (18), suggesting that plasmid and chromosomal evolution in *B. anthracis* has been generally congruent.

While no effort was made to make the MLVA primers specific to *B. anthracis* templates, most sets will not support amplification from other bacterial species. A limited number of *B. cereus* and *Bacillus thuringiensis* strains have been examined using the standard reaction conditions; at most a couple, and frequently none, of the markers were amplified in reactions containing these templates (data not shown). The *vrrA* locus amplified most often in other species, but the resulting allele sizes did not correspond to any of the five alleles observed in *B. anthracis* isolates. These *Bacillus* species are the most closely related to *B. anthracis*. Therefore, this MLVA system represents a credible method of identifying *B. anthracis* as well as determining what strain type is present.

B. anthracis genotypes. We used MLVA to characterize 426 B. anthracis isolates from diverse geographic locations. This analysis divided them into 89 MLVA genotypes (Fig. 2). It is clear that multiple isolates from the same anthrax outbreak frequently have identical genotypes. This reduces the number of distinguishable isolates relative to the total number of samples. In addition, many genotypes are found at multiple locations, especially within a restricted geographical region. The number of distinct genotypes collected from particular coun-

FIG. 1. Electrophoretic analysis of MLVA fragments from different *B. anthracis* isolates. Fluorescent image of an ABI377 electrophoresis gel containing amplification products from 45 different *B. anthracis* isolates. All eight VNTR loci are present in each lane. Each marker allele is a unique size and color combination, allowing easy identification of similar-sized fragments from different alleles. The 48 isolates were chosen randomly from the worldwide diversity set shown in Table 1. Sizes are shown in bases.

tries is reported in Table 1. The distribution may be more a function of isolate availability for this study than intrinsic diversity within a limited geographic area, so it is difficult to draw conclusions from these numbers. However, multiple genotypes are observed in all regions for which a large collection of samples are available. The Australian collection is heavily biased by 28 samples from the short 1997 Victoria outbreak. All of these are one genotype. The restricted nature of the collection may therefore explain the lack of multiple genotypes discovered to date in Australia. **VNTR marker diversity.** The discriminatory power of each MLVA marker can be estimated by the number of alleles it detects and by its diversity. These two simple descriptive statistics were determined using only the 89 *B. anthracis* genotypes to minimize the effect of sampling on allele frequency (Table 3). The isolate collection is biased towards numerous samples from easily accessed *B. anthracis* collections. This could unduly influence allele frequencies. MLVA markers average over five alleles per locus, with a range of from two to nine alleles (Table 3). The diversity index (*D*) is based on the

4	Differences 2 0	GN	vrrA	vrrB1	vrrB ₂	vircy	vrrC2	CG3	pX01	pX02	Geo. Region
		336326326131 23456780	313 313 313 313 313 301 301 313 313	229 229 229 229 229 229 229 229 229 229	162 162 162 162 162 162 162 162	613 613 613 613 613 613 613 613	604 604 604 604 604 604 607 607	153 153 153 153 153 153 153 153	123 123 126 126 126 126 126 126 120	137 135 137 139 135 137 135 137 137	Italy USA CAN NGA BZ EUR USA Haiti CAN USA CAN CAN CAN
A1.a		¹ 1112321111 1123451111	313 313 313 313 313 325 325 325 325 325	229 229 229 229 229 229 229 229 229 229	171 171 153 162 162 162 162 162 162	613 613 613 613 613 613 613 613 613	604 604 604 604 604 604 604 604	153 153 153 153 153 153 153 153	126 132 129 132 132 132 132 132 129 123	137 137 137 141 141 139 137 135 137	USA TURK TURK China TURK China POL HUN NOR SLO HUN
		190 221 222 223 224 225 1 1 226 1 227 1 226 1 227 1	289 313 301 313 313 313 313 313 313 313	193 229 229 229 229 229 229 229 229 229 2	162 162 162 162 162 162 162 162	613 613 613 613 613 613 613 613	604 604 604 604 604 604 604	153 158 158 158 158 158 158 158	123 123 123 141 129 129 120 132 117	137 137 137 137 137 135 139 139 139	Italy TANZ UK UK UK UK USA ZAM NOR TURK
	Ē	29 1 30 14 31 1 32 4 33 1 34 1 35 22 36 4 37 2 38 1	313 313 313 313 313 313 313 313 313 313	229 229 229 229 229 229 229 229 229 229	162 162 162 162 162 162 162 162 162	613 613 613 613 613 613 613 613 613	532 532 532 532 532 532 532 532 532 532	158 158 158 158 158 158 158 158 158	132 123 123 123 123 123 132 132 132 132	137 135 137 139 141 139 141 145 143 155	ZAM NAM INDO Korea INDO TURK Korea TURK TURK NAM UK USA TURK TURK GER
A		39 2 40 13 42 1 42 2 44 3 45 7 45 3 45 1 46 3 47 1	313 313 301 313 313 313 313 289 313 313	229 229 229 229 229 229 229 229 229 229	162 162 162 162 162 162 162 162 162 162	613 613 502 613 613 613 613 613 613	532 532 532 532 532 532 532 532 532 532	158 158 158 158 158 158 158 158 158	132 132 132 135 126 129 129 135 126	147 139 141 141 141 141 141 141 141 149 149	SA NAM NAM MOZ ZIM TURK TURK TURK TURK NAM TURK SAF ARG USA (V770) ARG UK UK
A3.a		49 50 51 52 53 55 55 55 55 55 55 55 55 55 55 55	313 313 325 313 313 313 313 313 313 313	229 229 229 229 193 193 193 229 229	162 162 171 162 162 162 162 162 162	613 613 613 613 613 613 613 613 583	532 532 532 532 532 532 532 532 532 532	158 158 158 158 158 158 158 158 158	129 126 129 126 126 126 126 132 123	143 143 143 145 145 141 139 141 141	UK USA India India AUS NAM AUS NAM China USA Can
	3.b 	58 590 61 62 63 64 65 66 66 28 66 67 91	313 301 313 313 313 313 313 313 313 313	229 229 229 229 229 229 229 229 229 229	162 162 162 153 162 171 162 162 162	583 583 583 583 583 583 583 583 400 613	532 532 532 532 532 532 532 532 532 532	158 158 158 158 158 158 158 158	129 129 129 123 132 132 135 120 120	141 141 135 141 139 139 137 137	China (Sterne) GER GER (Sterne) USA UK (Ames) INDO INDO GER AUS SAF
		68 1 69 1 70 1 71 2 73 2 74 2 75 1 76 1 77 18	301 313 313 313 313 313 313 313 313 325 289	229 229 229 229 229 229 229 229 229 229	153 162 162 162 162 162 162 162 162 162	613 538 538 538 538 538 538 538 538 538 53	532 532 532 604 604 604 604 604 604 604	158 158 158 158 158 158 158 158 158 158	126 132 129 132 135 132 135 135 141 132	141 139 139 139 139 139 141 141 139 139	USA PAK NOR Ireland GER SWI China USA PAK GER SWI PAK UK SPA ZIM (Vollum)
B B1		78 3 79 5 80 3 81 6 82 1 83 2 84 1 85 1 86 1 87 27	301 301 301 301 301 301 301 301 301	229 220 256 256 256 256 184 256 256	153 162 171 171 171 171 171 171 171 171	538 583 583 583 583 583 583 583 583 583	604 532 532 532 532 532 532 532 532 532	158 158 158 158 158 158 158 158 158	132 129 123 123 123 123 123 123 120 120	139 135 137 139 143 137 141 139 137 141	NOR USA SLO FRA CRO FRA SAF ZIM MOZ SAF MOZ UK MOZ NOR SAF

number of alleles and the allele frequency. This provides a better measure of discriminatory power than allele number (25). MLVA markers have an average diversity of 0.54, with a range of 0.30 to 0.80. Note that $vrrB_1$ has the lowest diversity (0.30) in spite of having five alleles, whereas CG3 detects only two alleles but has a diversity index of 0.38. The two plasmid-based markers have the highest diversity and greatest number of alleles, perhaps due to the simple sequence nature of their repeats (Table 3).

While most of the *B. anthracis* allelic variation observed in this study is consistent with the repeat unit size, some alleles contain fractions of a repeat. The nucleotide structures found in *vrrA*, *vrrB*, and *vrrC* have evolved from simpler trinucleotide repeats, and remnants of these structures still exist within each repeat (1; unpublished data). No fractional-size alleles were observed for *vrrA* or *vrrB* among the different *B. anthracis* strains, but we did observe several for the *vrrC* markers. Nucleotide sequencing determined that these were due to insertion or deletion events within the subrepeats (see the *vrrC*₂ alleles in genotypes 8 and 9, Fig. 2).

B. anthracis genetic relationships. UPGMA cluster analysis reveals major genetic affiliations among the MLVA genotypes (Fig. 2). Six major clusters are apparent that may represent older clonal separations in the evolutionary history of this species. Similar major groups were identified by AFLP marker analysis (10), most of which were independent of the MLVA markers in this study.

The most obvious separation in the dendrogram is the split between the A and B genotypes (Fig. 2). The B cluster contains approximately 12% of the isolates and genotypes in this study. Cluster B is further subdivided into two groups, B1 and B2. Southern African isolates dominate (93%) group B1 and far outnumber the samples found in group B2. Only two genotypes are present in the B2 group. These are rare and collected exclusively in Europe. The B2 group is only tentatively associated with the B1 subgroup, as other analytical approaches (e.g., maximum parsimony) place B2 loosely with the A cluster (data not presented). All B genotypes are uncommon in much of the world, yet genotype 87 (Fig. 2) is an important contributor to the ongoing anthrax outbreak in Kruger National Park (K. L. Smith, V. DeVos, H. Bryden, M. E. Hugh-Jones, L. B. Price, A. Klevytska, D. T. Scholl, and P. Keim, unpublished data).

Members of the A cluster are found worldwide and can be subdivided into at least four groups (Fig. 2). Isolates in the A1 cluster are found throughout the world, but they dominate the western North America collection. The most common A1 genotypes are geographically distributed from the Canadian Wood Bison National Park (genotypes 3 and 5) to southern Texas in the United States (genotype 6). The CG3 marker locus represents a defining diagnostic marker for the A1.a group, as the 153-bp allele is only found in this group. This marker locus consists of a five-nucleotide sequence present in two copies in most strains, but only once in isolates found in cluster A1.a. This difference may not be readily reversible, and all allelic contrasts may be due to a single evolutionary event. While STI-1 was not included in the UPGMA analysis due to

TABLE 3. VNTR marker locus attributes

Locus ^a	Repeat size ^b	Array (no. of 1	v size repeats)	No. of	D^c
	(indefeotides)	Smallest	Largest	aneles	
vrrA	12	2	6	5	0.50
$vrrB_1$	9	15	23	5	0.32
vrrB ₂	9	11	15	3	0.34
$vrrC_1$	36	4	12	6	0.55
$vrrC_2$	18	17	19	3	0.50
CG3	5	1	2	2	0.35
pXO1-aat	3	4	11	8	0.81
pXO2-at	2	6	15	9	0.79
Avg				5.1	0.52

^a VNTR markers found in ORFs are shown in italics.

^b vrrB repeats are not all identical, as some contain multiple nucleotide differences. vrrC markers contain a degenerate 9-nucleotide subrepeat structure that results in fractional repeat sizes in some alleles.

^c D is Nei's marker diversity, which is calculated as $1 - \Sigma$ (allele frequency)² and based solely upon the 89 unique *B. anthracis* genotypes.

its lack of the pXO1 plasmid, it most closely resembles members of the A1.a group. As the sole representative from Russia in this study, it did not exactly match any of the 89 genotypes with its seven markers. However, it is clearly related to isolates from the A1.a cluster. STI-1 marker alleles (Fig. 2, allele sizes = 313, 229, 162, 613, 604, 153, 129, —) matched six of seven markers for 11 different genotypes in A1.a. In addition, STI-1 contains the CG3 153 allele that is only present in A1.a isolates. The close genetic relationship between the western North American isolates and this single Russian representative needs further research and would benefit significantly from examination of additional Russian isolates. The A1.b cluster isolates occur most commonly in Africa and only rarely in other parts of the world.

The A2 branch is represented by a single isolate from Pakistan. It is distinct from other genotypes and may represent a *B. anthracis* that is common in this undersampled region.

The A3 cluster is perhaps the single most important B. anthracis group due to its wide distribution and prevalence. This highly diverse cluster contains 44% of the genotypes (39 of 89) and 58% of the isolates (260 of 419) examined in this study (Fig. 2). Genotypes in this group are involved in some of the largest outbreaks that we have examined: Kruger National Park (genotype 67); Victoria, Australia (genotype 66); Turkey (genotype 35); and southern Africa (genotypes 30 and 40). Genotypes matching the well-known vaccine strains V770-NPR (genotypes 45, 46, and 49) and Sterne (genotypes 59 and 61) are also found in this cluster. The well known and highly virulent strain Ames (genotype 62) is found in A2 and is similar to Sterne at most marker alleles. The Ames strain played a central role in the United States biological warfare program before it was dismantled (David Huxsoll, personal communication).

The A4 cluster is distinct and yet underrepresented in our

FIG. 2. MLVA-based dendrogram and genotype scores. The eight VNTR marker loci were used to calculate a simple matching coefficient among all 89 unique MLVA genotypes. UPGMA cluster analysis was performed to identify groups of similar genotypes from the worldwide collection. The genetic distance is presented as the absolute number of differences in marker alleles among genotypes. The amplicon sizes presented are based upon nucleotide sequence determinations using the primers listed in Table 2. Country abbreviations are defined in Table 1. The vaccine strains Sterne, STI-1, and V770-NP1 are lacking the pXO2 plasmid marker and were not included in the cluster analysis. However, we have annotated the data set (see Geographical [Geo.] Region column) to indicate where these important strains match other genotypes based on analysis using seven marker loci. STI-1 did not match any of the genotypes but is related to the cluster A1.a isolates (see text for details). In addition, we have labeled the genotypes of the well-known strains Ames and Vollum. Marker alleles are presented as their sizes in nucleotides. The *vrrA* allele 313 corresponds to VNTR₄ described previously (7, 8). G, genotype number; N, no. of isolates.

TABLE 4. Representatives of each B. anthracis genotype

Geno- type	Country	Original strain no.	Source ^a	SPL ^b no.	Geno- type	Country	Original strain no.	Source ^a	SPL ^b no.
1	Italy	1FG	IZS	K0021	46	Argentina	BB79	GELAB	K5816
2	Canada	80-167C-5	ADRI	K2284	47	United Kingdom	ASC-228	CAMR	K9268
3	Canada	74-412C-8	ADRI	K7441	48	United Kingdom	ASC-28	CAMR	K9505
4	Iowa	BA1007/#81	USAMRIID	K8113	49	United Kingdom	ASC-29	CAMR	K3342
5	Canada	91-382C-1	ADRI	K1081	50	Scotland	Dec-32	CAMR	K2980
6	Texas	C93022281	TVMDL	K2165	51	Maryland	BA1015	USAMRIID	K4516
7	Canada	BA0018	USAMRIID	K8960	52	India	CS176(#1)	CMCH	K4342
8	Canada	72-241C-A	ADRI	K1040	53	India	CS176(#5)	CMCH	K2883
9	Canada	74-389C-52	ADRI	K3897	54	Namibia	24	DRM	K2280
10	S. Dakota	96-10355	ADRDL	K1256	55	Australia	29/32	CAMR	K4834
11	Turkev	2/6	EM	K8127	56	Namibia	93/197	DRM	K8903
12	Turkey	1/6	EM	K7665	57	China	24/32	CAMR	K0610
13	China	22/32	CAMR	K2129	58	Canada	9610	ADRI	K7841
14	China	23/32	CAMR	K8071	59	China	4	IEM	K0006
15	Poland	100004	VMRI	K1340	60	Germany	A9	IUTSTT	K7912
16	Hungary	Feb-98	VMRI	K1347	61	Germany	A41	IUTSTT	K4921
17	Norway	B6273/93	CVL	K8091	62	United Kingdom	Oct-32	USAMRIID	K1694
18	Slovakia	A22	IUTSTT	K5974	63	Indonesia	Bekasi	RIVS	K1938
19	Hungary	Apr-98	VMRI	K1430	64	Indonesia	Dompu	RIVS	K4527
20	Italy	2PT	IZS	K4241	65	Germany	A40	IUTSTT	K1892
21	England	16/32	CAMR	K1335	66	Australia	97-1946/2	EMAI	K1298
22	England	Asc 403	CAMR	K3166	67	South Africa	K3	KNP	K1244
23	Turkey	32	FM	K9002	68	Ohio	28	USAMRIID	K2802
23	England	25/32	CAMR	K3612	69	Pakistan	BA1021	USAMRIID	K7222
25	Florida	14185	ATCC	K3700	70	Norway	B1965/77	CVI	K8736
26	Zambia	Nov-32	CAMR	K7724	70	Ireland	BA1024	USAMRIID	K1021
27	Norway	B7227/83	CVI	K8419	72	Germany	NMS	UTSTT	K4433
28	Turkey	14	EM	K7948	72	China	28/32	CAMR	K6410
20	Pakistan		VDI	K5135	74	Dakistan	A67	UTSTT	K1120
30	Zambia	18/00/02	CVLI	K0123	75	Switzerland	A66	IUTSTT	K7615
31	Indonesia	Pangken	DIVS	K1024	75	Pakietan	BA1000/	USAMBIID	K/013
32	South Korea	F 1	DMNIH	K1024 K1072		I anistali United Kingdom	Vollum	CAMP	K4001
32	Turkey	35	EM	K1534	78	Norway	B648/82	CVI	K8877
33	South Koron	JJ U 1	DMNIL	K1554 K7028	70	Franco	CNEVA 0066		K0022
25	Nomibio	02/27	DIMINITI	K/030	80	Franco	DA2	II ID	K1007
35	Turkov	95/57 22		K120J	81	South Africo	22		K2702
27	Turkey	22		K1304 V7701	82	South Africa	JJ DA 1025	USAMINID	K3323 V9101
20	Cormony	31 A 20	LIVI	K//91 V2484	02	South Africa Mozambique	DA1055 MOZ 1		K0101
20	Namihia	A50	DDM	K2404	0.5	United Vinadom	MOZ-1		K4049 V0001
39	Namibia	40 Mar 22	DKM	K2223	04	United Kingdom	ASC-27		K9901
40	Namibia	Mar-32	CAMR	K8025	85	Mozambique	3 D20(/7(INV	K2478
41	тигкеу	11	EM	K0428	80	INORWAY	B280//0		K10/1
42	Turkey	39 17	EM	K0300	8/	South Africa	K88	KNP	K6835
43	Turkey	1/	EM	K1033	88	South Africa	83	USAMRIID	K36/7
44	Namibia	SA1189	USAMRIID	K1717	89	N. Carolina	109	USAMRIID	K3535
45	Argentina	ZB80	GELAB	K8215					

^a ADRDL, Animal Disease Research and Diagnostic Laboratory, South Dakota State University; ADRI, Animal Diseases Research Institute, Alberta, Canada; ATCC, American Type Culture Collection, Manassas, Va.; CAMR, Center for Applied Microbiology and Research, Porton Down, United Kingdom; CMCH, Christian Medical College and Hospital, Tamil Nadu, India; CVL, Central Veterinary Laboratory, Oslo, Norway; CVLL, Central Veterinary Laboratory, Lusaka, Zambia; DMNIH, Department of Microbiology, National Institute of Health, Seoul, South Korea; DRM, Directorate of Resource Management, Windhoek, Namibia; EM, Enstutusu Muduriugu, Ankara, Turkey; EMAI, Elizabeth MacArthur Agricultural Institute, New South Wales, Australia; GELAB, Department Bacteriologia General, Buenos Aires, Argentina; IEM, Institute of Epidemiology and Microbiology, Changping, China; INV, Instituto Nacional de Veterinaria, Maputo, Mozambique; IP, Institut Pasteur, Paris, France; IUTSTT, Institut für Unwelt und Tierhygiene Sowie Tiermedizin mit Tierklinik, Stuttgart, Germany; IZS, Instituto Zooprofilattico Sperimentale, Teramo, Italy; KNP, Kruger National Park, South Africa; RIVS, Research Institute for Veterinary Science, Bogor, Indonesia; TVMDL, Texas Veterinary Medical Diagnostic Laboratory, College Station, Texas; USAMRIID, United States Army Medical Research Institute for Infectious Diseases, Maryland; VMRI, Veterinary Medical Research Institute, Budapest, Hungary; and VRI, Veterinary Research Institute, Pakistan.

^b SPL, Special Pathogens Laboratory, Louisiana State University.

current collection (Fig. 2). It is notable primarily for the wellknown strain Vollum (genotype 77), which was used in the British biological warfare program (Peter Turnbull, personal communication). Vollum has been studied in many laboratories, and most of the 15 isolates identical to genotype 77 are from laboratory archival collections. One sample of the Vollum 1B strain differed at the *vrrA* markers by one repeat from other Vollum samples. This seemingly represents an "in-laboratory" mutational event. A natural isolate matching the Vollum genotype was collected in Spain. Other closely related isolates have been found in the United States, Norway, Europe, and Asia but not in Africa.

DISCUSSION

The MLVA typing method presented in this paper represents a robust and easily transferable approach to characterizing *B. anthracis* isolates. The protocols presented are rapid and require only crudely isolated DNA to provide high-resolution molecular typing analysis. The individual marker alleles are uniquely identified by a combination of size and fluorescent color. Therefore, automated gel analysis is routine. Instrumentation and software to perform MLVA are widely available with the exception of the custom macro software that will be provided by the authors upon request. Standardized data are presented in this report to provide a uniform reference to all anthrax research teams (Fig. 2). Future analyses by any laboratory in the world can be easily compared to the standardized data and particular strains (Table 4) reported here. We hope that the availability of PCR primers, protocols, and a reference data set will encourage anthrax research teams to use a common genetic typing system and to share their results. In the future, combinations of data sets from around the world will lead to novel and comprehensive insights into anthrax biology.

Molecular typing in many pathogenic bacterial species is accomplished without focusing on hypervariable VNTR loci. In B. anthracis, however, this has proven extremely difficult due to the homogeneous nature of all available strains (10). In this pathogen, only the most rapidly evolving genomic regions are useful for strain discrimination. VNTR loci fall into this category and have been used successfully in this study to separate B. anthracis isolates into 89 distinct genotypes. As a first approximation, one can assume that the diversity of a particular VNTR is correlated with its evolutionary rate, and in the absence of selective constraints, this would be the mutation rate. In this study, the simple di- and trinucleotide tandem repeats (pXO1-aat and pXO2-at) are the most diverse, while complex longer repeats have lower diversity (Table 3). Slip strand repair mutations by DNA polymerase are thought to occur more frequently on short repeats (23), and our data are consistent with this model. Markers of higher diversity obviously provide great discriminatory power among strains. However, it is less obvious that highly diverse markers have less power for defining older evolutionary relationships. Our MLVA markers have different diversity levels and contribute in different ways to the analysis of B. anthracis.

VNTR mutation rates are apparently fast on an evolutionary scale but slow enough that mutations are very difficult to observe in the laboratory. We have passaged a plasmid-cured strain of Ames for more than 100,000 generations and observed only a single VNTR mutation (313 to 301) in vrrA (G. Zinser and P. Keim, unpublished observations). At least in the six chromosomal loci, marker alleles appear stable to routine and even long-term handling in the laboratory. As stated above, variation in different Vollum strain (genotype 77) accessions illustrates the stability of these markers. There are 15 different Vollum examples in this study from different sources in the United States and the United Kingdom. One of these was passaged three times through rats and three times through rabbit hosts without MLVA changes. The only difference was observed in the vrrA marker (301 instead of 289) for the substrain Vollum 1B. These anecdotal and preliminary results need additional confirmation but suggest that VNTR mutation rates are slower than 10^{-5} and that mutational changes occur in single-repeat steps.

The existence of a limited number of *B. anthracis* clones can be hypothesized from the genetic similarities observed within each of the six major clusters in Fig. 2. The number and distribution of these hypothesized clones have doubtlessly been influenced by human activity. This may have started with domestication of animals but continues through modern-day international commerce. Note that not all of the putative clones are equally widespread. For example, the A3 cluster is very common and distributed across many continents, while the B1 cluster is restricted mostly to southern Africa. The A1 cluster splits into two distinctive groups, with one branch primarily North American (A1.a) and one mostly African (A1.b). These differences in cluster prevalence and distribution may be influenced by inherent biological properties (Smith et al., unpublished data) or just due to stochastic historical events.

While the biological significance of *B. anthracis* VNTR variation is unknown, some VNTR variation examples have pronounced effects on pathogen biology (23). Five of the eight MLVA loci in the MLVA system are found in ORFs (data not presented). Therefore, VNTR variation could easily affect the bacterial phenotype via altered translational products. Moreover, it has also been shown that extragenic VNTRs can influence adjacent gene expression (23). This provides a possible genetic role for even intergenic VNTRs. Given the extreme homogeneity of *B. anthracis*, VNTRs represent the only significant source for molecular variation among the strains known at this time. Whether this variation is biologically significant or only useful for diagnostic analysis of *B. anthracis* will be determined by future VNTR studies.

ACKNOWLEDGMENTS

This work was supported by funding from the U.S. Department of Energy (NN20-CBNP), the National Institutes of Health (RO1 GM60795), and the Cowden Endowment in Microbiology.

We thank Ms. Karen Hill, Debra Adair, Guenevier Zinser, and A. S. Kalif for excellent technical assistance. In addition, this research would have been impossible without the help and unstinting generosity of many people across the world who provided us with cultures from outbreaks and from their collections; we are extremely grateful for their patience and contributions: Argentina-Dept. Bacteriologia General, GELAB/SENASA, Buenos Aires (Luis Betancor). Australia-Elizabeth MacArthur Agricultural Institute, New South Wales (Michael Hornitzky); Princess Alexandria Hospital, Queensland (Jacqueline Harper); Yeerongpilly Veterinary Laboratory, Queensland (Rod Thomas); Department of Natural Resources & Environment, Victoria (Andrew Turner and Maria Yates). Canada-Animal Diseases Research Institute, Alberta (Jack Burchak and Greg Tiffin). China-Institute of Epidemiology & Microbiology, Changping (Xudong Liang). France-Institut Pasteur, Paris (Michelle Mock); Hôpital du Bocage, Dijon (C. Neuwirth). Germany-Institut für Umwelt und Tierhygiene Sowie Tiermedizin mit Tierklinik, Stuttgart (Reinard Bohm). Hungary-Veterinary Medical Research Institute, Budapest (Bela Nagy). India-Christian Medical College & Hospital, Tamil Nadu (M. K. Lalitha). Indonesia-Research Institute for Veterinary Science, Bogor (Sjamsul Bahri). Italy-Instituto Zooprofilattico Sperimentale, Terama (Vincenzo Caporale). Korea-Department of Microbiology, National Institutes of Health, Seoul (Ho-Hoon Kim). Mozambique-Instituto Nacional de Veterinaria, Maputo (Sara Acha). Namibia-Directorate of Resource Management, Windhoek (Pauline Lindeque). Nepal-National Zoonoses & Food Hygiene Research Centre, Kathmandu (D. D. Joshi). Norway-Central Veterinary Laboratory, Oslo (Finn Saxegaard). Pakistan-Veterinary Research Institute, Lahore (Shabbir Ahmad). Poland-Wojskowy Instytut Higieny, Pulawy (Jerzy Mierzejewski). Portugal-Regional Veterinary Diagnostic Laboratory, Evora (Patricio Nuncio and Armando Louzo). South Africa-Kruger National Park (Helena Bryden and Valerius de Vos); Onderstepoort Biological Products (Huck Jager); Onderstepoort Veterinary Institute (Maryke Henton). Tanzania-Department of Veterinary Microbiology & Parasitology, Sokoine University of Agriculture (Saddrudin Jiwa). Thailand-Department of Livestock Development, Bangkok (Vichitr Sukhapesna). Turkey-Enstitusu Muduriugu, Ankara (Metin Kerman); Infeksiyon Hastaliklari Klinigi, Erciyes Universitesi, Kayseri (Mehmet Dogany). United Kingdom-Centre for Applied Microbiology & Research, Porton (Peter Turnbull); DERA, Porton (Tony Philipps and Richard Manchee). USA-California Veterinary Diagnostic Laboratory System, California (Richard Walker); Centers for Disease Control & Prevention, Georgia (Rob Weyant); United States Army Medical Research Institute for Infectious Diseases, Maryland (Art Friedlander and John Ezzell); Veterinary Diagnostic Services, NM Dept of Agriculture, New Mexico (Linda Nims); Veterinary Diagnostic Laboratory, NDSU, North Dakota (David White); Animal Disease Diagnostic Laboratory, Oklahoma (Ronald Welsh); Animal Disease Research & Diagnostic Laboratory, SDSU, South Dakota (David Zeman); Texas Veterinary Medical Diagnostic Laboratory, Texas (Howard Whitford). Zimbabwe—Veterinary Research Laboratory, Causeway (U. Ushewokunze-Obatolu). Zambia—Central Veterinary Laboratory, Lusaka (P. M. Muyoyeta).

REFERENCES

- Andersen, G. L., J. M. Simchock, and K. H. Wilson. 1996. Identification of a region of genetic variability among *Bacillus anthracis* strains and related species. J. Bacteriol. 178:377–384.
- Boyd, E. F., F. S. Wang, T. S. Whittam, and R. K. Selander. 1996. Molecular genetic relationships of the salmonellae. Appl. Environ. Microbiol. 62:804– 808.
- Eitzen, E. M. 1997. Use of biological weapons, p. 437–450. In F. R. Sidell, E. T. Takafuji, and D. R. Franz (ed.), Medical aspects of chemical and biological warfare. Office of the Surgeon General, Washington, D.C.
- Freidlander, A. M. 1997. Anthrax, p. 467–478. *In* F. R. Sidell, E. T. Takafuji, and D. R. Franz (ed.), Medical aspects of chemical and biological warfare. Office of the Surgeon General, Washington, D.C.
- Frothingham, R., and W. A. Meeker-O'Connell. 1998. Genetic diversity in the *Mycobacterium tuberculosis* complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196.
- Harrell, L. J., G. L. Andersen, and K. H. Wilson. 1995. Genetic variability of Bacillus anthracis and related species. J. Clin. Microbiol. 33:1847–1850.
 Henderson, I., D. Yu, and P. C. Turnbull. 1995. Differentiation of Bacillus
- Henderson, I., D. Yu, and P. C. Turnbull. 1995. Differentiation of *Bacillus anthracis* and other '*Bacillus cereus* group' bacteria using IS231-derived sequences. FEMS Microbiol. Lett. 128:113–118.
- Jackson, P. J., E. A. Walthers, A. S. Kalif, K. L. Richmond, D. M. Adair, K. K. Hill, C. R. Kuske, G. L. Andersen, K. H. Wilson, M. E. Hugh-Jones, and P. Keim. 1997. Characterization of the variable-number tandem repeats in *vrA* from different *Bacillus anthracis* isolates. Appl. Environ. Microbiol. 63:1400–1405.
- Jackson, P. J., M. E. Hugh-Jones, D. M. Adair, G. Green, K. K. Hill, C. R. Kuske, L. M. Grinberg, O. V. Yampolskaya, and P. Keim. 1998. Molecular analysis of tissue samples from the 1979 Sverdlovsk anthrax victims: the presence of multiple *Bacillus anthracis* in different victims. Proc. Natl. Acad. Sci. USA 95:1224–1229.
- Keim, P., A. Kalif, J. M. Schupp, K. K. Hill, S. E. Travis, K. Richmond, D. M. Adair, M. E. Hugh-Jones, C. R. Kuske, and P. Jackson. 1997. Molecular evolution and diversity in *Bacillus anthracis* as detected by amplified fragment length polymorphism markers. J. Bacteriol. 179:818–824.
- Keim, P., A. Klevytska, L. B. Price, J. M. Schupp, G. Zinser, R. Okinaka, K. K. Hill, P. Jackson, K. L. Smith, and M. E. Hugh-Jones. 1999. Molecular diversity in *Bacillus anthracis*. J. Appl. Microbiol. 87:215–217.
- Koch, R. 1876. Die Aetiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des *Bacillus anthracis*. Beitr. Biol. Pflanz. 2:277–310.

- Maiden, M. C., J. A. Bygraves, E. Feil, G. Morelli, J. E. Russell, R. Urwin, Q. Zhang, J. Zhou, K. Zurth, D. A. Caugant, I. M. Feavers, M. Achtman, and B. G. Spratt. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95:3140–3145.
- Miettinen, M. K., A. Siitonen, P. Heiskanen, H. Haajanen, K. J. Bjorkroth, and H. J. Korkeala. 1999. Molecular epidemiology of an outbreak of febrile gastroenteritis caused by *Listeria monocytogenes* in cold-smoked rainbow trout. J. Clin. Microbiol. 37:2358–2360.
- Okinaka, R., K. Cloud, O. Hampton, A. Hoffmaster, K. Hill, P. Keim, T. M. Koehler, G. Lamke, S. Kumano, J. Mahillon, D. Manter, Y. Martinez, D. Ricke, R. Svensson, and P. J. Jackson. 1999. Sequence and organization of pXO1, the large *Bacillus anthracis* plasmid harboring the anthrax toxin genes. J. Bacteriol. 181:6509–6515.
- Pasteur, L., and R. Chamberland. 1881. Compte rendu sommaire des expériences faites à Pouilly-le-Fort, près Melun, sur la vaccination charbonneuse. C. R. Séances Acad. Sci. Ser. III Sci. Vie 92:1378–1383.
- Popovic, T., C. Kim, J. Reiss, M. Reeves, H. Nakao, and A. Golaz. 1999. Use of molecular subtyping to document long-term persistence of *Corynebacterium diphtheriae* in South Dakota. J. Clin. Microbiol. 37:1092–1099.
- Price, L. B., M. E. Hugh-Jones, P. Jackson, and P. Keim. 1999. Natural genetic diversity in the protective antigen gene of *Bacillus anthracis*. J. Bacteriol. 181:2358–2362.
- Richards, R. I., and G. R. Sutherland. 1997. Dynamic mutation: possible mechanisms and significance in human disease. Trends Biochem. Sci. 22: 432–436.
- Swofford, D. 1999. PAUP—phylogenetic analysis using parsimony (and other methods), 4.0 beta version. Sinauer Associates, Inc., Sunderland, Mass.
- Thorne, C. B. 1993. *Bacillus anthracis*, p. 113–132. *In* A. L. Sonenshein, J. A. Hoch, and R. Losick (ed.), *Bacillus subtilis* and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, D.C.
- 22. Vahey, M., M. E. Nau, S. Barrick, J. D. Cooley, R. Sawyer, A. A. Sleeker, P. Vickerman, S. Bloor, B. Larder, N. L. Michael, and S. A. Wegner. 1999. Performance of the Affymetrix GeneChip HIV PRT 440 platform for antiretroviral drug resistance genotyping of human immunodeficiency virus type 1 clades and viral isolates with length polymorphisms. J. Clin. Microbiol. 37:2533–2537.
- van Belkum, A., S. Scherer, L. van Alphen, and H. Verbrugh. 1998. Shortsequence DNA repeats in prokaryotic genomes. Microbiol. Mol. Biol. Rev. 62:275–293.
- 24. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, and M. Kuiper. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.
- Weir, B. S. 1990. Genetic data analysis. Sinauer Associates, Inc., Sunderland, Mass.
- Welsh, J., and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218.
- Williams, J. G., A. R. Kubelik, K. J. Livak, J. A. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.