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Abstract

Quantifying the impact of natural disasters or epidemics is critical for guiding policy decisions 

and interventions. When the effects of an event are long-lasting and difficult to detect in the short 

term, the accumulated effects can be devastating. Mortality is one of the most reliably measured 

health outcomes, partly due to its unambiguous definition. As a result, excess mortality estimates 

are an increasingly effective approach for quantifying the effect of an event. However, the fact that 

indirect effects are often characterized by small, but enduring, increases in mortality rates present 

a statistical challenge. This is compounded by sources of variability introduced by demographic 

changes, secular trends, seasonal and day of the week effects, and natural variation. Here we 

present a model that accounts for these sources of variability and characterizes concerning 

increases in mortality rates with smooth functions of time that provide statistical power. The model 

permits discontinuities in the smooth functions to model sudden increases due to direct effects. We 

implement a flexible estimation approach that permits both surveillance of concerning increases in 

mortality rates and careful characterization of the effect of a past event. We demonstrate our tools’ 

utility by estimating excess mortality after hurricanes in the United States and Puerto Rico. We 

use Hurricane Maria as a case study to show appealing properties that are unique to our method 

compared to current approaches. Finally, we show the flexibility of our approach by detecting and 

quantifying the 2014 Chikungunya outbreak in Puerto Rico and the COVID-19 pandemic in the 

United States. We make our tools available through the excessmort R package available from 

https://cran.r-project.org/web/packages/excessmort/.

Introduction

Accurate and timely estimation of all-cause mortality rates after a natural disaster or 

infectious disease outbreak is paramount as it serves as a way to quantify health effects, 

aid in policy making, and resource allocation. The US Center for Disease Control and 

Prevention (CDC) defines a directly related disaster death as one that is attributable to the 

forces of the disaster or by consequences of these forces. A death indirectly related to a 

disaster occurs when unsafe or unhealthy conditions present during any phase of the disaster 

contribute to it[1]. In the case of epidemics, lack of comprehensive testing or reporting can 

lead to challenges in measuring direct effects, while indirect effects can arise due to, for 

example, increased stress levels or reduced access to health services.
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Excess mortality, defined as the subtraction of the expected number of deaths from the 

observed counts in a period of interest[2], is frequently estimated using historical data and 

a model that accounts for seasonal and secular trends, as well as demographic changes. For 

example, to estimate expected counts in Puerto Rico and assess the impact of Hurricane 

Maria, various groups have used mortality data to estimate excess deaths[3, 4, 5, 6]. More 

recently, methods for estimating excess mortality have been used to assess the impact of the 

COVID-19 pandemic[7, 8, 9]. The CDC uses an adaption of an outbreak detection method 

known as the Farrington algorithm to estimate excess deaths[10, 11, 12].

The effects of natural disasters and epidemics typically last longer than a week and can 

also change within a week. In the case of natural disasters, we might see a sharp increase 

in the death rate on the day of the event, followed by a smooth decline back to normal 

levels lasting several weeks. When indirect effects are severe, this decline will be slow. 

For epidemics, the patterns might be characterized by a short period of exponential growth 

followed by a plateau and a decline back to normal. In both cases, we expect the decline to 

be a smooth function of time, often of hard to detect magnitude, and incorporating this into a 

model can provide statistical power. We sought to develop a flexible approach that leverages 

the availability of daily data to effectively estimate these smooth trends and sharp increases. 

Specifically, we extended and improved previously published methods based on Poisson 

regression [11, 12, 13, 14] by modeling the event effect as a smooth function of time. 

Because natural variability introduces more variance than predicted by a Poisson model, 

and because daily data exhibits correlation in time, we proposed a mixed effects model that 

includes an auto-regressive process.

We use a simulation study to demonstrate that our approach provides accurate and precise 

estimates. To demonstrate the utility of our approach we searched for periods of excess 

mortality during the last 35 years in Puerto Rico, detecting large effects during the 

2014 Chikungunya outbreak and after hurricanes Georges and Maria. We demonstrate 

the advantages of our approach over current ones by examining the different estimates 

obtained for Hurricane Maria and Georges. We then compare the effect of these hurricanes 

in Puerto Rico to the effects of three other major hurricanes in the United States. Finally, we 

examined excess mortality during the COVID-19 pandemic in the United States. We make 

our method and wrangled datasets available through the excessmort R package. The code to 

reproduce the results presented here is available from GitHub: https://github.com/RJNunez/

excess-mortality-paper

Methods

Statistical model

We modeled daily death counts with the following mixed model:

Y t ∣ εt ∼ Poisson μt 1 + f t εt for t = 1, …, T (1)

with μt the expected number of deaths at time t for a typical period, 100 × f t  the percent 

increase at time t due to an unusual event, εt a time series of auto-correlated random 
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variables representing natural variability, described in more detail in the eAppendix, and T
the total number of observations.

The expected counts μt can be further decomposed into

μt = Nt exp α t + s t + w t (2)

with Nt the population at time t that we treat as an offset, α t  a slow-moving trend that 

accounts for secular changes such as the improved health outcomes we have observed during 

the last several years, s t  a yearly periodic function representing a seasonal trend, and 

w t  a day of the week effect. Note that factorizing the Nt, rather than absorbing it into 

α t , s t , and w t , does not change our approach to estimating or interpreting f t , but 

permits us to interpret α t  as a mortality rate and makes it comparable across groups of 

different population sizes. This is particularly useful in a jurisdiction like Puerto Rico where 

the population size has been decreasing substantially and with the working age population 

decreasing more than other age groups. In the eAppendix we provide details on how we 

obtain Nt for different jurisdictions.

We assume α t  is a smooth function of time if we have more than 7 years of data. 

Otherwise, we assume it is a linear function of time. We further assume that the seasonal 

trend s t  follows a harmonic model and we model the weekday-specific effects using 

seven indicator variables and seven constrained parameters. The details are included in the 

eAppendix.

We refer to f as the event effect and assume f t = 0 for typical periods not affected by 

natural disasters or outbreaks. When different from 0, we assume f t  is smooth enough to 

be represented by a smoothing cubic spline with 12 knots per year. This provides enough 

flexibility to detect both natural disasters and outbreaks. If we know an event, such as a 

hurricane, occurred on a specific day, say t0, that could result in a sharp increase in death rate 

due to a direct effect, we permit a discontinuity at t0 to account for a sudden direct effect and 

fit a smoother spline, with 6 knots per year, to provide more power to detect subtle indirect 

effects. More details on these choices can be found in the Tuning parameters eAppendix 

section.

Estimating event effects

Due to the flexibility in f t  and the correlation structure of εt, in practice, obtaining, for 

example, maximum likelihood estimates (MLE) for this model is not straightforward. To 

overcome this challenge, we implemented a three-step approach that works well in practice, 

as demonstrated by simulation and empirical validation described in the Results section. The 

general idea is to first estimate μt and the correlation structure of εt during periods with no 

events, referred to here as control periods, and then estimate the most interest component, 

f t , assuming these are known. We use the Central Limit Theorem approximation to assume 

f̂(t) follows a normal distribution and compute standard error estimates SÊ f̂(t)  that include 

the variability introduced by the uncertainty in the estimate of the expected mortality rate μ̂t. 

The details are described in the eAppendix.

Acosta and Irizarry Page 3

Epidemiology. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Detecting periods of concern

With the estimates f̂(t) and SÊ f̂(t)  in place, we can construct a surveillance algorithm 

to detect periods of concern. We do this by grouping consecutive time points for which 

a percent increase of 0 is not in a 95% confidence interval for f̂. Specifically, we define 

concerning periods as t0, t1  for which

f̂(t) − z SÊ f̂(t) > 0 for t ∈ t0, t1

where we set z = 1.96, the 97.5 percentile of a standard normal distribution. We can increase 

specificity by increasing the degree of confidence to a percentage higher than 95% or 

by requiring an interval size of certain length before declaring a period concerning. The 

surveillance approach can either prioritize targeting short periods or long periods by using 

more or less knots, respectively. These can all be controlled in the R package through 

function arguments. For example, the <mono_space> knots_per_year </mono_space> in the 

function <mono_space> excess_model </mono_space> controls the smoothness of f̂. In 

the Results section we describe the power and false positive rates for this procedure using 

simulation studies.

Excess mortality estimate

Once we have identified a period of interest, either by surveillance or because we know 

an adverse event occurred, we can characterize the effect of this event by computing the 

cumulative excess death for the period. Note that we can conveniently represent excess 

deaths at time t as μtf(t) and estimate these with μ̂tf̂(t). We can then estimate excess deaths 

for any time period t0, t1  by just adding these up:

Δ̂ t0, t1 =
t = t0

t1

μ̂tf̂(t) .

Note that we can use the formula for computing the sum of correlated random variables to 

estimate the standard error of Δ̂ t0, t1 . The details are included in the eAppendix.

Mortality data

We obtained individual-level mortality records with no personal identifiers from the 

Department of Health of Puerto Rico’s Demographic Registry from January 1985 to 

August 2020. Using these, we computed daily death counts. Given Puerto Rico’s changing 

demographics[15], these counts were computed for six different age groups: 0 to 4, 5 to 19, 

20 to 39, 40 to 59, 60 to 74, and 75 and older. We also obtained daily death counts from 

Florida, New Jersey, and Louisiana’s Vital Statistic systems from January 2015 to December 

2018, January 2007 to December 2015, and January 2003 to December 2006, respectively. 

We further obtained weekly mortality counts from January 2017, to November 2020, made 

public on May 2020 by the CDC[10]. The CDC provides two types of mortality counts. First 

the counts reported by the states and second a weighted count intended to account for the lag 
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in reporting[10]. Finally, we obtained COVID-19 mortality data for the US made public by 

the New York Times[16].

Results

Assessment via simulation study

To assess our procedure we conducted Monte Carlo simulations. We designed simulation 

studies to mimic three scenarios 1) a natural disaster, 2) an infectious disease epidemic, and 

3) a typical period with no events. The details of the simulations are in the eAppendix. We 

found that our method consistently estimates the true curve f(t) precisely under all three 

scenarios (eFigures 1A–C) and that our estimated standard error also estimates the true 

standard error precisely (eFigures 1D–F).

One of the advantages of our approach is that modeling the event effects as smooth functions 

greatly improves power over considering each time point individually. This is particularly 

powerful in scenarios in which low counts result in data with high coefficients of variation. 

To demonstrate this, and to determine how low counts-per-day rate our approach can handle, 

we repeated the above simulation but changing the average level of α(t) so that the daily rates 

were very low: 0.05, 0.10, 0.50, and 1.00 deaths per day. Our estimation procedure yielded 

precise and accurate estimates of the event effect when the rate was 0.10 or higher, while for 

0.05 we started to see loss of accuracy (eFigures 2 & 3, eTable 1).

We also used these simulations to assess the sensitivity and specificity (false positive rate) 

of our procedure for detecting excess mortality events. We examined several strategies 

for detecting periods of concern by varying the level of smoothness and the number of 

consecutive time points required to define the period as a concern, as described above. 

Specifically, we considered three smoothing approaches, 1) smoothing with 6 knots per 

year, 2) smoothing with 12 knots per year, and 3) a saturated model (no smoothing), and 

seven period length requirements: 1, 3, 5, 10, 30, and 60 days. We found that smoothing 

greatly improves sensitivity without much loss in specificity (eTables 2 & 3). As expected, 

increasing the period length requirement increased specificity and reduced sensitivity. More 

details are included in the eAppendix.

Finally, to assess the susceptibility of our approach to different control periods used to 

estimate the expected rate μt, we performed simulation and cross-validation studies. First, 

we evaluated the precision and accuracy of our estimate f̂ when estimating μt with 2, 4, 6, 

and 8 years of data. We found that performance was not affected (eFigures 4 & 5, eTable 

4). We also ran a cross-validation using Puerto Rico data from 1999–2013 in Puerto Rico, 

fifteen consecutive years for which we do not expect to see a significant event. Specifically, 

we removed each year, one by one, estimated μt without that year and compared it to 

the estimate obtained when including that year for the estimation. We found almost no 

difference in the estimates (eFigure 6) demonstrating the robustness of our approach. More 

details on these simulation studies are included in the eAppendix.
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Comparison to the Farrington model

The current method implemented by the CDC is based on weekly totals:

Sk =
t ∈ week k

Y t,

with k denoting week. They estimate the expected value and standard deviation for each 

Sk by applying the Farrington approach [11, 12] on historical data, what we call a control 

period. A threshold for anomalous mortality, Uk, is defined as the upper bound of a one-sided 

95% prediction interval:

Uk ≡ E Sk + 1.64 Var Sk − E Sk

where 1.64 is the 95 percentile of a standard normal distribution. It follows that if Sk > Ûk, 

then week k is denoted as having excess deaths. For each week, two estimates are 

provided: a conservative estimate, Sk − Ûk, and an unbiased estimate, Sk − Ê Sk , with Ê Sk

the estimated expected count at week Sk.

To compare this method with our approach, we used Puerto Rico data that included the 

landfall of Hurricane Maria on the island. This category 4 hurricane interrupted the water 

supply, electricity, telecommunication networks, and access to medical care for several 

weeks [17, 18]. The consensus is that indirect effects of the storm were observed at least 

until December with well over 1,000 excess deaths[19]. However, the CDC approach only 

identifies four successive weeks with deaths above the threshold, which results in excess 

death estimates of 527 and 796 for the conservative and unbiased approaches, respectively 

(Figure 1A). We note that observed counts are above the expected value, Sk − Ê Sk > 0, for 

six months after the storm, but only 19 of these are over the threshold, Sk − Ûk > 0. These 

data support a sustained indirect effect, yet the Farrington model lacks the power to detect 

the small and persistent increases in death rate introduced by such effects as one contiguous 

period. Applying the Farrington algorithm to daily data resulted in similar results (eFigure 

7).

We then fit our model to the same data, using the same estimates of population. Our 

approach was able to capture a sustained indirect effect (Figure 1B). Specifically, when 

we applied our approach to data from the same period, we found that a point-wise 95% 

confidence interval for f̂(t) did not include zero for 151 consecutive days. This results in 

a substantially higher excess death mortality. Applying both of these approaches to data 

from Puerto Rico after Hurricane Georges in 1998 further illustrated the advantages of our 

approach (eFigures 8). In the next section we repeat this analysis but using the population 

size estimate described in Population size estimates section of the eAppendix and stratifying 

by age groups. We present an excess mortality estimate above 3,000.
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Quantifying indirect effects after hurricanes

As an example of the utility of our approach, we quantified and compared the direct and 

indirect effects of three hurricanes in Puerto Rico: Hurricane Maria in 2017, Hurricane 

Georges in 1998, and Hurricane Hugo in 1989. To assess if indirect effects are worse 

in Puerto Rico, we estimated and compared the impact of hurricanes in three other US 

jurisdictions: Hurricane Irma in Florida in 2017, Hurricane Sandy in New Jersey in 2012, 

and Hurricane Katrina in Louisiana in 2005 (Table 1, Figure 2 and eFigure 9). Since 

age-stratified data was available for Puerto Rico, we fit model (1) to each age group. Then, 

we aggregated the age group-specific effects to obtain the marginal effect of each hurricane 

(see eAppendix for details).

For Hurricane Maria in Puerto Rico, we found an increase in mortality of 74% (95% CI: 

60% to 88%) on landfall and over 3,000 excess deaths in the subsequent months. These 

findings confirm previously reported results that the effects of hurricane Maria on Puerto 

Rico were unprecedented[3, 20]. For Georges, we found a similar yet less severe pattern 

to Maria. Specifically, we estimated an increase in mortality of 37% (95% CI: 25% to 

49%) and over a thousand excess deaths in the three months after the storm. Conversely, 

the effects of Katrina on Louisiana were much more direct. On August 29, 2005, the 

day the levees broke, there were 834 deaths (data point not included in Figure 2A nor in 

eFigure 9E), which translates into a 718% (95% CI: 704% to 732%) increase in death rate. 

However, the increase in mortality rate for the ensuing months was substantially lower than 

in Puerto Rico after Maria and Georges (eFigure 9). The effects of Sandy on New Jersey 

and Irma on Florida were much less severe. For example, we estimated over 1,200 excess 

deaths in Florida after Irma which is on par with the excess death estimates associated with 

Hurricanes Georges and Katrina. However, note that the population of Florida is seven and 

five times larger than that of Puerto Rico and Louisiana, respectively. Furthermore, for both 

Florida and New Jersey, we see a second period of increase in mortality from December to 

March after each storm, respectively. These periods are consistent with the particularly bad 

Flu seasons of 2012 and 2018 (eFigure 9). We, therefore, do not include those periods as 

affected by the hurricane.

Detecting and quantifying epidemics

As an example of how our approach can be used to detect and quantify the effects of 

epidemics or outbreaks, we fit our model to Puerto Rico mortality data from 1985 to 

2020 and, apart from the hurricane seasons mentioned in the previous section, we detected 

an unusual increase in mortality rates from August 2014 to February 2015. This period 

coincides with the 2014–2015 Chikungunya outbreak[21, 22] (Figure 3A). The effects were 

particularly strong for individuals over 60 years and for the 0 to 4 years age group (eFigure 

10). Cumulative excess mortality increased until February 2015, followed by a decrease in 

the ensuing months, consistent with a harvesting effect [23, 24]. A year after the start of the 

Chikungunya epidemic, on 1 August 2015, we observe a point estimate for excess mortality 

of 640 (95% CI: 140 to 1,140) (Figure 3B).

As one further example, we implemented our approach to the US mortality data provided 

by the CDC to assess the effect of the COVID-19 pandemic. We aggregated the data from 
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all states and then fit model (1) to obtain percent changes from expected mortality in the 

US (Figure 3C). To capture the rapid increase in mortality associated with COVID-19, we 

used 16 knots per year to estimate f(t). Because these are weekly counts, we fit the model 

assuming independent errors.

First, note that we capture the particularly bad 2017–18 flu. In 2020, we found an increase 

from average mortality associated with the COVID-19 pandemic that started in mid-March 

with a peak on the week ending on April 18, of 40% (95% CI: 38% to 42%). This was 

followed by a decrease lasting until mid-June. We then detected a second wave that peaked 

at the beginning of August with an increase from expected mortality of 24.3% (95% CI: 

23.0% to 25.5%). In the subsequent weeks, excess mortality decreased until the end of 

Septembe, where then it increased until reaching its highest point since the beginning of 

the pandemic on the first week of 2021 with an increase from average mortality of 44.3% 

(95% CI: 42.8 to 45.8%). We found our cumulative excess deaths estimate to be larger 

than the cumulative COVID-19 deaths reported by the New York Times[16] (Figure 3D). 

Specifically, on 30 January 2021, the New York Times reported 435,441 COVID-19 deaths 

while our estimate was 604,400 (95% CI: 599,000 to 609,700) excess deaths in the United 

States. That is a difference of 168,959 excess deaths not directly accounted for by the 

reported COVID-19 deaths, indicating that not all deaths related to COVID-19 have been 

reported.

Natural variability and correlated counts

Current approaches to excess mortality assume independent observations. Residual analysis 

of daily data, assuming independent errors, demonstrates the limitations of this assumption 

(eFigure 11). Assuming pairwise independence between a sequence of random variables, 

when in fact they are correlated, leads to downward bias of the standard error of the sum 

of the random variables. Therefore, if we incorrectly assume independence, the resulting 

standard errors will be an underestimate. This is particularly pernicious when computing 

standard errors for excess mortality estimates during long periods. To demonstrate this, 

we compared our method to a Poisson and over-dispersed Poisson model that assumes 

independent observations[7, 9, 11, 12, 13]. In the eAppendix we describe the details of our 

analysis. We found that the Poisson and over-dispersed Poisson model underestimates the 

standard errors. Conversely, modeling the correlation in the data, as done by our model, 

improved the standard error estimates (eFigure 12).

Discussion

In this article we introduced a method and accompanying software that are useful for 

estimating excess mortality from daily counts. The engine of our approach is a statistical 

model that accounts for seasonality, secular trends, demographic changes, weekday effects, 

and natural variation in a unifying and parsimonious way. The biggest advantage of 

our method over previous ones is the characterization of indirect effects with smooth 

functions, which provides enough power to detect small effects that are long-lasting. 

Another advantage is that our model can be applied to daily data, which provides better 

resolution in detecting periods of concern. We demonstrated that current methods are not 
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appropriate for daily counts because they do not model the correlation structure clearly 

observed in these data and thus yield underestimates of the standard errors. We were able 

to account for this by directly modeling the correlation using a mixed-effects model. This 

approach had the added advantage that we could incorporate the uncertainty introduced by 

the expected mortality estimate into our standard errors.

We note that using daily data often results in small counts and many zeros, in particular 

when data are stratified into specific demographic groups. We showed that by using 

smoothing our procedure produces accurate and unbiased estimates of the event effect even 

when the average number of deaths per day is as small as 0.10 per day. However, we advise 

users to perform exploratory analysis to assess model fit and provide tools to do this in our 

<mono_space> R <mono_space> package. Also, note that daily counts are not available in 

all jurisdictions. However, our approach is also applicable to lower resolution data such as 

weekly counts[25].

We demonstrated the utility of our approach by applying it to mortality data related to 

six hurricanes: Hugo, Georges, and Maria in Puerto Rico, Katrina in Louisiana, Sandy in 

New Jersey, and Irma in Florida. We found that the indirect effects of Hurricane Maria on 

Puerto Rico lasted several months after the storm, which is in accordance with previous 

findings[3, 4, 6, 5]. We also found a similar yet less severe pattern of indirect effects 

of Hurricane Georges on Puerto Rico. These event effects were much greater than those 

of Hurricanes Sandy and Irma on New Jersey and Florida, respectively. In contrast, the 

effects of Hurricane Katrina on Louisiana were much more direct, very possibly due to 

the failure of the levees[26]. In agreement with previous findings, we further found that 

the 2014 Chikungunya epidemic resulted in substantial excess mortality in Puerto Rico[22]. 

These results suggest a lack of robustness in Puerto Rico’s health system. Finally, using 

our method we found stark discrepancies between our excess death estimates in the USA 

from March 2020 to January 2021, and the cumulative COVID-19 death toll reported by 

the New York Times. Specifically, we found three mortality waves coinciding with observed 

increases in cases[16].

When applying our methodology, users should be aware that the number of knots defining 

the splines changes the results. In general, we found that using 12 knots per year was 

appropriate for exploring the data and detecting unknown periods of excess mortality, 

while six knots per year was appropriate to characterize indirect effects for hurricanes and 

outbreaks. However, we highly recommend viewing diagnostic plots that help evaluate the 

model fit and sensitivity analysis to determine how these choices affect final summaries. 

Our software provides tools that facilitate this type of exploration. Users should also be 

aware that results depend on the population sizes Nt and that these are themselves estimates 

produced by government agencies. Finally, we note that it is not always apparent if a period 

showing increased mortality should be classified as natural variability (several consecutive 

large εts) or an event for which f(t) > 0. This choice will often have to be guided by context 

and expertise rather than data. Furthermore, it is important to consider that our method does 

not permit the decoupling of estimated effects from different events during the same period. 

For example, the estimated effect for Hurricane Maria in Puerto Rico ran into the winter 
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of 2017–2018, during which time some US states were affected by an unusually severe flu 

season. [27]

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparison of our approach to the Farrington model based on estimates for Puerto Rico 

from a period including Hurricane Maria. A) Gray points represent weekly deaths counts 

used by CDC. The black and the orange curves are the expected number of daily counts 

and the threshold for significant excess deaths, respectively, as defined by the Farrington 

algorithm. The red rectangle denotes the number of consecutive days with excess deaths 

since the landfall of Hurricane Maria as determined by the Farrington algorithm. B) Gray 

points represent daily death counts. The black curve is the estimated expected counts based 

on our method and the blue curve represents the event effect estimate, μ̂t[1 + f̂(t)]. The black 

and blue ribbons are point-wise 95% confidence intervals for the expected counts and event 

effect, respectively. Finally, the red rectangle is as in A) but for our method.
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Figure 2: 
Estimated hurricane effects. A) Percent increase over expected mortality for the six 

hurricanes. B) Cumulative excess deaths for the 365 days after landfall for Hurricanes 

Maria, Georges, and Katrina, the three hurricanes with indirect effects lasting over two 

months. The data points correspond to the cumulative excess death estimate for the period of 

indirect effect presented in Table 1.
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Figure 3: 
Detecting epidemics and outbreaks. A) Estimated percent change from expected mortality 

and point-wise 95% confidence interval for the period associated with the Chikungunya 

outbreak in Puerto Rico. B) Estimated cumulative excess deaths and point-wise confidence 

intervals for the period associated with the Chikungunya outbreak. C) Estimated percent 

change from expected mortality and point-wise 95% confidence interval for the United 

States from January 2017 to January 2021. D) Estimated cumulative excess deaths and 

point-wise confidence intervals for the United States during the period associated with the 

COVID-19 pandemic. The dashed-gray curve is the cumulative COVID-19 related deaths 

reported by The New York Times.
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Table 1:

Comparison of direct and indirect effects for six hurricanes. The first column shows the hurricane name and 

category. The second column shows the jurisdiction for which we obtained data. The third column is the date 

the hurricane made landfall. The fourth column is our estimate of the percent change in mortality rate the day 

after landfall including a 95% confidence interval. The fifth column is our estimate for the duration of indirect 

effects in days. The sixth column shows the excess mortality estimate and a 95% confidence interval for the 

period defined by column five. CI indicates confidence interval.

Hurricane
(Category)

Jurisdiction Landfall
date

Percent
increase on

landfall (CI)

Indirect
effect

duration (days)

Excess
death

estimate (CI)

Hugo (3) Puerto Rico Sep. 18, 1989 16 (4 to 27) 12 94 (24 to 163)

Georges (3) Puerto Rico Sep. 21, 1998 37 (25 to 49) 90 1,300 (1,040 to 1,550)

Maria (5) Puerto Rico Sep. 20, 2017 74 (60 to 88) 197 3,280 (2,890 to 3,670)

Katrina (5) Louisiana Aug. 29, 2005 718 (704 to 732)
109

a
1,570 (1,300 to 1,830)

a

Sandy (4) New Jersey Oct. 29, 2012 12 (3 to 22) 12 195 (48 to 342)

Irma (5) Florida Sep. 10, 2017 6 (1 to 10) 48 1,280 (790 to 1,760)

a
The reported period for Katrina included 17 days with 0 in the f̂(t) 95% confidence interval.
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