Table 5.
Classification performance of traditional machine learning and proposed 1D-CNN model for pesticide residues.
| Model | Class | Accuracy(%) | Precision(%) | Recall(%) | F1-score |
|---|---|---|---|---|---|
| RF | all | 82.50 | 82.70 | 82.50 | 0.8251 |
| none | 82.50 | 84.62 | 82.50 | 0.8354 | |
| acetamiprid | 85.00 | 82.93 | 85.00 | 0.8395 | |
| malathion | 87.50 | 79.55 | 87.50 | 0.8333 | |
| difenoconazole | 77.50 | 77.50 | 77.50 | 0.7750 | |
| beta-cypermethrin | 80.00 | 88.89 | 80.00 | 0.8421 | |
| KNN | all | 85.50 | 85.67 | 85.50 | 0.8553 |
| none | 87.50 | 87.50 | 87.50 | 0.8750 | |
| acetamiprid | 87.50 | 81.40 | 87.50 | 0.8434 | |
| malathion | 87.50 | 85.37 | 87.50 | 0.8642 | |
| difenoconazole | 77.50 | 79.49 | 77.50 | 0.7848 | |
| beta-cypermethrin | 87.50 | 94.59 | 87.50 | 0.9091 | |
| Proposed 1D-CNN |
all | 94.00 | 94.06 | 94.00 | 0.9396 |
| none | 90.00 | 90.00 | 90.00 | 0.9000 | |
| acetamiprid | 95.00 | 95.00 | 95.00 | 0.9500 | |
| malathion | 100.00 | 95.24 | 100.00 | 0.9756 | |
| difenoconazole | 97.50 | 92.86 | 97.50 | 0.9512 | |
| beta-cypermethrin | 87.50 | 97.22 | 87.50 | 0.9211 |