Skip to main content
. 2023 May 8;14:1105601. doi: 10.3389/fpls.2023.1105601

Table 5.

Classification performance of traditional machine learning and proposed 1D-CNN model for pesticide residues.

Model Class Accuracy(%) Precision(%) Recall(%) F1-score
RF all 82.50 82.70 82.50 0.8251
none 82.50 84.62 82.50 0.8354
acetamiprid 85.00 82.93 85.00 0.8395
malathion 87.50 79.55 87.50 0.8333
difenoconazole 77.50 77.50 77.50 0.7750
beta-cypermethrin 80.00 88.89 80.00 0.8421
KNN all 85.50 85.67 85.50 0.8553
none 87.50 87.50 87.50 0.8750
acetamiprid 87.50 81.40 87.50 0.8434
malathion 87.50 85.37 87.50 0.8642
difenoconazole 77.50 79.49 77.50 0.7848
beta-cypermethrin 87.50 94.59 87.50 0.9091
Proposed
1D-CNN
all 94.00 94.06 94.00 0.9396
none 90.00 90.00 90.00 0.9000
acetamiprid 95.00 95.00 95.00 0.9500
malathion 100.00 95.24 100.00 0.9756
difenoconazole 97.50 92.86 97.50 0.9512
beta-cypermethrin 87.50 97.22 87.50 0.9211