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Abstract

Mesh-based reconstruction of the cerebral cortex is a fundamental component in brain image 

analysis. Classical, iterative pipelines for cortical modeling are robust but often time-consuming, 

mostly due to expensive procedures that involve topology correction and spherical mapping. 

Recent attempts to address reconstruction with machine learning methods have accelerated some 

components in these pipelines, but these methods still require slow processing steps to enforce 

topological constraints that comply with known anatomical structure. In this work, we introduce 

a novel learning-based strategy, TopoFit, which rapidly fits a topologically-correct surface to the 

white-matter tissue boundary. We design a joint network, employing image and graph convolutions 

and an efficient symmetric distance loss, to learn to predict accurate deformations that map a 

template mesh to subject-specific anatomy. This technique encompasses the work of current mesh 

correction, fine-tuning, and inflation processes and, as a result, offers a 150× faster solution to 

cortical surface reconstruction compared to traditional approaches. We demonstrate that TopoFit 

is 1.8× more accurate than the current state-of-the-art deep-learning strategy, and it is robust to 

common failure modes, such as white-matter tissue hypointensities.
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1. Introduction

Many medical image analysis techniques employ mesh representations, as opposed to 

image-based segmentation maps, for the reconstruction (or fitting) of tissue boundaries 

around regions of interest. This mesh-based approach is especially relevant in brain MRI 
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processing, where polygonal meshes are often leveraged for reconstructing and studying the 

cerebral cortex, the outer layer of brain tissue. This layer is characterized by the topology 

of a 2D sheet, and due to its highly-folded nature, image-space Cartesian distances between 

points on the cortex can substantially underestimate the true distances along the sheet. 

Establishing a mesh-based surface representation of the cortex is therefore a fundamental 

step for downstream and multi-modal analysis of its structure, connectivity, function, and 

disease pathology.

Classical approaches to cortical reconstruction are robust and well established in 

neuroimaging pipelines, but tend to involve long runtimes: tens of minutes or even 

hours to run on just a single image (Fischl, 2012; Gaser and Dahnke, 2016). A 

substantial portion of this runtime is spent fulfilling the requirement to represent the 

cortex with a topologically-correct, genus zero manifold, facilitating anatomical plausibility 

and downstream geometric computations. However, surfaces are generally derived by 

tessellating volumetric segmentations, providing no guarantee that this condition is met. 

To address topological errors, cortical modeling tools employ mesh correction strategies that 

consume a substantial and variable amount of time (Fischl et al., 2001; Ségonne et al., 2007; 

Yotter et al., 2011).

In recent years, rapid deep-learning solutions have dominated the field of brain MRI analysis 

for a variety of tasks, but only a small handful of methods tackle cortical surface placement 

(Cruz et al., 2021; Ma et al., 2021). While these methods offer runtime improvements for 

specific components of surface-fitting pipelines, they are not complete solutions and require 

substantial pre- or post-processing to remove topological errors. Thus, cortical surface 

reconstruction remains a major step in brain MRI analysis without an established rapid, 

learning-based solution.

In this work, we address this missing link by introducing TopoFit, a novel approach that 

rapidly fits an accurate and topologically-correct polygonal mesh to the cerebral cortex. By 

leveraging convolutions in both the image and graph domains, TopoFit learns to estimate 

deformations from a mesh template, yielding a detailed reconstruction of subject-specific 

white-matter surfaces in less than 20 seconds on a CPU. The graph network facilitates 

deformations informed by the geometry and topology of the manifold. We demonstrate 

considerable robustness to local deviations in image intensity, which often disrupt traditional 

reconstruction methods, and we establish a 45.8% improvement in accuracy compared to a 

recent deep-learning approach. Our code is available at https://github.com/ahoopes/topofit, 

and we also publicly distribute our method within the open-source FreeSurfer package 

(Fischl, 2012). While TopoFit was developed in the context of neuroimaging, the concepts 

introduced here can be applied in a wide range of medical imaging contexts.

2. Related Work

Classical Surface Analysis.

Surface-based neuroimaging software, such as FreeSurfer (Fischl, 2012) and CAT12 (Gaser 

and Dahnke, 2016), construct detailed, per-hemisphere models of cortical gray-matter 

to facilitate analysis of functional activation, diffusion connectivity, and structural brain 
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morphometry. As illustrated in Figure 1, the traditional surface-modeling pipeline begins 

by segmenting interior white-matter tissue from a brain MRI image then tessellating the 

computed segmentation map. After correcting for topological defects, this mesh is fine-

tuned using a per-vertex optimization that considers the underlying image intensity gradient 

while constraining properties of the mesh geometry and topology (Dale et al., 1999). The 

resulting white-matter surface is subsequently deformed outwards to model the exterior pial 

tissue boundary. While these steps yield a complete representation of cortical gray-matter at 

the subject-level, a universal mapping must be computed for further group-level analysis and 

surface segmentation. This correspondence is achieved in a spherical coordinate system by 

inflating the white-matter manifold to the geometry of a sphere (Fischl et al., 1999a), which 

enables a curvature-matching registration with an average atlas (Fischl et al., 1999b; Yeo et 

al., 2009) and, consequently, establishes a global anatomical mapping across surfaces.

Topology Correction.

A mesh can only be diffeomorphically inflated and spherically-mapped if it possesses a 

topology that is homotopic, or continuously deformable, to that of a sphere. Specifically, 

a topologically-correct surface can be defined as a convex polyhedron with an Euler 

characteristic of two (genus zero). Since the initial white-matter surface derives from a 

segmentation with discrete resolution and potential for error, topological defects in the 

surface connectivity are common. These errors manifest as anatomically-implausible holes 

in the white-matter (Figure 1) and bridges connecting two banks of a sulcus. Defects must 

be corrected using time-consuming “manifold-surgery” algorithms that take into account 

the underlying geometry and image information to appropriately cut or fill regions of the 

mesh (Fischl et al., 2001; Ségonne et al., 2007; Yotter et al., 2011). In FreeSurfer, topology 

correction consumes roughly 70% of the total white-matter surface reconstruction time.

Recent research directions explore topology in deep-learning by leveraging differential 

persistent homology (PH), a technique to compute topological features across a landscape of 

spatial resolutions (Edelsbrunner et al., 2000). PH has been used to regularize model weights 

(Gabrielsson et al., 2020) as well as classification decision boundaries (Chen et al., 2019), 

and it is particularly useful for enforcing topological priors in medical image segmentations 

(Byrne et al., 2020; Clough et al., 2019). While TopoFit and PH methods both involve 

constraining the topology of model outputs, PH aims to encourage topological correctness 

during training, whereas our method avoids the need to correct the topology all together by 

using a topologically-correct, predefined mesh.

Learning-Based Reconstruction.

Recent deep-learning efforts have concentrated on mesh segmentation and registration (Hao 

et al., 2020; Lyu et al., 2021; Wu et al., 2019; Zhao et al., 2021) of the cortex, but few 

focus on the mesh placement itself. The leading method, DeepCSR (Cruz et al., 2021), uses 

implicit surface representations (Park et al., 2019) to reconstruct both white-matter and pial 

surfaces, but it requires a time-consuming topology correction. PialNN (Ma et al., 2021) 

uses explicit surfaces to project the pial boundary, but it still relies on a pre-computed, 

corrected white-matter mesh. Similar to our method, Voxel2Mesh (Wickramasinghe et al., 

2020) addresses general anatomical segmentation by deforming a spherical template to 
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the relevant tissue boundary, guaranteeing topologically-correct outputs, but it is limited to 

the focus of broad structure segmentation. Our work also builds on concepts from learning-

based image (Balakrishnan et al., 2019; de Vos et al., 2019; Mok and Chung, 2020) and 

point-cloud registration (Hansen et al., 2019; Shen et al., 2021; Wang and Solomon, 2019) 

tactics that employ networks to align data pairs.

3. Method

Given a 3D brain MR image x, we aim to estimate a high-resolution, topologically-correct 

2D manifold y of the white-matter. We employ a function fθ(x, m) = ϕ that computes a 

deformation field ϕ from a template surface m to the subject-specific anatomy in x. By 

using a template m with predefined, correct connectivity, the deformed mesh reconstruction 

is guaranteed to be free of intrinsic topological defects. We design fθ(·,·) as a convolutional 

network that employs both image-space and graph convolutions, at several scales. We find 

the optimal network parameters using

θ = arg min
θ

E(x, z) D ℒdist(y, z) + λℒreg(y) , (1)

where y = m ◦ fθ(x, m), with ◦ representing the deformation procedure, and z is the target 

surface for an image x in the training set . The loss term ℒdist measures surface similarity, 

and ℒreg, weighted by the hyperparameter λ, encourages geometric regularity of y.

3.1. Architecture

We design fθ as a network that jointly leverages convolutional operations on the image grid 

and on the graph of the template mesh (Figure 2). Specifically, a first network ℎθℎ(x), with 

input image x, employs image-space convolutions to extract useful features on the image 

grid. A second network gθg m; ℎθℎ(x)  employs blocks of graph convolutions that operate on 

the features identified by ℎθℎ, interpolated at intermediate locations of the template mesh m, 

and output a series of mesh deformations ϕ.

To preserve geometric regularity, we adopt a scale-space strategy for the GCN gθg. We 

employ a low-resolution template mesh m0 = m derived from a high-resolution icosphere 

mesh, corresponding to the average geometry across a set of surfaces. At each deformation 

step t = {1‥T }, a GCN block gt takes as input the ℎθℎ feature activations sampled at the 

spatial coordinates of mt−1, and predicts the corresponding deformation ϕt. We then form mt 

= u(mt−1◦ϕt), where u(·) is a mesh upsampling operation based on the connectivity of the 

icosphere, such that y = mT. We illustrate this framework in Figure 2.

3.2. Loss Function

We minimize a symmetric surface distance between the estimated mesh y and the ground 

truth z. The symmetric Chamfer distance (Fan et al., 2017) is frequently used in existing 

methods, but is often computationally impractical for two high-resolution manifolds (with 

more than 150k points each). Instead, we take advantage of topological consistency across 

all training surfaces, which are aligned to a spherical cortical template and ensure that 
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a given vertex represents the same anatomical region for all surfaces. This enables us to 

precompute a neighborhood v of k closest vertices for each vertex v ∈  and efficiently 

minimize the localized symmetric distance between the predicted and target surface:

ℒdist(y, z) = 1
2 V ∑

v ∈ V
min

n ∈ Nv

‖pv
y − pn

z‖ + min
n ∈ Nv

‖pv
z − pn

y‖, (2)

where pi
j is the Cartesian coordinate of i-th vertex of mesh j.

We also employ geometric regularization that minimizes self-intersecting faces to encourage 

an anatomically-accurate, smooth manifold. Specifically, we use a hinge-spring term that 

maximizes the angle between all neighboring triangles a, b in the set of mesh edges E:

ℒreg(y) = 1
E ∑

a, b ∈ E
1 − ua ⋅ ub

2, (3)

where u i is the unit normal of the i-th triangle in y. This metric encourages smoothness 

without shrinking the mesh towards the center of mass, a side-effect present when using a 

vertex-based spring term (Fischl et al., 1999a).

3.3. Implementation

We implement a U-Net-like convolutional network h (Ronneberger et al., 2015), comprised 

of four down-sampling and up-sampling convolutional layers with skip connections, 

followed by one more convolutional layer. Each layer involves 64 channels and LeakyReLU 

activations.

In our experiments we use T = 7 GCN blocks gt, each with a similar U-Net-like architecture 

employing edge-convolutions (Wang et al., 2019). Given the input activations of h sampled 

at vertices mt, each block gt comprises at most three down-sampling and up-sampling 

LeakyReLU-activated layers, each with 64 channels, and a final, linearly activated layer 

with three channels that estimates ϕt. Resolution levels of the template surface are defined 

by the orders of icosphere tessellation, which facilitates up- and down-sampling of graph 

features using a universal adjacency map. In our experiments, the template m0 resolution 

corresponds to icosphere order 1 (42 vertices), and the final target mesh mT corresponds 

to order 7 (163,842 vertices). In this configuration, the gt U-Nets at t = {1, 2} cannot 

down-sample beyond icosphere order 1 and therefore contain only one and two resolution 

levels, respectively. We use vertex neighborhood size k = 100, which maximizes surface 

placement accuracy as determined by a grid hyperparameter search.

During training, we sample an image and corresponding target surface (x, z) from  at 

each mini-batch and augment x with random added Gaussian noise (max σ = 0.1). We use 

the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 10−4, which 

is reduced by a factor of two for every 10,000 iterations that do not exhibit a decrease 

in validation loss. We use the TensorFlow Graphics (Abadi et al., 2016; Valentin et al., 

2019), Keras (Chollet et al., 2015), and Neurite (Dalca et al., 2018) packages, conducting all 

experiments using Intel Xeon Silver 4214R CPUs and Nvidia RTX 8000 GPUs.
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4. Experiments

We evaluate the ability of TopoFit to accurately and rapidly reconstruct white-matter 

surfaces. We compare to the recent state-of-the-art deep-learning method and test robustness 

to common sources of error for conventional vertex placement techniques. Lastly, we 

perform an analysis of model hyperparameters and predicted mesh regularity.

Data: We employ a set of 1,232 subjects with T1-weighted MRI scans gathered from the 

publicly-available OASIS (Marcus et al., 2007), IXI1, MCIC (Gollub et al., 2013), and 

Buckner40 (Fischl et al., 2002) cohorts. We split these data into train, validate, and test 

subsets of sizes 788, 40, and 404, respectively, and additionally hold out the Buckner40 

subjects entirely until final evaluation. For each scan, we use FreeSurfer v7.2 to derive a 

bias-corrected input image, an affine alignment to the Talairach atlas space, and white-matter 

surfaces for both hemispheres of the brain. For all training surfaces, we remesh to the 

universal icosphere topology, mapped by their computed spherical alignments with the 

FreeSurfer cortical atlas. We conform per-hemisphere images to 1mm isotropic voxel sizes 

with intensities normalized between [0, 1] and crop them to a 96 × 144 × 208 region.

Evaluation: We train two models, one for each hemisphere, and evaluate their performance 

for the entire set of test subjects, using manually-corrected FreeSurfer surfaces as a “silver-

standard” reference set. We further compare TopoFit to DeepCSR, the primary established 

learning-based approach to white-matter reconstruction. We train and evaluate DeepCSR 

following online instructions and source code, adapting the training scheme to account for 

our data augmentation protocol and learning-rate decay schedule to yield the best DeepCSR 

results.

Metrics: We measure reconstruction accuracy using the mean, 99th-percentile (P99), and 

max (Hausdorff) symmetric distances between predicted and reference surfaces. Since 

surface modeling near the medial wall is noisy and unused in cortical analysis, we only 

include vertices for cortical regions marked by FreeSurfer. We also report the Dice overlap 

(Dice, 1945) between the interior of the filled surfaces, using 0.75 mm voxel sizes. Finally, 

we quantify surface regularity by the percent of self-intersecting faces in the mesh.

4.1. Reconstruction Accuracy

In the first experiment, we evaluate the ability of our proposed method to fit a topologically-

correct surface to the white-matter boundary. Table 1 shows that TopoFit computes highly 

accurate surfaces and substantially outperforms DeepCSR, which tends to collapse into or 

broadly extend the white-matter in the presence of tissue abnormalities or intensity variation 

(Figure 3). The performance of TopoFit is consistent across each subject set (Table A1), 

generalizing well to the unseen Buckner40 cohort and on MCIC subjects. To fit white-matter 

surfaces to both hemispheres of the brain, TopoFit requires 17.3 ± 0.2 total seconds on 

a CPU and 1.2 ± 0.1 seconds on a GPU. This is in stark contrast to FreeSurfer, which 

requires 1, 086.6 ± 852.0 CPU seconds for the same process. Furthermore, since our method 

leverages the pre-defined topology of an icosphere, it can avoid the additional 1, 518.3 ± 

1.Acquired from http://brain-development.org/ixi-dataset.
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750.6 seconds required for spherical mapping, resulting in a roughly 150× total speed-up 

over FreeSurfer. We find similar runtime improvements compared to DeepCSR, as shown in 

Table 1.

4.2. Robustness

A disadvantage of iterative mesh optimization techniques is their tendency to get stuck 

in local minima near regions of unexpected intensity distribution, requiring end-users to 

manually inspect each surface and correct errors. We test whether TopoFit is robust to these 

failure modes by evaluating on 20 randomly-selected test surfaces that required manual 

edits during the preprocessing stage. In this experiment, we determine accuracy by using a 

human rater to indicate whether our method makes the same mistake as FreeSurfer and by 

measuring the mean symmetric distance to the fixed reference surface within a 4 mm radius 

of the error region. We find that TopoFit produces correct white-matter reconstructions in 

90% (18/20) of these regions, resulting in a negligible 0.18 ± 0.04 mm local deviation from 

the corrected reference. As highlighted in Figure 3, we find that FreeSurfer often fails to 

correctly fit surfaces in regions where white-matter lesions neighbor the cortex, whereas 

TopoFit is able to account for the global spatial context of the image.

4.3. Mesh Regularity and Hyperparameters

In addition to surface placement accuracy, maximizing mesh regularity is important for 

reproducing realistically smooth manifolds and ensuring that mesh connectivity corresponds 

to underlying anatomy. We perform a hyperparameter grid search to determine the optimal 

ℒreg smoothing weight λ*. Figure 4 shows that the optimal λ* = 1.0, used in our models, 

enforces a smooth mesh and minimizes the amount of self-intersecting faces (only 0.04%) 

without sacrificing reconstruction accuracy. Using λ = 0 results in predicted surfaces in 

which 5.1% of faces are self-intersecting. We also investigate how scale-space architecture 

choices impact mesh regularity by training models that use a different icosphere order R 
for the template mesh at the first GCN step m0. We find that a scale-space approach helps 

predict regular and accurate meshes and hypothesize that the decrease in performance as R 
increases is the result of far-reaching initial deformations that tangle nearby vertices.

5. Conclusion

We introduce TopoFit, a learning-based solution for reconstructing cerebral white-matter 

folds with a topologically-correct manifold. In a matter of seconds on a CPU, TopoFit can 

accomplish the tasks of traditional reconstruction pipelines that often require 40 minutes 

or more, by deforming a template mesh with intrinsic mapping to a sphere. This template 

surface is fit to the subject with high accuracy, even in regions that commonly lead to errors 

in FreeSurfer. We plan to extend our framework to include a pial surface reconstruction, and 

by further exploring the integration of learning-based cortical segmentation and spherical 

registration methods with TopoFit, we also plan to create an end-to-end model that 

encompasses the entirety of the cortical processing workflow. Lastly, we aim to extend 

this strategy to reconstruct the tissue boundaries of other, subcortical brain structures.
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Appendix A.

Table A1:

Dataset-specific comparison of total white-matter reconstruction accuracy for both 

hemispheres of the brain.

Buckner40 (40 test subjects)

Mean Dist. (mm) P99 Dist. (mm) Hausdorff (mm) Dice (%)

DeepCSR 0.25 ± 0.17 1.60 ± 1.27 7.64 ± 2.12 95.95 ± 2.04

TopoFit 0.11 ± 0.02 0.73 ± 0.37 4.34 ± 1.45 97.69 ± 0.51

IXI (158 test subjects)

Mean Dist. (mm) P99 Dist. (mm) Hausdorff (mm) Dice (%)

DeepCSR 0.26 ± 0.10 1.37 ± 0.74 7.47 ± 1.80 95.90 ± 1.38

TopoFit 0.15 ± 0.09 0.81 ± 0.37 4.41 ± 1.55 97.37 ± 1.25

OASIS (130 test subjects)

Mean Dist. (mm) P99 Dist. (mm) Hausdorff (mm) Dice (%)

DeepCSR 0.22 ± 0.07 1.71 ± 1.43 7.60 ± 2.21 96.29 ± 0.87

TopoFit 0.11 ± 0.02 0.68 ± 0.27 4.31 ± 1.36 97.81 ± 0.41

MCIC (76 test subjects)

Mean Dist. (mm) P99 Dist. (mm) Hausdorff (mm) Dice (%)

DeepCSR 0.25 ± 0.06 1.55 ± 0.75 7.45 ± 1.82 95.76 ± 0.86

TopoFit 0.15 ± 0.05 0.92 ± 0.35 4.25 ± 0.98 97.30 ± 0.73
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Figure 1: 
Left: Partial overview of the traditional surface-based cortical processing pipeline, involving 

white-matter (WM) segmentation, mesh reconstruction, and spherical inflation. Right: 
Example of a topological defect in which anatomically implausible “bridges” are incorrectly 

estimated between two gyri.
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Figure 2: 
TopoFit architecture: a series of graph-convolutional (GCN) blocks iteratively warp a 

template surface m0 to fit the anatomy of an input image x. Each block gt predicts 

a deformation ϕt by sampling spatial image features from a volumetric U-Net h at the 

positions of mt−1. The template mesh is up-sampled between each deformation step.
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Figure 3: 
Representative reconstruction examples for TopoFit (blue), FreeSurfer (yellow), and 

DeepCSR (white). FreeSurfer and DeepCSR tend to get stuck in local minima around 

unexpected white-matter tissue abnormalities.
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Figure 4: 
Model results given different hyperparameter values. The optimal regularization weight 

λ and template resolution level R aim to maximize surface placement accuracy while 

constraining the number of self-intersecting faces in the mesh.
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Table 1:

White-matter surface placement accuracy and GPU runtime for both hemispheres.

Mean Dist. (mm) P99 Dist. (mm) Hausdorff (mm) Dice (%) Runtime (s)

DeepCSR 0.24 ± 0.09 1.56 ± 1.13 7.53 ± 2.01 96.0 ± 1.2 818.2 ± 134.9

TopoFit 0.13 ± 0.07 0.78 ± 0.35 4.35 ± 1.41 97.6 ± 0.6 1.2 ± 0.1
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