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Abstract

We propose a method for extracting physics-based biomarkers from a single multiparametric 

Magnetic Resonance Imaging (mpMRI) scan bearing a glioma tumor. We account for mass effect, 

the deformation of brain parenchyma due to the growing tumor, which on its own is an important 

radiographic feature but its automatic quantification remains an open problem. In particular, we 

calibrate a partial differential equation (PDE) tumor growth model that captures mass effect, 

parameterized by a single scalar parameter, tumor proliferation, migration, while localizing 

the tumor initiation site. The single-scan calibration problem is severely ill-posed because the 

precancerous, healthy, brain anatomy is unknown. To address the ill-posedness, we introduce an 

ensemble inversion scheme that uses a number of normal subject brain templates as proxies for 

the healthy precancer subject anatomy. We verify our solver on a synthetic dataset and perform a 

retrospective analysis on a clinical dataset of 216 glioblastoma (GBM) patients. We analyze the 

reconstructions using our calibrated biophysical model and demonstrate that our solver provides 

both global and local quantitative measures of tumor biophysics and mass effect. We further 

highlight the improved performance in model calibration through the inclusion of mass effect in 

tumor growth models—including mass effect in the model leads to 10% increase in average dice 

coefficients for patients with significant mass effect. We further evaluate our model by introducing 

novel biophysics-based features and using them for survival analysis. Our preliminary analysis 

suggests that including such features can improve patient stratification and survival prediction.
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1. INTRODUCTION

Computational oncology is an emerging field that attempts to integrate biophysical models 

with imaging with the goal of assisting image analysis in a clinical setting. Typically, 

the integration is accomplished by calibrating PDE model parameters from images. A 

significant challenge in brain tumors, and in particular, GBMs, is the single-scan calibration, 

that becomes even harder in the presence of mass effect. However, modeling provides 

the capability for automatic quantification of mass effect along with additional biomarkers 

related to infiltration and tumor aggressiveness. Mass effect alone, is quite significant as it is 

an important radiographic marker [1]–[3]. Here, we propose a biophysical model calibrated 

using a single pretreatment scan. Longitudinal pretreatment scans are rare for GBMs 

since immediate treatment that includes surgical resection and subsequent radiotherapy, is 

necessary for most patients.

A. Contributions

The single-scan calibration problem is formidable for two main reasons: the tumor initial 

condition (IC) and the subject’s healthy precancerous brain anatomy defined by the brain 

anatomy/structural MRI before the cancer begins to grow, are unknown. To circumvent this, 

a template (normal subject brain from another healthy individual) is used as a proxy to the 

healthy subject brain. However, natural anatomical differences between the template and the 

subject interfere with tumorrelated deformations; disentangling the two is hard. In light of 

these difficulties, our contributions, as an extension to our recently published work [4]), are 

as follows:

1. Based on the method described in [5], we propose a novel multistage scheme 

for inversion: first, we estimate the tumor initial conditions, then, given a 

template, we invert for scalar model parameters representing tumor proliferation, 

migration, and mass effect. We repeat this step for several templates and compute 

expectations of the observables (see §2).

2. These calculations are quite expensive. . Our solvers use efficient numerical 

optimization algorithms and parallelize their execution to exploit modern 

compute architectures. The entire method runs in parallel on GPUs so that 3D 

inversion on a 2563 imaging resolution takes 1–2 hours for any subject. We 

open-source our parallel solver software for tumor model inversion on Github1.

3. We use synthetic data, for which we know the ground truth, to verify the 

mathematical formulation, and convergence of our solver. This allows us to 

estimate the errors associated with our numerical scheme.

1 https://github.com/ShashankSubramanian/GLIA 
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4. We apply our methods on a dataset of 216 GBM patients and evaluate our model 

in terms of its ability to match observed tumor patterns given the calibration: 

three scalar parameters and the tumor spatial initial condition. Further, we 

introduce a novel feature extraction methodology to obtain biophysics-based 

features and demonstrate their value in an important clinical task—patient 

stratification and overall survival prediction. We report these results in §3 and 

open-source our reconstructed fields in [6].

We remark that verification of the solver does not constitute validation [7] as it does 

not account for model errors. Verification addresses the quality of formulation, numerical 

schemes, and implementation, while validation focuses on the quality of the model in 

representing real physical processes.

B. Related work

There have been many attempts to integrate PDE models with imaging data [8]–[12]. 

The most common mathematical models for tumor growth dynamics are based on reaction-

diffusion PDEs [13], [14], which have been coupled with mechanical models to capture 

mass effect [15], [16]. While there have been many studies to calibrate these models using 

inverse problems [11], [12], [14], [17], most do not invert for all unknown parameters 

(tumor initial condition and model parameters) or they assume the presence of multiple 

imaging scans—both these scenarios make the inverse problem more tractable. In our 

previous work [5], we presented a methodology to invert for tumor initial condition (IC) 

and cell proliferation and migration from a single scan; but we did not account for mass 

effect. We demonstrated the importance of using a sparse tumor IC (see §2) to correctly 

reconstruct for other tumor parameters. In [9], the authors consider a Bayesian framework 

for estimating model parameters but do not consider mass effect and use a single seed for 

tumor initial condition. The absence of mass effect in the tumor models allows for the 

use of simplistic precancer brain approximations through deformed templates (computed by 

deformable registration) [9] or simple tissue replacement strategies [18]. Other than those 

works, the current state of the art for single-scan biophysically-based tumor characterization 

is GLISTR [17].

The main shortcoming of GLISTR is that it requires manual seeding for the tumor 

IC and uses a single template. Further, GLISTR uses deformable registration for both 

anatomical variations and mass effect deformations but does not decouple them (this is 

extremely ill-posed), since the primary goal of GLISTR lies in image segmentation. Hence, 

the estimated model parameters can be unreliable due to the unknown extent to which 

registration accounts for mass effect and tumor shapes. Finally, the authors in [19] present 

a 2D synthetic study to quantify mass effect. However, they assume known tumor IC and 

precancer brain. To the best of our knowledge, we are not aware of any other framework 

that can fullyautomatically calibrate tumor growth models with mass effect for all unknown 

parameters in 3D. Furthermore, our solvers employ efficient parallel algorithms and GPU 

acceleration which enable realistic solution times, an important consideration for clinical 

applications.

Subramanian et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We use a standard, single-species tumor growth model that has been used by us and other 

groups for algorithmic and clinical studies [9], [13], [15], [17]. This model does not capture 

the rich spatial inhomogeneities of observed tumors (e.g., necrosis, edema, enhancing 

tumor). More complex multispecies models do exist [20]–[22] but they have a large number 

of parameters that need calibration, which is quite challenging using single-time snapshot 

data. As a first step, we use a simpler model to focus on the challenges related to parameter 

calibration.

2. METHODOLOGY

We introduce the following notation: c = c(x, t) is the tumor concentration (x is a 

voxel, t is time) with observed tumor data c1 = c(x, 1) and unknown tumor IC c0 = c(x, 0); 
m(x, t): = mWM(x, t), mGM(x, t), mVT(x, t), mCSF(x, t)  is the brain segmentation into white matter 

(WM), gray matter (GM), ventricles (VT), and cerebrospinal fluid (CSF)2 with 

observed preoperative segmented brain mp = m(x, 1) and unknown precancer healthy brain 

m0 = m(x, 0); Additionally, (κ, ρ, γ) are calibration scalars representing unknown migration 

rate, proliferation rate, and mass effect intensity. We model the ventricles (VT) separate from 

the cerebrospinal fluid (CSF) in order to inform the choice of template for the approximation 

of the precancerous brain anatomy (see §2-D for details).

A. Tumor growth mathematical model

Following [22], we use a non-linear reaction-advection diffusion PDE (on an Eulerian 

framework):

∂tc + div(cv) − κDc − ρRc = 0 in Ω × (0, 1] (1a)

∂tm + div (m ⊗ v) = 0 in Ω × (0, 1] (1b)

div λ∇u + μ ∇u + ∇u⊤ = γ ∇c in Ω × (0, 1] (1c)

∂tu = v in Ω × (0, 1], (1d)

where D: = div km ∇c is a diffusion operator; R: = ρmc(1 − c  is a logistic growth operator; km

and ρm control the spatial heterogeneity of the diffusion and reaction coefficients in different 

brain tissues. Eq. (1a) is coupled to a linear elasticity equation (Eq. (1c)) with forcing γ ∇c, 

which is coupled back through a convective term with velocity v(x, t) which parameterizes 

the displacement u(x, t). The linear elasticity model is parameterized by Lame coefficients 

λ(x, t) and μ(x, t), whose values depend on the tissue type m(x, t). We note here that γ = 0
implies u = 0, which reduces the tumor growth model to a simple reaction-diffusion PDE 

with no mass effect (i.e, Eq. (1a) with v = 0). Solution of Eq. (1) requires initial conditions 

for the tumor c0 and the precancer brain anatomy m0.

2We denote CSF to be the non-ventricular cerebrospinal fluid substructure of the brain
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Following [5], we parameterize c0 = ϕT (x)p = ∑i = 1
m ϕi(x)pi; where p is an m-dimensional 

parameterization vector, ϕi(x) = ϕi x − xi, σ  is a Gaussian function centered at point xi with 

standard deviation σ, and ϕ(x) = ϕi(x) i = 1
m . Here, xi are voxels that are segmented as tumor 

and σ is one voxel, meaning m can be quite large ( ∼ 1000). This parameterization alleviates 

some of the ill-posedness associated with the inverse problem [5].

B. Inverse problem

The unknowns in our growth model are p, m0, κ, ρ, γ . We calibrate p ∈ Rm, κ, ρ, γ ∈ R and 

treat m0 as a random variable on which we take expectation by solving the calibration 

problem for multiple m0, representing different normal templates (see numerical scheme 

§2-C). That is, given m0, we solve the following inverse problem:

min
(p, κ, ρ, γ)

1
2 Oc(1) − c1 2

2 + 1
2 m(1) − mp 2

2 + β
2 ϕT p

2

2

(2a)

s.t.

F(p, κ, ρ, γ) given by (1),
∥ p ∥0 ≤ s in Rm, (2c)
max ϕT p = 1 in Ω. (2d)

(2b)

The objective function minimizes the L2 mismatch between the simulated tumor c(1) = c(x, 1)
at t = 1 and preoperative tumor data c1 as well as the L2 mismatch between the deformed 

precancer brain (due to the tumor) m(1) = m(x, 1) at t = 1 and the preoperative patient brain 

data mp. The mismatch terms are balanced by a regularization term on the inverted initial 

condition (IC). O is an observation operator that defines the clearly observable tumor margin 

(see §2-D for its definition; for additional details see [18]). Following [5], we introduce 

two additional constraints to our optimization problem—Eq. 2c parameterizes the tumor 

initial condition using at most s Gaussians and with Eq. 2d we assume that at t = 0 the 

tumor concentration reaches one at some voxel in the domain. Both Eq. 2c and Eq. 2d are 

modeling assumptions. We use them to deal with the several ill-posedness of the backward 

tumor growth PDE. In [5], we discuss this in detail.

C. Summary of our multistage inversion method

To solve Eq. 2, we propose the following iterative scheme:

(S.1) First, we estimate p, ignoring mass effect, using the patient brain anatomy. That 

is, we solve Eq. 2 using the growth model with no mass effect F(p, κ, ρ, γ = 0) for 

(p, κ, ρ).3 Our precancer scan is approximated by m0 = mp with tumor regions replaced 

by white matter.

(S.2) Next, we approximate m0 using a normal template scan mt. Since p is defined 

in mp, we register mp to mt and transfer p to the mt space4. This registration is used to 

3γ = 0 indicates no mass effect and Eq. (1b), Eq. (1c) and Eq. (1d) are not needed

Subramanian et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



avoid, to the best extent possible, the tumor initial locations in anatomical structures 

such as ventricles (where the tumor is not known to grow).

(S.3) Finally, we solve Eq. 2 for κ, ρ, and γ using the estimated p and approximation 

m0 = mt.

We repeat (S.2) and (S.3) for an ensemble of templates mt to make our inversion scheme 

less sensitive to the template selected. In (S.1), we employ the fast adjoint-based algorithm 

outlined in [5] that alternates between an ℓ0 projection to enforce sparsity and an ℓ2

regularized solve for the unknowns to obtain a sparse and localized tumor initial condition. 

For the ℓ2 regularized solve in (S.1) and the inverse solve in (S.3), we use a quasi-

Newton optimization method (LBFGS) globalized by Armijo linesearch with gradient-based 

convergence criteria. For (S.3) we employ first order finite differences to approximate the 

gradient since there are only three scalar unknowns.

D. Selection of template and numerical parameters

We observe variability in estimated parameters across different mt. We were able to reduce 

this variability by selecting mt that are more similar to mp using ventricle size as similarity. 

Since tumor mass effect typically compresses the ventricles, we select those templates that 

have larger ventricular volumes than the patient and within a relative margin of 30%. 

This margin (30%) is computed by simulating several large tumors with strong mass 

effect and close proximity to the ventricles to estimate the extent of mass-effect-induced 

ventricle compression. Here, we assume that the ventricles are a qualitative indicator 
of patient-template anatomical similarity. More accurate similarities are problematic to 

compute as they rely on image registration which is unable to decouple tumor mass effect 

from anatomical differences.

Next, we discuss the selection of additional parameters used in our solver. These parameters 

are default and do not require any subject-specific tuning.

i. We use 80 normal subject scans from the Alzheimers Disease Neuroimaging 

Initiative (ADNI)5 normal/control subject dataset as our sample space for 

templates. In order to get good expectation estimates, it is preferable to use a 

large number of templates. We choose 16 templates for two reasons: First, we 

were unable to consistently6 find a larger number of templates that satisfy our 

preselection criteria across the 216 GBM patient clinical dataset, and second, 

the sensitivity of inversion to the number of templates does not alter (drop) 

significantly with larger number of templates (see discussion on sensitivity to 

number of templates in appendix Tab. A2).

ii. Experimental evidence suggests that glioma cells infiltrate faster in white matter 

[23]. We choose κGM = 0.2κWM where κGM and κWM are the tumor diffusion rates in 

the gray matter and white matter, respectively. Literature [9], [13], [17] suggests 

4we simply mask the tumor region for this registration
5ADNI database adni.loni.usc.edu
6greater than 50% of the patient cohort is able to yield sufficient number of candidate templates based on our selection criterion
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values of 0.1 and 0.2. We do not observe any significant sensitivity of our 

inversion to either choice (also observed in the independent study in GLISTR 

[17]).

iii. Elastic properties for different tissue types are fixed based on [22]. See appendix 

Tab. A1.

iv. Optimizer convergence parameters (tolerance, maximum iterations) are selected 

based on [18] using tests which balance run times and solution accuracy on 

synthetic datasets (see §3 and appendix Tab. A1).

v. The standard deviation σ of the Gaussian functions is taken as the resolution of 

our input MRI image. We select Gaussians from an equally-spaced7 candidate 

set of Gaussians at voxels that are segmented as tumor. These form our basis 

functions ϕi(x) (see §2-A) for the tumor IC c0.

vi. The sparsity level s of the tumor IC is based on an empirical study on a large 

clinical cohort [18]—the study observed values between 3 and 6 to show a 

good compromise between a localized sparse solution and the reconstruction of 

complex tumor shapes (as measured by the dice coefficient). We select s to be 

5. Note that s is an upper bound on expected number of activation sites for the 

tumor IC; the actual number of sites is determined by solving Eq. 2.

vii. We define our observation operator application as Oc(x, 1): = o(x) ⊙ c(x, 1) (see 

(2)). Here, ⊙ signifies hadamard product and o(x) is defined to be one in every 

voxel x except the peritumoral edema (ED), where it is zero. That is, we observe 

the tumor concentration c everywhere except within the edema where it is set 

(observed) as zero. We make this choice because the peritumoral region in 

GBMs is known to be infiltrated with cancer cells to an unknown extent [24]. 

The observation operator can be interpreted as complete uncertainty of tumor 

observation in this region. Hence, the tumor profile in the peritumoral edema is 

governed solely by the model dynamics, and not fitted to arbitrary values (see 

[18] for more details).

E. Biophysics-based feature extraction

Here we introduce a set of manually crafted features that are solely based on the output 

of the biophysical model and can potentially be used in downstream clinical tasks. These 

features are highly correlated since they are generated by our model and are, hence, based 

on three scalar biophysics parameters, the tumor initial condition, and the underlying brain 

anatomy. We pose the question as to whether such features can be useful and evaluate this on 

an important clinical task, namely patient survival prediction, in §3-B.

1. Spatial extraction: We extract features related to tumor concentration, displacement, 

and stresses at various times of the tumor evolution, including future times. We compute the 

7The spacing between Gaussians is δ = 2σ, which is empirically obtained to guarantee good conditioning of ∫
Ω

ϕϕTdx
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following spatial fields: c, ∂c/ ∂t, ∥ ∇c ∥2, ∥ u ∥2, trace(T ), τ, I: = det(I + ∇u), ∥ v ∥2, where 

T : = λdiv uI + μ ∇u + ∇uT  is the elasticity stress tensor, τ is the maximum shear stress 

field8, det is the determinant, and I is the deformation Jacobian. Then, given any of these 

scalar fields y(x), we compute the following features: ∫
Ω

ydΩ, standard deviation (quantifies 

spread), 87.5th, 95th, and 99th percentiles (quantifies magnitudes), and surface integral ∫
Γ

ydΓ

at the isosurface c = c⋆ for prespecified c⋆, which we approximate by:

∫
Γ

y(x)dΓ = N1/3

2π ∫
Ω

1 c(x) − c⋆ < ϵ ⊙ y(x)dx (3)

for some tolerance ϵ9. Here, N is total number of voxels, 1 is an indicator function, 

and ⊙ indicates hadamard product. To compute c⋆, we first calculate the segmentation 

of the brain—each voxel is assigned the label (healthy tissues or tumor) with highest 

concentration value. Then, we compute c⋆ = c x⋆ , where x⋆ = argmaxx ∉ tumor ∥ ∇c ∥2 ; this is 

the isosurface at the tumor front where the tumor shows strong gradients and represents the 

evolving front. The volumetric features are computed for different spatial regions: healthy 

brain B (that is, every non-tumorous brain voxel), the tumor region, and the full spatial 

domain Ω. In total, we compute 128 features at each time t.

2. Temporal extraction: While the exact time point is impossible to ascertain, we 

compute these features at five different pseudotime points: these are the diagnosis/imaging 

scan time and the time instances at which volume fraction of the tumor is 0.1%, 1%, 3%, 

and 5% of the brain. We have chosen these times to temporally standardize all our features, 

since every patient (at diagnosis) might be at a different stage of cancer evolution. For 

example, for patients with large tumors, the features are mostly computed at past times, 

and for patients with smaller tumors, they represent forecasts (assuming no treatment). The 

biophysical model makes such forecasts possible. .

F. Workflow

Here we summarize the workflow we used to process a clinical subject dataset.

1) Image preprocessing: Our dataset consists of single-time-point (preoperative) 

structural mpMRI scans (T1, T1-CE, FLAIR, T2) of 216 GBM patients, along with age, 

gender, surgical resection status, and overall survival information. For each patient, the four 

mpMRI scans are first affinely registered to a template atlas. Then, they are segmented 

into tumor regions of enhancing tumor (ET), necrotic tumor (NEC), and peritumoral edema 

(ED) using a state-of-the-art neural network [25] trained on the BraTS [26] dataset which 

provides expert radiologist ground truth labels for these tumor regions. Since our tumor 

model is a single-species growth model, we define the tumor region/label as the tumor 

core (TC) := ET∪NEC. Finally, they are further segmented into healthy substructures (GM, 

8τ can be computed as 1/2 e3 − e1 , with e1 and e3 as the minimum and maximum eigenvalues of the stress tensor T
9ε is computed experimentally as 0.1 to ensure a continuous but sufficiently narrow surface
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WM, VT, and CSF) using ANTs [27], where we register several templates to any given 

patient and ensemble the atlas-based segmentation for the different healthy tissue labels. The 

segmentation labels serve as a proxy for our tissue (and tumor) concentration data.

2) Inversion software: Our open-sourced software is written in C++ and parallelized 

using MPI and CUDA. The solver is capable of running on several CPUs as well as GPUs 

(a single GPU suffices for medical imaging resolutions). A forward solve of our mass effect 

model on 2563 spatial dimensions takes less than 2 minutes on a V100 NVIDIA GPU and 

the full inversion takes an average of 1–2 hours (depending on the input tumor data and 

number of mt templates in the ensembled inversion). We refer the reader to [5], [28] for our 

solver numerics and parallel algorithms.

3. RESULTS

A. Synthetic verification

In [4], we verified the correctness of the solver using synthetic data. We briefly summarize 

the tests and results here. We ask the following three questions:

(Q1) Given p (tumor IC) and m0 (precancer scan), can we reconstruct (κ, ρ, γ) (i.e., the 

diffusion, reaction, and mass effect coefficients) using (S.3) from §2-C?

(Q2) Given m0 but unknown p, can we reconstruct (p, κ, ρ, γ) using (S.1) and (S.3)?

(Q3) With m0 and p unknown, can we reconstruct (p, κ, ρ, γ) using (S.1)-(S.3), using 

ensembled inversion with m0 = mt?

To create the synthetic data, we select m0, p, κ, ρ, and γ and run our forward solver 

to t = 1. The model outputs at t = 1 define our synthetic data which is then used to 

reconstruct (p, κ, ρ, γ), after which we compare the errors. We consider the following test-

cases (variations) for our parameter configurations:

TC(a): no mass effect γ⋆, ρ⋆, κ⋆ = (0, 12, 0.025)

TC(b): mild mass effect γ⋆, ρ⋆, κ⋆ = (0.4, 12, 0.025)

TC(c): medium mass effect γ⋆, ρ⋆, κ⋆ = (0.8, 10, 0.05)

TC(d): large mass effect γ⋆, ρ⋆, κ⋆ = (1.2, 10, 0.025)

where ⋆ represents the non-dimensionalized ground truth parameters. The tumors along with 

the deformed m0 anatomy are visualized in Fig. 1.
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We report relative errors for κ, ρ, and γ. We compute displacement two-norm field 

u = u(x) = ∥ u(x) ∥2 (this field quantifies mass effect deformation) and report the relative 

error in the norm ∥ u ∥2 and the infinity norm u∞ = ∥ u ∥∞ (in mm). Finally, we report the dice 

coefficient in reconstructing the tumor core πTC.

(Q1) Known m0, known p: We report the reconstruction errors in Tab. I under “True 

IC”. We observe excellent reconstruction for all test-cases with relative errors less 

than 2%.

(Q2) Known m0, unknown p: We use our inversion scheme outlined in §2-C, where 

we first invert for the tumor initial condition using (S.1) and then the model 

parameters with known precancer scan. We present the reconstruction errors in Tab. 

I under “Inverted IC”. The errors increase because we reconstructed p using the no-

mass-effect model and the inverse problem is severly ill-posed (see [5] for analysis 

of the non-convexity). But we can still recover the model parameters quite well: the 

mass effect (error in two-norm of the displacement norm eu) is captured with relative 

errors less that 8%; the reaction and diffusion coefficient also have good estimates 

of around 16% and 17% average relative errors, respectively. We show the estimated 

tumor initial conditions for a specific test-case in Fig. 2 using (S.1). We observe 

that the reconstructed initial conditions are in a localized neighbourhood around the 

ground truth initial condition for all test-cases. Due to the inherent ill-posedness and 

model approximation errors, the exact initial locations are not recoverable.

(Q3) Unknown m0, unknown p: This scenario corresponds to the actual clinical 

problem. We invoke (S.2) and use an ensemble of 16 templates to approximate 

m0 (see §2-D). We report inversion results in Tab. II and show an exemplary 

reconstruction of the patient using the different templates in Fig. 3. We report the 

expectations (mean; μι) and standard deviations (σι; characterizes the sensitivity of our 

inversion to each template) for each parameter ι = γ, ρ, κ, u∞ . We refer to the tumor-

deformed template (m(x, 1)) with the grown tumor (c(x, 1)) using the reconstructed 

parameters as the reconstructed patient.

For the tumor dice coefficient, we compute the probability pl(x) for any tissue/tumor label l
at location x as:

pl(x) =
∑t = 1

M 1 st(x) = l
M , (4)

where st(x) is the label map, M is the total number of templates (16 in our case), and 1 is an 

indicator function. Then, we construct a probabilistic label image by simply assigning every 

voxel to the label with maximum probability. The tumor dice is computed using the tumor 

label from the probabilistic reconstructed patient and the patient tumor data.

Despite not knowing the true m0, we are still able to capture the parameters. The expectation 

of the displacement norm error has an average error of about 17%, while the expectations 

of reaction and diffusion coefficients show about 24% and 15% average relative errors, 

respectively. The reaction coefficient shows least sensitivity (standard deviations are an 
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order of magnitude smaller than the expectations); the diffusion coefficient also shows 

small sensitivity which is roughly the order of numerical diffusion that is introduced in our 

forward solvers10; the maximum displacement shows standard deviations of the order of 

1 mm. The mass effect parameter γ shows high standard deviations for the test-cases with 

small mass effect and progressively improves as the mass effect increases. This is due to 

ill-conditioning with respect to γ when either the tumor or the mass effect are small.

B. Clinical data analysis

We apply our inversion scheme on the 216 clinical GBM patient cohort (see §2-F for details 

regarding the dataset and preprocessing steps). We show some example initial condition 

reconstructions for a few GBM subjects (with multifocal examples) in Fig. 4. The solver 

reconstructs sparse and localized tumor initial conditions (irrespective of the focality of the 

tumor data) across the clinical cohort. While certain initiation locations are close to the 

center of mass, we observe additional initiation sites are required to capture the complex 

hetereogeneous shape of brain tumors. We report exemplary reconstruction results from 

the inversion scheme in Tab. III for four patients with different ranges of mass effect. We 

observe similar trends in sensitivity (standard deviations) of parameters and dice coefficients 

as in the synthetic test-cases.

We visualize the reconstructions in Fig. 5. We show the averaged11 probabilistic template 

image, the averaged reconstructed patient image, the patient data, and the average 

reconstructed displacement two-norm field. We observe good quantitative agreement of the 

tumor (dice coefficients greater than 83%) and good quantitative characterization of the 

mass effect. Patients AAUJ and AANN present large tumors with significant mass effect 

(∥ u ∥∞ ∼ 18mm ± 1 and 12mm ± 5, respectively); patient AARO also shows a large tumor 

but with mild mass effect (∥ u ∥∞ ∼ 7mm ± 1); patient AALU presents a small tumor with 

negligible mass effect(∥ u ∥∞ ∼ 2mm ± 1). In Fig. 6, we show results stratified according to 

the extent of mass effect.

In order to understand the role and importance of mass effect, we conduct a preliminary 

analysis on the patient cohort using two different growth models: model ME represents a 

growth model with mass effect and model NME represents a model without mass effect 

(i.e., γ = 0 or a simple nonlinear reaction-diffusion PDE). We compare the two using the 

three questions below:

(CQ1) Does model ME improve the reconstruction dice coefficients?

(CQ2) Is mass effect (as quantified through model ME) simply a feature of larger 

tumors?

(CQ3) Do features extracted from our biophysical model (see §2-E) add value to 

important clinical evaluations?

10We employ spectral solvers that require some artificial diffusion through smoothing to prevent aliasing errors; see appendix for 
more details
11Averaging results in coarse representations of the ensemble and is, hence, only used for visualization purpose
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(CQ1) We plot the dice coefficients (see (4)) for the tumor core (TC) and ventricles (VT) 

in Fig 7a. We sort the results in increasing order of mass effect (using the reconstructed 

u∞ and ∥ u ∥2); the hypothesis is that ME is more informative as mass effect becomes a 

pronounced feature of the disease. We observe that the tumor dice coefficients (πTC) show 

similar performance for both ME and NME. The average TC dice coefficients across the 

population are 0.849 ± 0.063 and 0.857 ± 0.073 for ME and NME, respectively. This is not 

surprising since NME selects p, κ, and ρ to match the observed tumor core and does not 

consider matching the anatomy. In contrast, ME has to account for both the anatomy and 

the tumor. For the VT dice, we observe that ME shows an overall better performance that 

progressively improves as the mass effect increases. Across the population, the average VT 

dice coefficients are 0.621 ± 0.091 and 0.563 ± 0.120 for ME and NME, respectively—an 

approximate 6% performance improvement. For patients whose displacement norms are 

greater than the median displacement norms (median is 6.76 mm; we consider these patients 

to qualitatively have moderate to large mass effect), this improvement is approximately 10%.

Here, we note that the VT dice coefficients are low due to the significant anatomical 

variability between the templates and the patient. Further, many subjects may show other 

neurodegenerative disease patterns like abnormal ventricles due to Alzheimer’s disease 

that our model does not take into account, leading to larger template-patient anatomical 

variations. However, this can be remedied with a subsequent image registration between 

the reconstructed patient and the patient data—the deformation from mass effect has been 

decoupled through our inversion scheme and, now, registration can be used to correct for 

anatomical differences.

We also plot the variability of the biophysical scalar parameters in Fig 8. We observe that 

both models provide a different set of reaction and diffusion coefficients. This is because 

NME captures the tumor but ignores mass effect, which leads to larger κ and ρ. In contrast, 

ME accounts for both growth and anatomy deformation. Interestingly, the fitted parameters 

exhibit smaller cross-subject variability compared to NME.

In Fig 9a, we compare the two models. Subject AAVD is a multicentric GBM with 

negligible mass effect; both models show similar dice scores ((TC, VT) dice scores of 

(0.795, 0.613) and (0.813, 0.641) for ME and NME, respectively); subject AAUX has 

significant mass effect (as seen by the compressed ventricles and mid-line shift) and 

ME outperforms NME in its reconstructions ((TC, VT) dice scores of (0.84, 0.527) and 

(0.842, 0.329) for ME and NME, respectively), with nearly 20% improvement in VT dice 

coefficients and similar TC dice coefficients. We remark that this improvement is achieved 

by only one additional scalar parameter (γ) in our biophysical model.

Finally, in Fig. 10 and Fig. A.2 and Fig. A.3, we expand on the dice coeffcient values and 

plot the variability of the dice coefficients using the ME model to understand the distribution 

and source of outliers. We observe some outliers in our reconstructions where the tumor 

(TC) dice coefficient πTC is less than 0.70. We find that these outliers can be linked to 

specific reasons (see Fig. A.2 and Fig. A.3 for specific examples): first, the template and 

patient anatomical difference can be significant (such as very dissimilar ventricle structures) 

leading to low quality tumor reconstructions, second, the tumor segmentation itself may not 
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be accurate, and third, mass effect induced by edema is not accounted for in our models 

and this could lead to unrealistically large tumor core volumes to match the observed 

deformations.

(CQ2) In Fig. 7b we report the patient tumor (TC) and edema (ED) volumes; point color 

and size correspond to the mean displacement field μu. We observe that tumors with similar 

volume can exhibit a wide range of mass effect. For instance, tumors with volume around 

70–80 cm3 show deformations in the negligible range as well as substantial mass effect (> 

15 mm). In Fig 9b, we show tumors with volumes within 10% of each other, but mass effect 

displacements ranging from 4 mm to 17 mm (also qualitatively visible in the reconstructed 

displacement two-norm fields). Thus, we conclude that mass effect is not a feature of larger 

tumors and can possibly be an additional and valuable biomarker for GBMs.

(CQ3) We consider survival data for patients that underwent a gross total surgical resection 

(GTR)—our survival dataset consists of 141 patients (GTR only) and each patient is 

classified as a short, mid, or long survivor based on equal quantiles of survival time (in 

days). Our objective is to use patient-specific features to predict the survival class by training 

a machine learning classifier on our dataset. We consider two groups of features: age and 
volumetric features that include patient age and tumor volumes for each tumor subclass, and 

biophysics-based features that are extracted using our calibrated growth model (see §2-E; we 

show an example visualization of a few biophysics-based features in Fig 11).

i. Feature correlations: We plot the Spearman correlation of statistically significant 

feature correlations with survival time in Fig. 12. We observe that age is 

the maximally correlated feature with survival—an observation consistent with 

several previous studies [29], [30]. We also note that biophysics-based features 

correlate better than volumetric features (tumor volumes; correlations are 

insignificant and small), and features computed at standardized times (at specific 

tumor volume fractions) correlate better than features computed at diagnosis/

imaging scan time.

ii. Univariate patient stratification: We stratify patients based on the median values 

of a few top correlated features (with survival) and plot the Kaplan-Meier 

(KM) survival curves for each feature (see Fig. 13). We observe that several 

biophysics-based features (along with age) dichotomize the patients based on 

their overall survival. For instance, patients with large values of trace(T) (relates 

to the tumor-induced pressure due to mass effect) show reduced overall survival. 

We also additionally show the stratification based on a volumetric feature (tumor 

core volume). We observe volumetric features are unable to stratify the subject 

survival curves.

iii. Survival classification: We employ random forests as our survival classification 

model on an 80–20 train-test data split. We perform a univariate feature 

selection where we first sort features according to their average 5-fold cross-

validated (CV) random forest feature importance. Then, we compute a cross-

validated (CV) training accuracy and standard deviation (std) by adding features 

incrementally in descending order of importances (see Fig. 14). We then select 

Subramanian et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the top 13 features (these include age, edema volume, and other biophysics-

based features) since they show maximum CV accuracy and small accuracy 

standard deviations across the splits (hence prone to lesser overfitting). We report 

our classification scores in Tab. IV. We observe an improvement in classification 

scores using the selected features in comparison to using only age and volumetric 

features. The classifier also shows smaller variability across cross-validated splits 

and hence, potentially, generalizes well (as suggested in the testing accuracies).

To bolster our argument, we also repeat our inversion and survival classification on the 

publicly available BraTS 2020 challenge dataset [26]. We submit our classification results 

to the BraTS 2020 leaderboard validation portal and report the accuracies in Tab. V. We 

note the following results: First, we observe similar trends of accuracy improvements 

using biophysics-based features on an 8020 split of the BraTS training dataset—the 

biophysics-based features show improved performance over age and volumetric features on 

cross-validated training and testing accuracies. Second, these features also show improved 

accuracies on the challenge leaderboard (unseen) validation dataset of about 6% compared 

to age and volumetric features. Finally, the leaderboard accuracies are comparable to the 

top teams of the BraTS challenge12, demonstrating that the proposed methodology is 

competitive.

4. CONCLUSIONS

Our results are very promising. First, our solver is robust (never crashes, takes excessive 

iterations, or needs subject-specific hyperparameter settings). It does not require any manual 

preprocessing and can be run in a black box fashion. Our experiments on synthetic data with 

known ground truth is the first time that such a solver is verified and we demonstrated 

that our approximations do not introduce significant errors despite the fact that m0 is 

unknown. For clinical data, the model errors are expected to dominate the errors from 

using a template and splitting the calibration procedure into two stages. Second, we 

tested our method on a large clinical patient cohort (216 patients) in order to test the 

feasibility of our method. With a small number of calibration parameters, our solver is 

able to quantitatively match the observed tumor margins and qualitatively correlate with 

observed mass effect. Hence, our solver provides a means to quantify and localize mass 

effect without relying on any assumptions on symmetry and location of the tumor. Further, 

we showed that including mechanical effects in our tumor growth models can provide 

additional information in terms of capturing the deformations of the tumor and surrounding 

anatomical structures and results in quantitatively different parameters and reconstructions 

than a non-biomechanical growth model. Finally, we introduced a novel biophysics-based 

feature extraction method and demonstrated the clinical value of the extracted features on 

an important clinical task—patient stratification and survival prediction using pretreatment 

imaging scans. While age remains an important population-based feature for predicting 

survival outcome, our observations indicate that biophysics-based features can enhance 

the quantification of survival prognosis. Specifically, these features closely follow the 

predictive capability of patient age in the following: first, correlation with patient overall 

12The first rank team’s validation scores were not reported. Hence, we compare with the second and third rank teams
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survival, second, dichotomization (stratification) of patients based on overall survival, and 

last, improving prediction of patient overall survival through machine learning methods. 

Biophysics-based features are also competitive with the winning algorithms of the BraTS 

challenge competition. However, we do note the low survival classification accuracies, 

indicative of the difficulty in using machine learning methods on small datasets (141 GTR 

patients here). Similar observations have been made before on the BraTS dataset for survival 

prediction [26].

Some of the limitations of our work are as follows. Our forward model uses a single tumor 

species that cannot distinguish between the enhancing, necrotic, and tumor-infiltrated edema 

regions of the brain. While our survival analysis is encouraging, it is preliminary—other 

factors such as genetic information (IDH1/EGFR mutation, MGMT promoter methylation), 

radiotherapy dosage profiles, postoperative recurrence information are important prognostic 

indicators of survival. A comprehensive clinical study would need to include such data 

and is the focus of our future work. Further, in this study, we are limited to structural 

mpMRI scans. Other imaging sources such as Diffusion Tensor Imaging scans or Perfusion 

scans could potentially be useful. Our next step is to incorporate multiple tumor species in 

our growth model and continue our clinical evaluation using a larger patient cohort with 

additional genetic information. Our hope is that such models can also assist in additional 

clinical tasks such as tumor recurrence prediction.

A.: APPENDIX

Model and inversion additional parameter values:

We report additional solver parameter values (based on [22]) in Tab. A.1. There is no 

subject-specific tuning of any parameter. The tumor initial condition (IC) reconstruction 

(S.1) is performed using a spatial resolution of 2563, to ensure smallest possible IC. The 

ensemble inversion for parameters (S.3) is performed in a downsampled resolution 1603 for 

faster solution times. We do not observe significant parameter inversion sensitivity between 

the two resolutions for the final step. If (S.3) is also performed in 2563, the full inversion 

time is about 4–6 hours on a V100 GPU. Our current inversion time is about 1–2 hours. 

Finally, for the ensemble inversion, we observe that in rare cases some templates produce 

potentially unreliable solutions—we discard solutions with large condition number (> 1000) 

of the finite difference 3×3 Hessian matrix (there are three scalar unknowns—κ, ρ, γ) of the 

objective function.

Forward solver numerics:

We use a pseudo-spectral Fourier method on a regular mesh for spatial discretization and 

employ 3D fast Fourier transforms to compute all spatial differential operators. We enforce 

our boundary conditions on the surface of the brain and VT/CSF boundaries using a penalty 

approach (see [11], [12]). We employ no-flux boundary conditions on our state variables at 

the brain and VT/CSF boundaries. Further, we use zero displacement boundary conditions at 

the brain boundary. We use periodic boundary conditions on Ω = [0, 2π]3. We use the Strang 

operator splitting scheme to solve the reaction, advection, and diffusion splits. The reaction 
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split is solved analytically, the diffusion split is solved using the Crank-Nicolson scheme 

through a preconditioned Conjugate Gradient method, and the advection split is solved using 

the semi-Lagrangian scheme. The variable coefficient elasticity equations are also solved 

using the preconditioned Conjugate Gradient method. We refer the reader to [22] for further 

details on the numerical schemes and convergence.

TABLE A.1:

Model and inversion additional parameter values used in our simulations. Note that the 

Lamè coefficients λ and μ are determined by the Young’s modulus and Poisson’s ratio of the 

tissue-type.

Parameter value

Young’s modulus of (GM, WM, CSF, tumor) (Pa) (2100, 2100, 100, 8000)

Poisson’s ratio of (GM, WM, CSF, tumor) (0.4, 0.4, 0.1, 0.45)

Gaussian width, 
σ

(voxels)

1

Spacing between Gaussians 
δ

(voxels)

2

Regularization parameter, 
β

1

Relative gradient tolerance 1E-3

Relative objective function change tolerance 1E-3

Maximum number of quasi-Newton iterations 50

Inversion additional results:

We provide some additional reconstruction details and experiments:

i. We report our inversion results using two choices for number of templates (8 and 

16) for precancer brain m0 approximation in Tab. A.2. We observe insignificant 

sensitivity—the standard deviation of our reconstructed parameters and metrics 

are representative of the anatomical variation (and approximation error) between 

the patient and the chosen template.

ii. We observe that the inclusion of ventricles (VT) in the objective function (in the 

data misfit term ∥ m(1) − mp ∥2
2 is important. While it does not make a significant 

difference for several patients, it does lead to different (and qualitatively 

inaccurate) results for certain patients. We compare our reconstructions in Fig. 

A.1 and Fig. A.3 for one such patient. We observe that the absence of the 

VT misfit term leads to erroneous reconstruction of mass effect (the average 

displacement norm is almost halved). This can be observed in our visualization 

as well as the reconstructed parameters and dice coefficient for VT. Another 

note: we do not include GM, WM, and CSF mismatches in our objective function 

(only tumor and VT included) since their segmentations (from ANTs) can be 

poor and they also show high anatomical dissimilarity.
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iii. We visualize reconstructions for outlier cases (low tumor dice scores) in Fig. 

A.2: we observe that high anatomical variations between the template and the 

patient can contribute significantly to low dice scores. Further, in some cases 

(such as patient AAXV), the mass effect may be (qualitatively) due to edema 

which our model does not capture. Hence, the inversion results in larger tumor 

core volumes to account for the deformation. Finally, in Fig. A.3, we show an 

alluvial plot that higlights the correlations between tumors with small mass effect 

and outlier dice scores (in tumor core and ventricles).

Machine learning classifier details:

We employ a random forest classifier for our survival prediction task. The hyper-parameters 

of the random forest include maximum tree depth (taken as 3) and number of estimators 

(taken as 100), and are estimated during our cross-validation procedure. Finally, we 

additionally experimented with other classifiers and regressors (logistic regression, linear 

regression, and elastic nets) but observed that • random forests provide the highest 

classification accuracy and • similar conclusions from the main text can be drawn from 

a regression analysis.

TABLE A.2:

Inversion results sensitivity with number of templates for clinical data. All results are 

repeated for two choices of number of templates—8 and 16. We report the mean (μι) and 

standard deviation (σι) of the reconstructed parameters across the ensemble of templates; 

ι = γ, ρ, κ, and the maximum value of the displacement field two-norm (i.e., u∞ = ∥ u ∥∞ in 

mm). We also report the probabilistic tumor core dice coefficient πTC, the average runtime μT, 

and standard deviation in runtime σT in hh:mm:ss. (Note: the diffusion coefficient (κ) values 

are scaled by 1E − 2 for clarity; Patient AANN resulted in less than 8 templates for 

preselection due to the abnormally large ventricles—the inversion is identical for both 

template number choices).

Patient 
ID

Num. of 
templates

μγ, σγ μρ, σρ μκ, σκ /0.01 μu∞, σu∞ πTC μT, σT  (in 
hh:mm:ss)

AAUJ 8 (0.81, 
0.065)

(9.83, 
0.83)

(2.09,1.14) (17.17, 1.05) 0.871 (01:13:51,00:18:27)

AAUJ 16 (0.82, 
0.081)

(9.92, 
0.75)

(1.87,0.89) (17.57, 1.4) 0.875 (01:13:27,00:13:43)

AANN 8 (0.59, 
0.25)

(9.93, 
0.61)

(2.28, 1.23) (11.68, 4.91) 0.853 (01:27:24,00:06:23)

AANN 16 (0.59, 
0.25)

(9.93, 
0.61)

(2.28, 1.23) (11.68, 4.91) 0.853 (01:27:24,00:06:23)

AARO 8 (0.42, 
0.109)

(10.54, 
0.28)

(1.8, 0.37) (7.42, 1.79) 0.833 (01:08:03,00:07:09)

AARO 16 (0.4, 
0.089)

(10.64, 
0.58)

(1.75, 0.38) (7.23, 1.49) 0.839 (01:08:19,00:05:47)

AALU 8 (0.51, 
0.22)

(6.34, 
0.45)

(0.97, 0.55) (3.36, 1.36) 0.928 (01:06:52,00:07:55)
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Patient 
ID

Num. of 
templates

μγ, σγ μρ, σρ μκ, σκ /0.01 μu∞, σu∞ πTC μT, σT  (in 
hh:mm:ss)

AALU 16 (0.36, 
0.23)

(6.39, 
0.52)

(1.1, 0.55) (2.43, 1.48) 0.942 (01:05:22,00:08:14)

TABLE A.3:

Inversion results for patient AAUJ by including ventricle data misfit (with VT) and 

excluding (no VT) it in the objective function. We report the mean (μι) and standard 

deviation (σι) of the reconstructed parameters across the ensemble of templates; ι = γ, ρ, κ, 

and the maximum value of the displacement field two-norm (i.e., u∞ = ∥ u ∥∞ in mm). We 

also report the probabilistic tumor core dice coefficient πTC, the probabilistic ventricle dice 

coefficient πV T, the average runtime μT, and standard deviation in runtime σT in hh:mm:ss.

Patient 
ID

Objective 
function

μγ, σγ μρ, σρ μκ, σκ /0.01 μu∞, σu∞ πTC πVT μT, σT  (in 
hh:mm:ss)

AAUJ no VT (0.38, 
0.19)

(10.99, 
0.75)

(1.73,0.76) (8.38, 
4.08)

0.926 0.461 (01:08:45,00:06:04)

AAUJ with VT (0.82, 
0.081)

(9.92, 
0.75)

(1.87,0.89) (17.57, 
1.4)

0.875 0.598 (01:13:27,00:13:43)

Fig. A.1: 
Reconstruction using two types of objective functions—with VT (VT misfit included) 

and no VT (only tumor misfit). The first column shows the averaged template T1 MRI, 

the second column shows the averaged patient reconstruction with the estimated tumor 

concentration (higher concentrations (~1) are indicated in red and lower ones in green) 

overlayed. We also show the underformed ventricle contour (white dashed line) to express 

the extent of mass effect, as well as the TC data contour (black dashed line). The third 

column shows the patient T1 MRI data with the TC data contour (black dashed line) and the 

edema data contour (white dashed line). The last column depicts the reconstructed average 

displacement (in mm) two-norm field. We observe different reconstructions—the no VT 

result shows much smaller mass effect and deformation of ventricles and is qualitatively 

inaccurate.
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Fig. A.2: 
Reconstructed images using ME model for three patients with outlier tumor (TC) dice 

coefficient (πTC). The first column shows the averaged template T1 MRI, the second column 

shows the averaged patient reconstruction with the estimated tumor concentration (higher 

concentration (~1) are indicated in red and lower ones in green) overlayed. We show 

underformed ventricles contour (white dashed line) to express the extent of mass effect 

as well as the TC data contour (black dashed lines). The third column shows the patient 

T1 MRI data with the TC data contour (white dashed line). The last column depicts the 

reconstructed average displacement (in mm) two-norm field. We observe πTC values as 0.650, 

0.657 and 0.667 for patients AARO, AASQ and AAXV, respectively. We observe high 

anatomical difference in ventricles between the average template and patient data for patient 

AARO, qualitative inaccurate tumor segmentation for patient AASQ (i.e. detecting a section 

of edema as TC) and mass effect due to edema for patient AAXV.
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Fig. A.3: 
Alluvial plot of peritumoral edema (ED) volume, tumor (TC) volume , amount of mass 

effect (ME), TC dice coefficients (πTC) and ventricles (VT) dice coefficient (πV T). We denote 

the ED volume less than 50 cm3, in the range of 50 to 150 cm3 and above 150 cm3 to be 

small, medium and large ED, respectively. We use TC volume less than 50 cm3, in the range 

of 50 to 100 cm3 and above 100 cm3 to be small, medium and large TC, respectively. We use 

the median and third quartile of displacement norms (∥ u ∥∞) to classify the patients as small, 

medium and large ME. We refer the dice coefficients less than the lower whisker limit of TC 

dice coefficients as outlier πTC and we use first quartile (P25
TC) and third quartile (P75

TC) of TC 

dice coefficients for stratification. Similarly, we denote the lower whisker limit of VT dice 

coefficients as outlier πV T and we use first quartile (P25
V T) and third quartile (P75

V T) of VT dice 

coefficients for classification. We highlight the links resulting to the outlier regions with red. 

We observe small number of subjects with small ME result in low TC dice coefficients.
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Fig. 1: 
Synthetic data T1 MRIs generated with our forward model. The tumor concentration is 

overlaid (color) along with the undeformed ventricles (black dashed line) to indicate the 

variable extent of mass effect. The maximum displacements are approximately 0, 5.4, 8.9, 

and 13.3 mm, respectively.
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Fig. 2: 
Estimated initial conditions p reconstructed using the algorithm in (S.1) for test-case 

TC(d). The size of the markers indicate the magnitude of activation. Further, the initiation 

locations are projected onto the respective 2D slice view (axial, sagittal, coronal) for ease 

of visualization. The blue marker is the ground truth and the magenta markers represent 

the reconstruction. The tumor concentration is overlaid (red: high, green: low). Due to 

ill-posedness, the exact reconstructions cannot be recovered.
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Fig. 3: 
Reconstruction of the patient using 16 templates (of which three templates are shown here) 

as the precancer scan. The tumor data segmentation is highlighted as a black dashed contour 

line. The reconstructed tumor concentration is shown in color. The undeformed ventricle 

configuration is highlighted as a purple dashed line to indicate the extent of mass effect in 

the reconstructions.
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Fig. 4: 
Estimated initial conditions p reconstructed using the algorithm in (S.1) for a few subjects. 

Each patient is a set of three images representing the axial, sagittal, and coronal 2D 

slices of the patient brain, zoomed into the tumor region. The blue markers represent the 

tumor initiation reconstruction and the black cross is the center of mass of the tumor 

core component. The size of the markers indicate the magnitude of activation. Further, the 

initiation locations are projected onto the respective 2D slice view (axial, sagittal, coronal) 

for ease of visualization. The tumor concentration is overlaid (red: high, green: low) with the 

black dashed line representing the tumor core data and the white dashed line representing 

edema.
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Fig. 5: 
Reconstructed images from the inversion scheme. We show four representative subjects (IDs 

in parenthesis). The first column shows the averaged template T1 MRI, the second column 

depicts the averaged patient reconstruction with the estimated tumor concentration (higher 

concentrations (~1) are indicated in red and lower ones in green) overlayed. We also show 

the undeformed ventricle contour (white dashed line) to express the extent of mass effect, as 

well as the TC data contour (black dashed line). The third column shows the patient T1 MRI 

data with the TC data contour (black dashed line) and the edema data contour (white dashed 

line). The last column shows the reconstructed average displacement (in mm) two-norm 

field.
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Fig. 6: 
Some clinical reconstructions stratified into low, medium, and high mass effect based on 

equal quantiles of displacement. Each image is a pair indicating the reconstructed patient 

with estimated tumor concentrations (left) and patient T1 MRI data (right). The TC data 

(black dashed line) and undeformed ventricles (white dashed line) are visualized in the 

reconstructed patient (left) and TC data (black dashed line) and edema data (white dashed 

line) are visualized in the patient data (right).
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Fig. 7: 
(a) CQ1: Plots of tumor core (TC, left) dice coefficient πTC and ventricle (VT, right) dice 

coefficient πV T vs patient ID index ι sorted according to increasing mass effect for the 

two models ME and NME. The lines (ME,NME) represent a rolling 5-patient mean and 

p-ME and p-NME are the raw data points. We observe similar reconstruction for TC, but 

significant performance gains are visible in the VT reconstruction. (b) CQ2: Scatter plot of 

tumor core (TC) volume vs peritumoral edema (ED) volume (volumes in cm3). Each data 

point is sized and colored according to the mean displacement field μu—larger (and red) 

circles are indicative of patients with high mass effect. We observe variability in mass effect 

deformations across tumors with similar volume. For example, tumors with TC volume 

approximately 75 cm3 show a wide range of mass effect.
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Fig. 8: 
Box plots of the mean reaction, diffusion, and mass effect coefficients (μρ, μκ, μγ, respectively) 

for the patient cohort using the two models ME and NME. We observe mass effect in the 

range μu = 7.18 ± 3.93 mm (μu is the mean of u∞ = ∥ u ∥∞, where u is the displacement 

two-norm field).
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Fig. 9: 
Reconstructed images from the inversion scheme. (a) We compare the two models ME 
and NME. We compare the results for one subject with low and one subject with high 

mass effect. The first column shows the averaged template T1 MRI, the second column 

shows the averaged patient reconstruction with the estimated tumor concentration (higher 

concentrations (~1) are indicated in red and lower ones in green) overlayyed. We also show 

the undeformed ventricle contour (white dashed line) to express the extent of mass effect, 

as well as the TC data contour (black dashed line). The third column shows the patient 

T1 MRI data with the TC data contour (black dashed line) and the edema data contour 

(white dashed line). The last column depicts the reconstructed average displacement (in mm) 

two-norm field. Both models exhibit similar reconstruction performance for the tumor and 

healthy tissues in patient AAVD (low mass effect); for patient AAUX (high mass effect) ME 
outperforms NME because it is capable of deforming the ventricles (and other structures; 

for example, the model captures the mid-line shift necessary to account for the tumor). (b) 

Reconstructions for patients with similar TC volume but different ranges of mass effect. 

Each row represents a subject (with subject ID indicated on the left). We observe different 

mass effect ranges (μu = 4.1, 6.9, 11.7, 17.3 mm from top to bottom) for similar TC volumes 

(65.6,69.0,70.1,72.0 cm3 from top to bottom). While the first patient shows almost no 

mass effect, the last patient exhibits significant compression of ventricles (also seen in the 

deformation from the initial ventricle contours and the displacement field).
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Fig 10: 
Box plot of tumor core (TC) dice coefficients πTC  and ventricle (VT) dice coefficients πV T

for the patients cohort using ME model. We observe πTC in the range of 0.586 to 0.982 and 

πV T in the range of 0.302 to 0.776 (See Fig. A.3).
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Fig. 11: 
Voxelwise biophysics-based features for a representative patient. We plot 2D slices of 

∥ u ∥2 , τ, ∥ ∇c ∥2 , ∂c/ ∂t at time instant when the tumor volume fraction is 5% of the brain 

volume. All feature values are normalized here (high: red, low: blue)
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Fig. 12: 
Spearman correlation of features (only statistically significant correlations, p < 0.05) with 

survival sorted in descending order of values. For any feature statistic y, y R
tv = v represents 

the statistic computed in region R ∈ B, TC  (absent R denotes no region and statistic is 

computed using all x) at time when tumor volume fraction tv is v.

Subramanian et al. Page 34

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13: 
Kaplan-Meier survival curves using median feature value patient stratification for some top 

correlated (with survival) features and tumor core volume. Age (range of 24 to 88 years, 

median 65 years) and biophysics feature survival curves are significant (log rank p < 0.05). 

For tumor core volume (range of about 1cm3 to 150cm3 with median of 40cm3), log rank p 

= 0.72 and is insignificant—subjects are not stratified based on volumetric features.
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Fig. 14: 
CV accuracy and standard deviation of accuracy values of a random forest classifier by 

sequentially adding features in descending order of their feature importances. We select the 

top 13 features due to their maximum CV accuracy and small accuracy std values.
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TABLE IV:

Classification of patient survival using age, volumetric, and biophysics-based features. We show the 

improvement in accuracy by using the features subselected by random forest feature importance—these 

features include age, volumetric, and biophysics-based features.

Features CV training accuracy Testing accuracy

Age 0.375 ± 0.107 0.276

Age + Volumetric 0.347 ± 0.073 0.345

Selected features 0.509 ± 0.042 0.448
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TABLE V:

Classification of patient survival using age, volumetric, and biophysics-based features on the BraTS 2020 

dataset. We repeat our inversion on the BraTS dataset and report training cross-validated accuracies, testing 

accuracy on a random 20% split, and the accuracy on the leaderboard validation dataset. For the learderboard 

accuracies, we compare with the top three winning algorithms [31]–[33] for the BraTS 2020 competition 

(bolded for comparison). We observe that biophysics-based features assist in improving accuracies (as in Tab 

IV) and provide competitive accuracies on the challenge dataset.

Features CV training Testing Leaderboard

Age 0.358 ± 0.051 0.428 0.379

Age + Volumetric 0.432 ± 0.031 0.457 0.414

Selected features 0.567 ± 0.040 0.485 0.483

BraTS 1st/2nd/3rd place - - −/0.379/0.483
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