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Algorithm selection 
for protein–ligand docking: 
strategies and analysis on ACE
Tianlai Chen , Xiwen Shu , Huiyuan Zhou , Floyd A. Beckford * & Mustafa Misir *

The present study investigates the use of algorithm selection for automatically choosing an algorithm 
for any given protein–ligand docking task. In drug discovery and design process, conceptualizing 
protein–ligand binding is a major problem. Targeting this problem through computational methods 
is beneficial in order to substantially reduce the resource and time requirements for the overall drug 
development process. One way of addressing protein–ligand docking is to model it as a search and 
optimization problem. There have been a variety of algorithmic solutions in this respect. However, 
there is no ultimate algorithm that can efficiently tackle this problem, both in terms of protein–
ligand docking quality and speed. This argument motivates devising new algorithms, tailored to the 
particular protein–ligand docking scenarios. To this end, this paper reports a machine learning-based 
approach for improved and robust docking performance. The proposed set-up is fully automated, 
operating without any expert opinion or involvement both on the problem and algorithm aspects. 
As a case study, an empirical analysis was performed on a well-known protein, Human Angiotensin-
Converting Enzyme (ACE), with 1428 ligands. For general applicability, AutoDock 4.2 was used as the 
docking platform. The candidate algorithms are also taken from AutoDock 4.2. Twenty-eight distinctly 
configured Lamarckian-Genetic Algorithm (LGA) are chosen to build an algorithm set. ALORS which is 
a recommender system-based algorithm selection system was preferred for automating the selection 
from those LGA variants on a per-instance basis. For realizing this selection automation, molecular 
descriptors and substructure fingerprints were employed as the features characterizing each target 
protein–ligand docking instance. The computational results revealed that algorithm selection 
outperforms all those candidate algorithms. Further assessment is reported on the algorithms space, 
discussing the contributions of LGA’s parameters. As it pertains to protein–ligand docking, the 
contributions of the aforementioned features are examined, which shed light on the critical features 
affecting the docking performance.

Abbreviations
ACE  Human angiotensin-converting enzyme
LGA  Lamarckian-genetic algorithm
ALORS  Algorithm recommender system
DD  Drug discovery/design
CADD  Computer-aid drug discovery/design
SARs  Structure activity relationships
QSARs  Quantitative structure activity relationships
AS  Algorithm selection
PLDP  Protein-ligand docking problem
NFLT  No free lunch theorem
GA  Genetic algorithm
LS  Local search
CF  Collaborative filtering
MF  Matrix factorization
SVD  Singular value decomposition
RF  Random forest
FDA  Food and drug administration
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MOL  Molecular data file
PDB  Protein data bank
PDBQT  Protein data bank, partial charge (Q), & atom type (T)
AVG  Average
PCA  Principal component analysis
t-SNE  T-distributed Stochastic neighbor embedding
QED  Quantitative estimation of drug-likeness
PEOE  Partial equalization of orbital electronegativity
HIV  Human immunodeficiency virus
NNs  Neural networks
GNNs  Graph neural networks

In the wake of emerging diseases and rising awareness of the desire to improve human well-being, there has 
been a persistent effort to implement new medical innovations. A broad array of concepts in Drug Discovery/
Design (DD)1 has been the leading topics of interest. The DD process, however, is time-consuming and expen-
sive. The entire DD pipeline can last as long as 15 years, requiring high budgets and the participation of large 
groups of scientists. In that respect, the traditional DD process often comes with a high cost and risk and a low 
success rate, factors that discourage new research and hinder substantive advances in this  field2. A major factor 
that contributes to this fact is that DD is essentially a search problem of the enormous chemical space to detect 
druggable  compounds3,4. Arguably, the most critical step in this arduous process is identifying the new chemical 
compounds that could be developed into new medicines.

Computational approaches have been practical, in general, as they are effective mechanisms to move the DD 
process forward at an increased pace, with improved successful outcomes. Computer-Aided DD (CADD)5–10 is 
an umbrella term covering those computational procedures. To be specific, CADD is a collection of mathematical 
and data-driven tools that cut across disciplines with respect to their utilization in DD. These tools are imple-
mented as computer programs and are accommodated in conjunction with varying experimental methodologies 
to expedite the discovery of new chemical entities. The CADD strategies can quickly triage a very large number 
of compounds, identifying hits that can be converted to leads. The laboratory methods then take over for test-
ing and finalizing the drug. This process is iterative and reciprocal. The outcomes of the CADD methods are 
exploited to devise compounds that are subjected to chemical synthesis and biological assay. The information 
derived from those experiments is exploited to further develop the structure activity relationships (SARs) and 
quantitative SARs (QSARs) that are embedded in the CADD approaches.

Among the CADD methods, molecular docking has been particularly popular. Molecular docking is the 
process by which a small molecule, generally referred to as a ligand, is computationally interacted with a protein 
or other biomolecules without any laboratory work. Procedurally, it varies the ligand’s conformation and orien-
tation in limited and stochastic steps. Its goal is to seek the best docking conformation, or pose, that minimizes 
the binding energy. The results returned by the molecular docking programs are usually the binding energy 
value and a protein–ligand complex file that are indicative of the actual binding affinity and position when the 
ligand is co-crystalized with the receptor. Molecular docking has been benefited in different CADD procedures, 
including virtual screening, a process that queries the binding of a large number of molecules to a particular 
disease (biological) target.

This study aimed at applying Algorithm Selection (AS)11,12 to automatically suggest algorithms that best 
solve the Protein–Ligand Docking problem (PLDP). The idea of AS is motivated by the No Free Lunch Theorem 
(NFLT)13. The NFLT essentially states that every algorithm performs the same on average when it is applied 
to all possible problem instances. Thus, every algorithm has its own strengths and weaknesses, no matter how 
complex and advanced it is. AS basically attempts to choose the most suitable algorithm from an existing pool 
of algorithms to address a given problem instance of any domain. The objective of this work was to identify the 
most suitable algorithm from a fixed pool of PLDP algorithms for each given PLDP instance.  AutoDock414 was 
preferred as it is a widely used PLDP tool, supplying a favorable algorithm pool. An existing AutoDock solver, 
Lamarckian GA (LGA)15, which integrates the Genetic Algorithm (GA)7 and the Local Search (LS)16, was used 
in a parameterized manner such that a suite of candidate algorithms was derived. This step resulted in 28 LGA 
variants, including the LGA with its default parameter values. They were used on 1428 PLDP instances, each 
concerning one ligand out of 1428 ligands and a single target protein of Human Angiotensin-Converting Enzyme 
(ACE). Those 28 algorithms are managed by  ALORS17, which is a recommender systems-based AS approach. 
To be able to use AS, a feature set is derived for representing the PLDP instances, including the widely adopted 
molecular descriptors as well as the substructure fingerprints. Following this setup, an in-depth experimental 
analysis is reported, initially comparing each standalone LGA variant against ALORS. Concerning the analysis 
capabilities of ALORS, the resemblance of the candidate algorithms—in terms of the LGA parameter values 
in this case—and the PLDP instance similarities besides the importance of the LGA parameters and PLDP 
instance features are investigated. The consequent assessment provides practical insights for how to use LGA 
with increased performance and what to consider when solving a particular PLDP scenario.In the remainder 
of the paper, Section "Methods" discusses the relevant literature both on PLDP and AS after formally describ-
ing them. The AS method employed for choosing algorithms is detailed in Section "Results and discussion". A 
comprehensive computational analysis and discussion are provided in Section "Conclusion".

Protein ligand docking. Protein–ligand docking plays a crucial role in modern pharmaceutical research 
and drug development. Docking algorithms estimate the structure of the ligand-receptor complex through sam-
pling and ranking. They first sample the conformation of the ligands in the active site of a receptor. Next, they 
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rank all the generated poses based on specific scoring functions or simply by calculating the binding  energy18. 
Docking algorithms are thus capable of simulating the best orientation of a ligand when it is bound to a protein 
receptor.

The initial docking technique is based on the Fischer’s lock-and-key  assumption19. This assumption treats 
both the ligand and the receptor as rigid bodies with their affinity proportional to their geometric forms. In 
most elementary rigid-body systems, the ligand is sought in a six-dimensional rotational or translational space 
to fit the binding site. Later, Koshland proposed the theory induced-fit20, which implies that ligand interactions 
would continuously modify the active site of a receptor. In essence, the docking procedure is considered dynamic 
and adoptable. In the last several decades, numerous docking technologies and tools have been developed, 
such as  DOCK21,  AutoDock22,  GOLD23, and  Glide24. Besides the differences in the implementation of 3D pose 
investigation, protein receptor modeling, etc., the major variation among them is the evaluation of the binding 
affinity, performed by different Scoring Functions (SFs)25. The existing scoring functions can be categorized as 
(1) force field based, (2) empirical function based, and (3) knowledge  based26. Because of the heterogeneity of 
how protein–ligand interaction is modeled in different scoring functions, it is likely that diverse performance 
can be observed if one scoring function is applied to all docking tasks.

This study utilized AutoDock4 as it is an open-source, widely used system. It is the first docking software that 
can model ligands with complete  flexibility27. AutoDock4 consists of two fundamental software components: 
AutoDock and AutoGrid. While AutoDock is the main software, AutoGrid calculates the noncovalent energy 
of interactions and produces an electrostatic potential grid  map28. As a feature of  AutoDock427, it is possible to 
model receptor flexibility by shifting side chains. To deal with side-chain flexibility, a simultaneous sampling 
method is provided. While the other chains stay stiff, the user-selected chains are sampled by a certain method 
with the ligand. With AutoGrid, the rigid portion is processed as a grid energy map. The grid maps together with 
the receptor’s flexible portion direct the selected ligands’ docking  process28.

AutoDock4 adopts the physics-based force field scoring function with van der Waals, electrostatic, and 
directional hydrogen-bond potentials derived from an early version of the AMBER force  field29. In addition, a 
pairwise-additive desolvation term based on partial charges, and a simple conformational entropy penalty are 
 included26. The scoring function consists of electrostatic and Lennard–Jones VDW terms:

where Aij and Bij are the VDW parameters, rij refers to the distance between the protein atom i and the ligand 
atom j , and qi and qj are atomic charges. ε

(

rij
)

 is introduced as a simple distance-dependent dielectric constant in 
the Coulombic term. However, the desolvation effect cannot be represented in the Coulombic  term26. The ignored 
solvent effect will lead to a biased scoring function that will not consider those relatively low-charged ligands.

A knowledge-based scoring  function25 is further established based on the statistical mechanics of interacting 
atom pairs. A pairwise additive desolvation term is introduced, which is directly obtained from the frequency of 
occurrence of atom pairs by the Boltzmann relation. The energy potentials derived from structural information 
are also included in determining atomic  structures26. The potentials are calculated by

where κB is the Boltzmann constant, T is the absolute temperature of the system, ρ(r) is the number density of 
the protein–ligand atom pair at distance r , and ρ ∗ (r) is the pair density when interatomic interactions are zero. 
The inverse Boltzmann stands for the mean-force potentials, not the true potentials, which are quite different 
from the simple fluid  system26. Thus, although it excludes the effects of volume, composition, etc., it still helps 
to convert the atom–atom distances into a function suitable for complex protein systems.

Most AutoDock4 users, as well as users of other molecular docking platforms, tend to follow the recom-
mended docking protocol with the given default values. This practice is mainly followed to avoid tweaking the 
docking program. Furthermore, some docking programs including AutoDock4, only provide a limited set of 
options for executing the search with a particular scoring function, but there still remain a lot of other combina-
tions. In the case of AutoDock4, the recommended choice of algorithm is the Lamarckian Genetic Algorithm 
(LGA). That being said it is possible to show docking scenarios where LGA performs relatively poor.

Algorithm selection. The selection of appropriate algorithms for problem solving in a variety of contexts 
has drawn increasing attention in the last few  decades30. A phenomenon known as performance complemen-
tarity argues, based on empirical research, that one algorithm may perform well in one setting while others 
perform better in other  conditions12.

The concept of per-instance algorithm selection was proposed and  examined11. This idea refers to finding 
which algorithm is the best for a given  instance12. The rationale for the in-depth examination of this algorithm is 
the selection of a suitable algorithm from a huge number of diverse existing algorithms. However, it took decades 
to become widespread for being applied to address Boolean satisfiability (SAT) and other difficult combinatorial 
 problems31. In the designated procedure, a rule is developed between an appropriate algorithm and a certain 
scenario. In optimization issues, per-instance algorithm selection has therefore become prominent.

As the application of machine learning methods has been proven to be competent in many tasks, an auto-
matic rule-connecting method has been  studied12. Detailed and insightful  instructions32 have been provided 
on the first automatic algorithm selection process and it has addressed a number of important issues, including 
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the selection of regression or classification and the distinction between dynamic and static feature. However, 
continuous issues have been omitted. Furthermore, a generalization to the continuous optimization  problem33 
has been proposed by highlighting the benefits of discrete problems.

Methods
The main component of the proposed approach is the algorithm selection (AS) module as visualized in Fig. 1. It is 
responsible for choosing an algorithm in a per-instance manner and for matching a suitable algorithm to address 
a given (PLDP) instance. Also, referring to the earlier AS description, initially a group of PLDP algorithms, A, 
should be provided. Although these algorithms can be determined and used in a fixed way, algorithm portfolio 
generation  strategies34–36 can be incorporated to derive candidate algorithms. Alongside an algorithm set, an 
instance set I , should be accommodated to model the AS system. Although AS is a problem-independent strategy, 
the behavior of AS is highly affected by the choice of those instances. If the AS is planned to be used to realize a 
rather specific family of docking tasks, I  can include the instances from that particular family. Otherwise, to have 
a generalized AS model, it is beneficial for I to contain a wide range of diverse PLDP instances. In the current 
study, there is only one target protein, yet a rather large set of ligands. Thus, any built AS model here is specific 
to that target protein while having some level of generality regarding the ligands. In relation to this diversity 
aspect, having a high diversity through complementarity in A can potentially offer improved and robust AS 
models. The complementarity, here, denotes having algorithms with varying problem solving capabilities. While 
an algorithm works well on a certain type of instance, another algorithm can perform well on instances where 
the earlier algorithms perform poorly. The chosen A and I are then used to generate performance data, P(A, I) , 
denoting the performance of each candidate algorithm, a , on each problem instance, P(a, i) = pai . During this 
performance data generation step, it is critical to take into account the stochastic / non-deterministic nature 
of candidate algorithms. This means that if an algorithm may deliver a different solution after each run on the 
exact same problem instance, it will be misleading to run that algorithm only once and use that value in P . In 
such cases, it is reasonable to run those algorithms multiple times and use their mean or median values as their 
per-instance performance indicators. One last element required to build an AS model is to specify the number 
of features, F , adequately describing the characteristics of the target problem instances. With data manipulation 
or data format conversions, this step can be skipped as the features are automatically  derived37. Otherwise, with 
the help of the chemistry experts, reasonably representative instance features can be collected. Yet, it is poten-
tially possible to come up with such features referring to the relevant literature, without the need of the actual 
presence of experts. That said, depending on the target problem, it might be good enough to solely utilize basic 
statistical measures and values achieved via  landmarking38. At this point, traditionally, an AS model can be built, 
in the form of performance prediction, � : F(I) → P(A, I) , or other existing AS strategies can be employed.

Following the given framework, Fig. 2 visualizes the AS setting performed in this article. The data genera-
tion step is achieved based on AutoDock 4.2. For the AS method, an existing technique,  ALORS117, is recruited. 
ALORS is an algorithm recommendation system, based on collaborative filtering (CF)39. It has been successfully 
applied for different selection decisions on varying problem  domains40–43, including those on a relevant protein-
structure prediction  problem44,45. CF is a type of recommendation approach, that predicts how much users like 
certain items such as movies and products. It makes predictions based on relating similar entries both at the 
user and item levels. Unlike other recommendation methods, CF works with sparse entries. ALORS accom-
modates the CF idea by considering problem instances as the users while considering algorithms as the items; 
that is, how much an instance likes an algorithm, depending on the relative success of the algorithm compared 
to all the candidate algorithms. Similar to the CF applications, ALORS also works with rank-based data, the 
ranks of all the present algorithms on all the problem instances. In that respect, ALORS performs algorithm 
selection (AS) as a rank-prediction task. However, unlike the existing AS systems, ALORS indirectly performs 
rank predictions. Essentially, a prediction model derived by ALORS is a feature-to-feature model, as detailed in 
Algorithm 1. It maps a set of hand-picked features characterizing the target problem instances to another group 
of instance features. The latter suite of features is the ones automatically extracted from the rank performance 
data by Matrix Factorization (MF). To be specific, Singular Value Decomposition (SVD)46 is used as the MF 
method for dimensionality reduction.

Figure 1.  Illustration of Algorithm Selection. The traditional per instance Algorithm Selection (AS) process.
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Algorithm 1. ALORS algorithm recommendation

Input
Performance matrix in ranks ∈ | |×| |

Initial representation ∈ | |× of the problem instances
Features f of the target problem instance
AS Model Generation
Build matrices U and V
Build = {( , ), = 1… | |}

Learn : → from (for a given matrix rank k) AS Prediction

Compute = (f)

Return …| | < , >

ALORS here is applied with k = 5 with respect to the rank of MF by SVD. Regarding to the modelling com-
ponent of Random Forest (RF)47, the number of trees is set to 100 which is the default value in Scikit.

The candidate algorithm set is composed of 28 algorithms while the number of docking scenarios, 
instances, is 1428. The algorithms are essentially specified by setting distinct parameter configurations of a 

Figure 2.  Framework of ALORS for Protein–Ligand Docking. All ligands are docked with ACE using 28 
algorithms, each with a different parameter configuration in AutoDock4 during the data generation procedure. 
The algorithm configuration that produces the lowest docking scores averaged for 50 runs is selected as the best 
algorithm for the given instance, such as the 28th algorithm setting (A28). The ALORS model is trained using 
molecular descriptors and fingerprints, and the best algorithm labels corresponding to each ligand. Our model 
uses features of a single new ligand to determine the best algorithm configuration for inference.
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Lamarckian- Genetic Algorithm (LGA), as detailed in Table 1. The evaluation is realized through tenfold cross-
validation (10-cv).

The ligands are molecules approved by the U.S. Food and Drug Administration (FDA) 2 in ZINC15  database48. 
Human Angiotensin Converting Enzyme (ACE), a critical membrane protein for the SARS-COV virus, and 
renal and cardiovascular function, is chosen as the target receptor (PDB DOI: 1O86)49. The original ligand files 
are in MOL2 format and are converted to PDB format for docking via  Openbabel50. Receptors and ligands are 
preprocessed by AutoDock Tools and include addition of hydrogen bonds and charges in the form of PDBQT. 
The whole docking process is performed via AutoDock 4.2. The random seed is fixed for the repeatability of 
the experiment. Each algorithm is set to run for 50 times for each ligand and the number of energy evaluations 
is set to 2, 500, 000. They are both fixed to control the computational resources each algorithm can utilize. 
The rest of the settings are default with details described in AutoDock4’s user guide 3. For feature extraction, 
 RDKit51 is used to generate molecular descriptors, and the PubChem Substructure Fingerprints are computed 
by PaDEL-Descriptor52. Molecular descriptor are the numerical values of a molecule’s properties computed by 
 algorithms51. After the removal of the descriptors with the value 0 across all ligands, 208 features are obtained. 
Following this step, the features with almost the same values across different ligands are discarded, which results 
in 119 useable features. All the features are determined through min–max normalization, fitting each feature’s 
values to [0, 1]. PubChem Substructure Fingerprint is an ordered list of binary values (0/1), which represents the 
existence of a specific substructure, such as a ring  structure53. In our case, for each ligand, the length of binary 
encoded list is 881.

Table 1.  Docking configurations. The standalone docking algorithms are derived from a Lamarckian-Genetic 
Algorithm (LGA). A28 use classical Solis and Wets local searcher (sw), and the rest use pseudo-Solis and 
Wets local searcher (psw). Population size: the number of individuals, i.e., solutions, maintained in each 
generation of LGA. A larger population size typically requires more computational resources as more searches 
are performed before convergence. Mutation rate: the probability that an individual is mutated, i.e., a solution 
is manipulated. A higher mutation rate will lead to more exploratory searches while a lower rate renders 
the search more exploitative. Window size: the size of the energy window that is used to determine which 
individuals will be subjected to the local search procedure. A smaller window size will result in more focused 
refinement of the best individuals, while a larger one keeps more individuals for the local search.

Algorithm Population size Mutation rate Window size

A1 50 0.02 10

A2 150 0.02 10

A3 200 0.02 10

A4 150 0.5 10

A5 150 0.8 10

A6 150 0.02 30

A7 150 0.02 50

A8 50 0.02 30

A9 50 0.02 50

A10 200 0.02 30

A11 50 0.5 10

A12 50 0.5 30

A13 50 0.5 50

A14 50 0.8 10

A15 50 0.8 30

A16 50 0.8 50

A17 150 0.5 30

A18 150 0.5 50

A19 150 0.8 30

A20 150 0.8 50

A21 200 0.02 50

A22 200 0.5 10

A23 200 0.5 30

A24 200 0.5 50

A25 200 0.8 10

A26 200 0.8 30

A27 200 0.8 50

A28 150 0.02 10
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Results and discussion
Figure 3 illustrates the ranks of each algorithm across all the docking scenarios for AVG and BEST, respectively. 
It can be seen that while some algorithms perform better than other in general, their relative performances 
vary. Beyond that, there is no ultimate algorithm that consistently outperforms the remaining algorithms on 
all the protein–ligand docking instances. This view suggests that algorithm selection is likely.to beat all these 
algorithms by automatically matching the right algorithms with the instances that can be effectively solved by 
the selected algorithms.

Table 2 reports the ranking of each standalone algorithm besides ALORS. All those algorithms are accom-
modated as the candidate algorithms for ALORS. Two separate performance evaluation is delivered. The first one 
focuses on the algorithms’ average performance, considering that all the utilized algorithms are stochastic. The 
second case relates to the best docking solutions out of all the runs on each docking instance. For both scenarios, 
ALORS outperforms all the standalone algorithms, while the performance difference on the AVG case is more 
drastic than in the BEST case.

Overall, ALORS consistently delivers the top and most robust performance across all docking instances. 
The robustness aspect can be verified from the standard deviation values. Taking a closer look at the results and 
referring to the AVG performances, A6 happens to be the best standalone algorithm, meaning that it is tradi-
tionally used as the sole algorithm for all the docking instances, unlike AS, choosing one docking algorithm for 
each docking instance. While A6’s mean rank is 7.90, ALORS results in the mean rank of 6.00. A6 is followed 
by A7, with a mean rank of 7.91. Additionally, the default algorithm setting that is built into AutoDock, A2, is 
found to be the third best standalone approach on the present test scenarios. As to delivering the BEST docking 
results, unlike the AVG case, A8 offers the top mean rank of 6.80, among the constituent algorithms, following 
ALORS’ mean rank of 6.75. A1 offers a performance quite close to A8, with a mean rank of 6.82. The closest 
performer after A1 is A9 with the mean rank of 7.09. The default configuration of A2 takes the fifth place among 
these standalone methods.

Figure 4 visualizes the mean rank changes for both AVG and BEST, referring to the top chart. It is noteworthy 
that the relative performance trend among all the algorithms is somewhat maintained. The remaining charts 
shows the sorted docking methods on AVG and BEST, separately. Just by visually analyzing the charts, closely 
ranked methods, in groups, can be detected. For instance, A5, A19, A20, A25, A26, and A27 clearly deliver the 
worst performance among all algorithms.

Figure 5 illustrates the similarities between all the constituent algorithms in terms of hierarchical clustering.
At the lowest level of the clusters, the following groups of algorithms happen to be highly similar: {A8, A9}, 

{A10, A21}, {A2, A7}, {A11, A12}, {A5, A19}, {A26, A27}, {A22, A23}, {A14, A17}, {A15, A16}. Referring to 
Table ~ \ref{algorithm-configurations}, except the {A14, A17} pair, all the grouped algorithms come with the 
same configuration with reference to their population sizes and mutation rates. The third variation used for 
utilizing a different configuration at the algorithm level, the window size, does not cause any drastic changes on 
the behavior of those algorithms.

Regarding this aspect of algorithm similarity, by only keeping one algorithm from similar ones, a potential 
sub-portfolio offering comparable performance would be {A1, A2, A3, A4, A5, A6, A8, A10, A11, A13, A14, A15, 
A18, A20, A22, A24, A25, A26, A28}, involving 19 algorithms out of 28 options. The portfolio can be further 
reduced by referring to large algorithm clusters by going one level higher on the hierarchical cluster. Then, an 
example portfolio would be {A1, A3, A6, A13, A14, A18, A20, A24, A28}.

Figure 6A visualizes the importance of the PLDP instance features. The importance aspect is determined 
through the Gini importance values explored while building the Random Forest (RF) prediction models under 

Figure 3.  Ranks of Docking Algorithms. (A) The ranks of the docking algorithms across all the instances, based 
on the AVG performance. (B) The ranks of the docking algorithms across all the instances, based on the BEST 
performance.
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ALORS. Among these 119 features, 4 of them obtain the much higher Gini Importance, thus coming as the 
significantly most critical compared to the rest. The corresponding features are.

• NumRotatableBonds
• BalabanJ
• Kappa1
• Kappa2

In addition to molecular descriptors such as characteristics, Fmd , substructure fingerprints, Fsf  , are used to 
perform AS. Fingerprints are binary forms of features, each representing the presence of a highly specific sub- 
structure. In that respect, it is relatively hard to benefit from the individual features as in the case for molecular 
descriptors. Table 3 reports the ALORS’ performance with varying feature sets. The results indicate that Fmd 
is more informative than Fsf  as expected. Focusing on Fmd , two subsets are additionally evaluated, which are 
Fmd,top4 and Fmd,top9.They are essentially the top features measured by their Gini values extracted from the original 
ALORS model. As mentioned above, Fmd,top4 denotes the main significantly influential features, while Fmd,top9 
has 5 additional features besides the ones in Fmd,top4 They are chosen considering the Gini importance value is 
cut-off from 0.15. Both subsets are good enough to outperform the standalone algorithms rather than using the 
complete 119 features. However, the larger subset Fmd,top9 provides better results than Fmd,top4 . Figure 6B visual-
izes the contributions of each feature from Fmd,top9 when an AS model is built with Fmd,top9 . A similar approach is 
followed for Fsf  , resulting in a subset of 54 features, Fsf ,top54 . In relation to that, Fig. 6E illustrates the importance 
of each of these features. The use of 54 features out of 881 provided further performance improvement. Con-
sidering that the complete fingerprint feature set is rather large, an extra ALORS model is built using a higher 
number of tresses for RF, increasing from 100 to 500. Although superior performance with the mean rank of 
6.39 5.62 is achieved compared to the default ALORS setting, the performance is still worse than the scenario 
using Fsf ,top54. The final evaluation on the features is carried out utilizing both Fmd and Fsf  , in particular their 
aforementioned subsets, Fmd,top4+sf ,top54 and Fmd,top9+sf ,top54 . These combinations improved both the sole, Fmd 

Table 2.  Algorithm performance. The ranking of the protein–igand docking algorithms with ALORS, utilizing 
all those standalone algorithms as a high-level approach. (The results in bold refer to the overall best ones).

Algorithm

AVG Perf BEST Perf

Mean ± SD Mean ± SD

A1 8.48 ± 8.00 6.82 ± 6.40

A2 8.04 ± 6.82 9.92 ± 6.22

A3 8.59 ± 6.41 9.96 ± 5.95

A4 17.13 ± 5.03 18.22 ± 6.70

A5 23.25 ± 5.25 20.55 ± 6.71

A6 7.90 ± 6.79 9.09 ± 5.88

A7 7.91 ± 6.62 8.99 ± 5.89

A8 8.50 ± 8.17 6.80 ± 6.31

A9 8.48 ± 8.07 7.09 ± 6.65

A10 8.38 ± 6.15 10.16 ± 5.89

A11 12.47 ± 4.27 15.16 ± 6.28

A12 12.50 ± 4.19 14.61 ± 6.20

A13 12.29 ± 4.31 15.12 ± 6.35

A14 18.40 ± 5.46 18.33 ± 6.83

A15 18.17 ± 5.45 17.92 ± 6.87

A16 18.56 ± 5.52 18.26 ± 6.70

A17 17.20 ± 4.98 18.12 ± 6.63

A18 17.27 ± 5.08 18.37 ± 6.56

A19 23.16 ± 5.29 20.77 ± 6.65

A20 22.94 ± 5.35 20.80 ± 6.73

A21 8.45 ± 6.24 10.05 ± 6.18

A22 18.63 ± 5.35 19.28 ± 6.51

A23 18.91 ± 5.17 19.12 ± 6.64

A24 18.49 ± 5.29 18.98 ± 6.73

A25 24.04 ± 5.33 21.14 ± 6.71

A26 24.12 ± 5.16 21.00 ± 6.78

A27 24.05 ± 5.44 20.98 ± 6.80

A28 12.66 ± 6.05 13.29 ± 6.77

ALORS 6.00 ± 5.14 6.75 ± 5.90
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and Fsf  , feature subset based results. This outcome suggests that the substructure fingerprints come with extra 
information which is not directly come from the molecular descriptors. Corresponding feature importance are 
provided in Fig. 6C and D for Fmd,top4+sf ,top54 and Fmd,top9+sf ,top54 respectively.

Molecular descriptor analysis. Considering the Gini importance, top 4, top 9, and top 40 features are 
picked for analyzing the instance space. To visualize the instances in the 2-dimensional space, Principal Com-
ponent Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE) are applied to reduce those 
features into 2 dimensions. The instance representations achieved by PCA and t-SNE are shown in Fig.  7A. 
Compared to the PCA components, t-SNE delivers more separated instance clusters. By observation and analy-
sis, selecting the 9 features turns out to be the most discriminant. Thus, k-means  algorithm54 is applied to cluster 

Figure 4.  Mean Ranks of Docking Algorithms. The mean ranks of all the tested docking methods. (A) relative 
comparison on both AVG and BEST, (B) sorted comparison on AVG, (C) sorted comparison on BEST.

Figure 5.  Clustering of Docking Algorithms. A hierarchical clustering of the constituent docking algorithms 
based on the latent features extracted by SVD (k = 5) on the AVG case.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8219  | https://doi.org/10.1038/s41598-023-35132-5

www.nature.com/scientificreports/

the instances using those 9 features. After trying different k ∈ [2, 15] values, the best k is determined as 2 with 
respect to the silhouette score which is derived as the mean silhouette  coefficients55 across all the instance points.

The final results of the clustering are shown in Fig. 7B. As the score indicates, it is best to divide the 9 top 
features into two clusters. It is observed that there is a distinct divide in the middle of the data. While we can find 
a more diverse spread of points in t-SNE, the division is relatively indistinct. In PCA, where distinct groups are 
clustered more tightly, the clustering is clearer for the other feature set if it is divided into two groups. Also, in 
t-SNE, the part in the top left corner from -10 to 40 PC2 is more concentrated, whereas the other part is dispersed 
and sparse. Figure 7C reflects a striking situation of the second feature set where five latent features are used. The 
amount of data in these two clusters is distributed heterogeneously, with one group outnumbering the other to 
a great extent. Consequently, the pattern of a particular group can be captured.

It should be noted that the silhouette score cannot indicate the situation when the points are only considered 
as a whole group. Though we have no idea how one group performs using the evaluation of score, we can still 
observe that the points are actually evenly dispersed in either PCA or t-SNE. This means that it is best to consider 
them as a group. That is to say, there is no obvious clear division or clustered pattern when considering these 
features. As shown in Fig. 8, group 0 as type 0, denoted by the green color, is clustered more closely in general. 
Group 0 shows a higher median except for BalabanJ. Although most of the data in group 0 are clustered, there 
are more outliers compared to group 1. Strikingly, kappa3 shows a strange pattern where data are extremely 
gathered with several outliers two to three times larger than most of the data.

Figures 9A and B show the conformational and interaction difference of an instance docked with default 
algorithm and the best algorithm. As more hydrogen bonds are observed, the docking pose predicted by the 

Figure 6.  Gini Importance of Features. The blues ones are the significantly more critical than the rest 
concerning their Gini values. (A) The Gini importance values of all the docking instance features, (B) The Gini 
importance values of the Fmd,top9 features, (C) The Gini importance values of the Fmd,top4+sf ,top54 features, (D) 
The Gini importance values of the Fmd,top9+sf ,top54 features, (E) The Gini importance values of the Fsf ,top54 
features.

Table 3.  Ranking of different feature sets. The ranking of the ALORS recommendation models with distinct 
instance feature sets on AVG.

Feature set Mean ± Sd

Fmd 6.00 ± 5.14

Fmd,top4 6.30 ± 5.32

Fmd,top9 6.11 ± 5.16

Fsf 6.57 ± 5.83

Fsf ,top54 6.29 ± 5.45

Fmd,top4+sf ,top54 6.10 ± 5.20

Fmd,top9+sf ,top54 08 ± 5.26
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Figure 7.  Features Visualization with PCA, t-SNE and Kmeans. (A) 4, 9 and 40 features visualization with PCA 
and t-SNE. (B) In 2-D PCA and t-SNE space, Kmeans classification results of 9 features. (C) In 2-D PCA and 
t-SNE space, Kmeans classification results of 5 latent features, extracted by SVD, for a different feature set.

Figure 8.  Boxplot of Features. Type 0 denote the same group 0 when conducting PCA and t-SNE and type 1 
denote group 1. The distributions of 9 selected features in the two clusters are given to demonstrate the possible 
patterns for each group. Group 0 shows a clustered group while with more outliers compared to group 1.

Figure 9.  Interaction Plot of Ligand ZINC000000000053 and ACE. (A) under default parameter configuration, 
(B) under best parameter configuration in AutoDock4.
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best parameter configuration is likely to yield a more stable binding with the receptor protein compared to the 
pose predicted by the algorithm with default parameter configuration.

As mentioned above, using the chemical descriptors provided by the open-source python library  RDKit51, 
208 features, molecular descriptors, are generated for each of the molecules involved in the docking process. 
Referring to their importance, starting from the most important one, the top 9 features are (1) the number of 
rotatable bonds, (2) the Balaban’s J index, (3.4.5) the Kappa molecular shape index including Kappa 1,2,3, (6) 
the quantitative estimate of the drug-likeness index, (7) the electrotopological state index, (8) Bertz molecular 
complexity index, and (9) the partial equalization of orbital electronegativity index. Although these features 
have been highlighted by ALORS, there is an additional need to examine their applications in QSAR studies 
concerning whether they can be comprehended in the docking process.

Number of bond rotations. The number of rotatable bonds can reflect the flexibility of a  molecule56. 
Previous studies suggest that this.molecular descriptor helps to differentiate between drugs and other small mol-
ecules as drugs have lower  flexibility57,58. Essentially, molecular docking is a searching process of best positions 
and poses under constrained docking space. Varying the number of rotatable bonds directly affects the potential 
docking poses returned by AutoDock. Thus, it is important to adjust the number of bond rotations, when ligands 
are preprocessed via AutoDock  Tools27.

Balaban’s J index. Balaban’s J index is one of the topological indices that treat molecules as connected 
graphs, which represent.the molecular structure by a single numerical  number59. The J Index improves the dis-
criminating power especially for isomers since it employs the average sums of distances inside the molecule. It 
is sensitive to the number of bonds or atoms difference. The calculation of the index is computationally efficient 
while preserving the physical and structural information of the  molecule60,61.

Kappa 1/2/3. The Kappa molecular shape index is another type of topological index that focuses on molecu-
lar shape information. The kappa molecular shape index quantifies the difference between the most complex and 
the potentially simplest  conformation62. Kappa 1, 2, and 3 are able to discriminate between isomers that cannot 
be distinguished if measured by the number of atoms or  bonds63. Therefore, kappa molecular shape indices are 
reliable descriptors for measuring the overall connectivity of a molecule.

QED. QED is short for quantitative estimation of drug-likeness, which was proposed to provide a practical 
guidance in drug selection as a refined alternative to Lipinski’s rule of  five64. QED is an integrated index that 
comprises 8 physical properties of molecules, including the octanol–water partition coefficient, the number 
of hydrogen bond donors and acceptors, the molecular polar surface area, the number of rotatable bonds, the 
number of aromatic rings and the number of structural alerts. QED has been applied in virtual screening of large 
compound databases to filter favorable  molecules65 and to aid the building and benchmarking of deep learning 
models for de novo drug  design66. QED’s strength is also mirrored by the given Gini importance.

EState_VSA4. EState_VSA descriptor compromises both EState (electrotopological state) and the VSA 
index. EState index contains atom-level and molecular level topology  information67. Unlike the Kappa molecu-
lar shape index, which emphasizes the structure of molecules, the electrotopological state index reveals the 
electronegativity of each atom as well as the weighted electronic effect. It has been validated by its strong cor-
relation with the 17O NMR shift in ethers and the binding affinity of various  ligands68,69. VSA is the Van der 
Waals surface area value of an atom, and it is used to determine whether EState indices are calculated. Regarding 
molecular docking, the electrostatic interaction between the ligand and the receptor is a significant component 
of the energy evaluation in AutoDock’s semi-empirical force field computation, which may explain why it ranks 
eighth out of 208 descriptors.

BertzCT. Bertz index was defined to represent the complexity of a molecule quantitatively derived from 
molecular  graphs70. It comprises two properties of the molecule: the number of lines in the line graph and the 
number of heteroatoms. As both heterogeneity and connectivity are integrated into one index, abundant informa-
tion is extracted from the molecule. BertzCT is particularly useful in organic synthesis. It can be used to monitor 
the complexity of synthetic products, and thus evaluate intended synthesis route prior to the  implementation71.

PEOE_VSA1. PEOE_VSA is another hybrid descriptor consisting of the partial equalization of orbital elec-
tronegativity and the Van der Waals surface area. The partial equalization of orbital electronegativity (PEOE) was 
first presented to assess reactivity in chemical synthetic  design72. PEOE obtains the partial charges based on the 
atomic orbital electronegativity iteratively throughout the entire molecule. The electronegativity of atoms can be 
accurately computed in complex organic molecules even with electron withdrawing and donating effects. PEOE 
was first tested to model the taste of compounds and later applied to QSAR studies that included prediction of 
anesthetic activity and inhibition of HIV  integrase73,74. To simulate in vivo environment, it is highly suggested to 
assign partial charges to ligands to obtain a reliable binding energy in AutoDock.

Conclusion
This paper is aimed at introducing and further evaluating ALORS as a recommender system-based algorithm 
selection system which automatically selects LGA variants on a per-instance basis on AutoDock. Features that 
include molecular descriptors and fingerprints pertaining to each protein–ligand docking instance have been 
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employed to quantify chemical compounds. The study has shown that ALORS delivers the best results compared 
to all candidate algorithms from a fixed algorithm pool. Nine features have been highlighted as significant deter-
minants of the protein–ligand interaction and are analyzed to inspire exploration into chemical features that are 
critical to docking performance. The findings of this research accentuate utilizing a suitable algorithm selector 
and features to best approach a molecular docking task that searches for druggable compounds. ALORS has 
the potential to become the preferred choice for performing protein–ligand docking tasks for CADD research. 
What’s more, the results of our study add to the rapidly expanding applications of automatic algorithm selections.

However, one limitation of our study is that ACE was the only protein adopted for the docking data genera-
tion. Although ALORS works well in the docking case with ACE; nevertheless, the generalizability of our model 
to other proteins remains to be determined. More proteins should be incorporated to our model to increase the 
diversity of protein–ligand interaction. Therefore, extending the docking scenarios with varied target proteins 
may present a more comprehensive evaluation of the performance of ALORS as an AS tool. At the same time, 
hand-selected characteristics of molecules derived from empirical evidence are equally viable options. Hand-
selected features that are more specific and relevant can be mixed with algorithm-selected features to achieve 
more relevance and precision.

Other protein–ligand docking programs such as DOCK, Glide, and CABSdock are also recommended, and 
the underlying algorithm of each docking platform may be tailored to specific docking situations. AutoDock 
performs well in automated ligand docking to macromolecules because of its improved LGA search algorithm 
and empirical binding-free scoring function, but it remains to be seen whether exhaustive search-based dock-
ing programs such as Glide and DOCK that use the Geometric Matching Algorithm perform better in other 
areas. Further focus can be directed towards evaluating and automatically selecting the best docking programs 
in different docking scenarios.

During the study, we noticed the increasing prevalence of the application of Neural networks (NN) in pro-
tein–ligand interaction prediction. Neural networks, which are composed of layers and neurons to recognize 
patterns such as numerical vectors, images, texts, sounds, and even time series, are widely used for classification 
or prediction tasks. Under the frame of Neural networks, Graph neural networks (GNNs) rely on characterizing 
data as graphs that consist of nodes and edges and excel in capturing the nonlinear relation in images compared 
with traditional regression or classification  models75. GNNs are particularly useful for graph data that have rela-
tional information. As molecules are bonded structures, natural information for chemicals can be represented 
as irregular molecular graphs. The image-based features derived from molecules bring about more promising 
results than the traditional characteristics derived from molecular  descriptors76. Consequently, more efforts can 
be put into the implementation of GNNs for better prediction of protein–ligand interaction.

Data availability
The receptor, ACE, can be found with PDB DOI: 1O86, and docking ligands are in ZINC15 database: https:// 
zinc15. docki ng. org/ catal ogs/ dbfda/.
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