Skip to main content
. 2023 May 8;13:1134626. doi: 10.3389/fonc.2023.1134626

Table 4.

Comparison between CNN-based predictions and radiomics-based predictions with different inputs (Mean ± STD).

Method Input ACC (%) SEN (%) SPE (%) AUC
T1 + annotation 75.76 ± 2.02 74.47 ± 3.05 76.70 ± 3.74 0.8293 ± 0.0221
CNN CEST + annotation 74.88 ± 2.58 74.37 ± 4.24 75.28 ± 2.27 0.8192 ± 0.0216
CEST + T1 + annotation 82.94 ± 1.23 82.34 ± 1.87 83.45 ± 2.50 0.8868 ± 0.0055
Rad
+LR
+L1
T1 + annotation 67.36 ± 1.70*** 67.16 ± 2.35** 67.57 ± 1.81** 0.6736 ± 0.0170***
CEST + annotation 72.03 ± 1.37* 77.51 ± 3.82 66.89 ± 2.68** 0.7220 ± 0.0151***
CEST + T1 + annotation 76.35 ± 1.98** 77.95 ± 3.04* 74.89 ± 1.92** 0.7641 ± 0.0204***
Rad
+SVM
+RBF
T1 + annotation 54.80 ± 1.23*** 68.83 ± 4.04*** 41.92 ± 1.53*** 0.5537 ± 0.0156***
CEST + annotation 58.08 ± 10.1*** 83.30 ± 3.00*** 34.68 ± 2.6*** 0.5899 ± 0.0082***
CEST + T1 + annotation 64.13 ± 1.91*** 66.30 ± 2.61*** 62.11 ± 1.73*** 0.6420 ± 0.0194***

*DL-based model is significantly better than the radiomics-based method using same inputs at p < 0.05 level. **]p < 0.01. ***]p < 0.001. Rad, Radiomics; LR, logistic regression; SVM, support vector machine; L1, L1-penalty; RBF, radial basis function kernel.