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Abstract

Calculating the variance of a family of tensors, each represented by a symmetric positive semi-

definite second order tensor/matrix, involves the formation of a fourth order tensor Rabcd. To 

form this tensor, the tensor product of each second order tensor with itself is formed, and these 

products are then summed, giving the tensor Rabcd the same symmetry properties as the elasticity 

tensor in continuum mechanics. This tensor has been studied with respect to many properties: 

representations, invariants, decomposition, the equivalence problem et cetera. In this paper we 

focus on the two-dimensional case where we give a set of invariants which ensures equivalence of 

two such fourth order tensors Rabcd and Rabcd. In terms of components, such an equivalence means 

that components Rijkl of the first tensor will transform into the components Rijkl of the second 

tensor for some change of the coordinate system.

1 Introduction

Positive semi-definite second order tensors arise in several applications. For instance, in 

image processing, a structure tensor is computed from greyscale images that captures the 

local orientation of the image intensity variations [10, 17] and is employed to address 

a broad range of challenges. Diffusion tensor magnetic resonance imaging (DT-MRI) [1, 

5] characterizes anisotropic water diffusion by enabling the measurement of the apparent 

diffusion tensor, which makes it possible to delineate the fibrous structure of the tissue. 

Recent work has shown that diffusion MR measurements of restricted diffusion obscures the 

fine details of the pore shape under certain experimental conditions [11], and all remaining 

features can be encoded accurately by a confinement tensor [19].
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All such second order tensors share the same mathematical properties, namely, they are real-

valued, symmetric, and positive semi-definite. Moreover, in these disciplines, one encounters 

a collection of such tensors, e.g., at different locations of the image. Populations of such 

tensors have also been key to some studies aiming to model the underlying structure of the 

medium under investigation [8, 12, 18].

Irrespective of the particular application, let Rab denote such tensors,1 and we shall refer to 

the set of n tensors as {Rab
(i)}i. Our desire is to find relevant descriptors or models of such a 

family. One relevant statistical measure of this family is the (population) variance

1
n ∑

i = 1

n
(Rab

(i) − Rab)(Rcd
(i) − Rcd) = 1

n ∑
i = 1

n
Rab

(i)Rcd
(i) − RabRcd ,

where Rab = 1
n ∑i = 1

n Rab
(i) is the mean. (For another approach, see e.g., [8]). In this paper, we are 

interested in the first term, i.e., we study the fourth order tensor (skipping the normalization)

Rabcd = ∑
i = 1

n
Rab

(i)Rcd
(i), Rab

(i) ≥ 0, (1)

where Rab
(i) ≥ 0 stands for Rab

(i) being positive semi-definite. It is obvious that Rabcd has the 

symmetries Rabcd = Rbacd = Rabdc and Rabcd = Rcdab, i.e., Rabcd has the same symmetries 

as the elasticity tensor [14] from continuum mechanics. The elasticity tensor is well studied 

[13], e.g. with respect to classification, decompositions, and invariants. In most cases this is 

done in three dimensions. The same (w.r.t. symmetries) tensor has also been studied in the 

context of diffusion MR [2].

In this paper we will focus on the corresponding tensor Rabcd in two dimensions. First, there 

are direct applications in image processing, and secondly, the problems posed will be more 

accessible in two dimensions than in three. In particular we study the equivalence problem, 

namely, we ask the question: given the components Rijkl and Rijkl of two such tensors do they 

represent the same tensor in different coordinate systems (see Sects. 2.1.2 and 4)?

1.1 Outline

Section 2 contains tensorial matters. We will assume some basic knowledge of tensors, 

although some definitions are given for completeness. The notation(s) used is commented on 

and in particular the three-dimensional Euclidean vector space V(ab) is introduced.

In Sect. 2.1.2, we make some general remarks concerning the tensor Rabcd and specify the 

problem we focus on. Section 2.1 is concluded with some remarks on the Voigt/Kelvin 

notation and the corresponding visualisation in ℝ3.

Section 2.2 gives examples of invariants, especially invariants which are easily accessible 

from Rabcd. Also, more general invariant/canonical decompositions of Rabcd are given.

1For the notation of tensors used here, see Sect. 2.1.
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In Sect. 3, we discuss how the tensor Rabcd can (given a careful choice of basis) be expressed 

in terms of a 3 × 3 matrix, and how this matrix is affected by a rotation of the coordinate 

system in the underlying two-dimensional space on which Rabcd is defined.

In Sect. 4 we return to the equivalence problem and give the main result of this work. 

In Sect. 4.1.1 we provide a geometric condition for equivalence, while in Sect. 4.1.2, we 

present the equivalence in terms of a 3 × 3 matrix. Both these characterisations rely on the 

choice of particular basis elements for the vector spaces employed. In Sect. 4.1.3 the same 

equivalence conditions are given in a form which does not assume a particular basis.

2 Preliminaries

In this section we clarify the notation and some concepts which we need. Section 2.1 

deals with the (alternatives of) tensor notation and some representations. The equivalence 

(and related) problems are also briefly addressed. Section 2.2 accounts for some natural 

invariants, traces and decompositions of Rabcd.

We will assume some familiarity with tensors, but to clarify the view on tensors we recall 

some facts. We start with a (finite dimensional) vector space V with dual V*. A tensor 

of order (p,q) is then a multi-linear mapping V × V ⋯ × V
q

× V ∗ × ⋯ × V ∗
p

ℝ. Moreover, a 

(non-degenerate) metric/scalar product g :V × V ℝ gives an isomorphism from V to V* 

through v → g(v, ·), and it is this isomorphism which is used to ‘raise and lower indices’, 

see below. Indeed, for a fixed v ∈ V, g(v, ·) is a linear mapping V ℝ, i.e., an element of 

V*.

2.1 Tensor Notation and Representations

There is a plethora of notations for tensors. Here, we follow the well-adopted convention 

[16] that early lower case Latin letters (Ta
bc) refer to the tensor as a geometric object, its 

type being inferred from the indices and their positions (the abstract index notation). gab 

denotes the metric tensor. When the indices are lower case Latin letters from the middle 

of the alphabet, Ti
jk, they refer to components of Ta

bc in a certain frame. The super-index 

i denotes a contravariant index while the sub-indices j, k are covariant. For instance, a 

typical vector (tensor of type (1, 0)) will be written va with components vi, while the 

metric gab (tensor of type (0, 2)) has components gij. At a number of occasions, it will 

also be useful to express quantities in terms of components with respect to orthonormal 

frames, i.e., Cartesian coordinates. This is sometimes referred to as ‘Cartesian tensors’, and 

the distinction between contra- and covariant indices is obscured. In these situations, it is 

possible (but not necessary) to write all indices as sub-indices, and sometimes the symbol 

≐ is used to indicate that an equation is only valid in Cartesian coordinates. For example 

Ti ≐ Tijkδjk instead of Ti = Ti
jkgjk = Tik

k. Often this is clear form the context, but we 

will sometimes use ≐ to remind the reader that a Cartesian assumption is made. Here, the 

Einstein summation convention is implied, i.e., repeated indices are to be summed over, 

so that for instance T i = T jk
i gjk = T k

ik = ∑j = 1
n ∑k = 1

n T jk
i gjk = ∑k = 1

n T k
ik  if each index ranges 
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from 1 to n. We have also used the metric gij and its inverse gij to raise and lower indices. 

For instance, since gijvi is an element of V*, we write gijvi = vj.

We also remind of the notation for symmetrisation. For a two-tensor T (ab) = 1
2(Tab + T ba), while 

more generally for a tensor Ta1a2⋯an of order (0, n) we have

T (a1a2⋯an) = 1
n! ∑π

Taπ(1)aπ(2)⋯aπ(n)

where the sum is taken over all permutations π of 1, 2, …, n. Naturally, this convention can 

also be applied to subsets of indices. For instance, Ha(bc) = 1
2(Habc + Hacb).

2.1.1 The Vector Space of Symmetric Two-Tensors—In any coordinate frame a 

symmetric tensor Rab (i.e., Rab = Rba) is represented by a symmetric matrix Rij (2 × 2 or 

3 × 3 depending on the dimension of the underlying space). In the two-dimensional case, 

with the underlying vector space V a ∼ ℝ2, this means that Rab lives in a three-dimensional 

vector space, which we denote by V(ab). V(ab) is equipped with a natural scalar product: < 

Aab, Bab >= AabBab, making it into a three-dimensional Euclidean space. Here AabBab = 

AabBcdgacgbd, i.e, the contraction of AabBcd over the indices a, c and b, d, and the tensor 

product AabBcd itself is the tensor of order (0, 4) given by (AabBcd)vaubwcmd = (Aabvaub)

(Bcdwcmd) together with multi-linearity.

2.1.2 The Tensor Rabcd and the Equivalence Problem—As noted above, Rabcd 

given by (1) has the symmetries Rabcd = R(ab)cd = Rab(cd) and Rabcd = Rcdab, and it is not 

hard to see that this gives Rabcd six degrees of freedom in two dimensions. (See also Sect. 

2.1.3.) It is also interesting to note that Rabcd provides a mapping V(ab) → V(ab) through

Rab RabcdRcd,

and that this mapping is symmetric (due to the symmetry Rabcd = Rcdab). Given Rabcd there 

are a number of questions one can ask, e.g.,

• Feasibility—given a tensor Rabcd with the correct symmetries, can it be written 

in the form (1)?

• Canonical decomposition—given Rabcd of the form (1), can you write Rabcd as a 

canonical sum of the form (1), but with a fixed number of terms (cf. eigenvector 

decomposition of symmetric matrices)?

• Visualisation—since fourth order tensors are a bit involved, how can one 

visualise them in ordinary space?

• Characterisation/relevant sets of invariants—what invariants are relevant from an 

application point of view?

• The equivalence problem—in terms of components, how do we know if Rijkl and 

Rijkl represent the same tensor when they are in different coordinate systems?
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We will now focus on the equivalence problem in two dimensions. This problem can be 

formulated as above: given, in terms of components, two tensors (with the symmetries 

we consider) Rijkl and Rijkl, do they represent the same tensor in the sense that there is a 

coordinate transformation taking the components Rijkl into the components Rijkl? In other 

words, does there exist an (invertible) matrix Pm
i so that

Rijkl = RmnopPm
iPn

jPo
kP p

l?

This problem can also be formulated when Rijkl and Rijkl are expressed in Cartesian frames. 

Then the coordinate transformation must be a rotation, i.e., given by a rotation matrix Qi j ∈ 
SO(2). Hence, the problem of (unitary) equivalence is: Given Rijkl and Rijkl, both expressed 

in Cartesian frames, is there a matrix (applying the ‘Cartesian convention’) Qij ∈ SO(2) so 

that

Rijkl = RmnopQmiQnjQokQpl?

2.1.3 The Voigt/Kelvin Notation—Since (in two dimensions) the space V(ab) is three-

dimensional, one can introduce coordinates, for example Rij = x y
y z ∼

x
y
z

 and use vector 

algebra on ℝ3. This is used in the Voigt notation [15] and the related Kelvin notation [6]. As 

always, one must be careful to specify with respect to which basis in V(ab) the coordinates 
x
y
z

 are taken. For instance, in the correspondence Rij = x y
y z ∼

x
y
z

, the understood basis for 

V(ab) (in the understood/induced coordinate system) is 
1 0
0 0 , 0 1

1 0 , 0 0
0 1 . These elements 

are orthogonal (viewed as vectors in V(ab)) to each other, but not (all of them) of unit length.

Since the unit matrix plays a special role, we make the following choice. Starting with an 

orthonormal basis {ξ, η} for V, (i.e., {ξa, ηa} for Va) a suitable orthonormal basis for V(ab) 

is {eab
(1), eab

(2), eab
(3)} where eab

(1) = 1
2 (ξaξb − ηaηb), eab

(2) = 1
2 (ξaηb + ηaξb), eab

(3) = 1
2 (ξaξb + ηaηb), i.e., in the 

induced basis we have

eij
(1) = 1

2
1 0
0 −1 ∼ x, eij

(2) = 1
2

0 1
1 0 ∼ y, eij

(3) = 1
2

1 0
0 1 ∼ z . (2)

In this basis, we write an arbitrary element Mab ∈ V(ab) as Mij = z + x y
y z − x , which means 

that Mab gets the coordinates Mi = 2
x
y
z

. Note that Mij is positive definite if z2 − x2 − y2 ≥ 0 

and z ≥ 0. In terms of the coordinates of the Voigt notation, the tensor Rabcd corresponds to a 
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symmetric mapping ℝ3 ℝ3, given by a symmetric 3 × 3 matrix, which also shows that the 

degrees of freedom for Rabcd is six.

2.1.4 Visualization in ℝ3—Through the Voigt notation, any symmetric two-tensor (in 

two dimensions) can be visualised as a vector in ℝ3. Using the basis vector given by (2), we 

note that eij
(1) and eij

(2) correspond to indefinite quadratic forms, while eij
(3) is positive definite. 

We also see that eij
(1) + eij

(3) and eij
(2) + eij

(3) are positive semi-definite.

In Fig. 1 (left) these matrices are illustrated as vectors in ℝ3. The set of positive semi-

definite matrices corresponds to a cone, cf. [4], indicated in blue. When the symmetric 2 × 

2 matrices are viewed as vectors in ℝ3, the outer product of such a vector with itself gives a 

symmetric 3 × 3 matrix. Hence we get a positive semi-definite quadratic form on ℝ3, which 

can be illustrated by an (degenerate) ellipsoid in ℝ3. In Fig. 1 (right) (eab
(1) + eab

(3))(ecd
(1) + ecd

(3)), 
(eab

(2) + eab
(3))(ecd

(2) + ecd
(3)) and eab

(3)ecd
(3) are visualised in this manner. Note that all these quadratic forms 

correspond to matrices which are rank one. (Cf. the ellipsoids in Fig. 2.)

2.2 Invariants, Traces and Decompositions

By an invariant, we mean a quantity that can be calculated from measurements, and which 

is independent of the frame/coordinate system with respect to which the measurements are 

performed, despite the fact that components, e.g., Ti
jk themselves depend on the coordinate 

system. It is this property that makes invariants important, and typically they are formed 

via tensor products and contractions, e.g., Ti
jkTk

ilgjl. Sometimes, the invariants have a direct 

geometrical meaning. For instance, for a vector vi, the most natural invariant is its squared 

length vivi. For a tensor Ti
j of order (1,1) in three dimensions, viewed as a linear mapping 

ℝ3 ℝ3, the most well known invariants are perhaps the trace Ti
i and the determinant 

det(Ti
j). The modulus of the determinant gives the volume scaling under the mapping 

given by Ti
j, while the trace equals the sum of the eigenvalues. If Ti

j represents a rotation 

matrix, then its trace is 1 + 2 cos ϕ, where ϕ is the rotation angle. In general, however, 

the interpretation of a given invariant may be obscure. (For an account relevant to image 

processing, see e.g., [9]. A different, but relevant, approach in the field of diffusion MRI is 

found in [20].)

2.2.1 Natural Traces and Invariants—From (1), and considering the symmetries of 

Rabcd, two (and only two) natural traces arise. For a tensor of order (1, 1), e.g., Ri j, it is 

natural to consider this as an ordinary matrix, and consequently use stem letters without any 

indices at all. To indicate this slight deviation from the standard tensor notation, we denote 

e.g., Ri j by R̄̄. Using [·] for the trace, so that [R̄̄] = Tr(R̄̄) = Ra
a, we then have

T ab = Rabc
c = ∑

i = 1

n
Rab

(i)Rc
(i)c = ∑

i = 1

n
Rab

(i)[R̄̄(i)], (3)

and
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Sab = Racb
c = ∑

i = 1

n
Rac

(i)Rb
(i)c . (4)

Hence, in a Cartesian frame, where the index position is unimportant, we have for the 

matrices T̄̄ = T ij, S̄̄ = Sij

T̄̄ = ∑
i = 1

n
R̄̄(i)[R̄̄(i)], S̄̄ = ∑

i = 1

n
R̄̄(i)R̄̄(i) .

To proceed there are two double traces (i.e., contracting Rabcd twice):

T = T a
a = Ra

a
c
c = ∑

i = 1

n
Ra

(i)aRc
(i)c = ∑

i = 1

n
[R̄̄(i)]2

(5)

and

S = Sa
a = Rac

ac = ∑
i = 1

n
Rac

(i)R(i)ac
= ∑

i = 1

n
[(R̄̄(i))2] . (6)

In two dimensions, the difference Tab−Sab is proportional to the metric gab. Namely,

Lemma 1 With Tab and Sab given by (3) and (4), it holds that (in two dimensions)

Tab − Sab = ∑
i = 1

n
det(R̄̄(i))gab .

Proof By linearity, it is enough to prove the statement when n = 1, i.e., when the sum 

has just one term. Raising the second index, and using components, the statement then 

is T i
j − Si

j = det(R̄̄(1))δi
j. Putting R̄̄(1) = A, we see that Ti j − Si j = A[A] − A2 while 

det(R̄̄(1))δi
j = det(A)I, and by the Cayley-Hamilton theorem in two dimensions, A[A] − A2 is 

indeed det(A)I. □

From lemma 1, it follows that T − S = 2∑i = 1
n det(R̄̄(i)) ≥ 0. In fact the following inequalities 

hold.

Lemma 2 With T and S defined as above, it holds that S ≤ T ≤ 2S. If T = S, all tensors Rab
(i)

have rank 1. If T = 2S, all tensors Rab
(i) are isotropic, i.e., proportional to the metric gab.

Proof Again, by linearity it is enough to consider one tensor R̄̄(1) = A. In an orthonormal 

frame which diagonalises A, we have A = a 0
0 c  (with a ≥ 0, c ≥ 0, a + c > 0). Hence
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S = a2 + c2 ≤ a2 + c2 + 2ac = (a + c)2 = T = 2(a2 + c2) − (a − c)2 ≤ 2S .

The first inequality becomes equality when ac = 0, i.e., when A has rank one. The second 

inequality becomes equality when a = c, i.e., when A is isotropic. □

Definition 1 We define the mean rank, rm, by rm = T/S, with T and S as above. Hence, in 

two dimensions, 1 ≤ rm ≤ 2.

2.2.2 A Canonical Decomposition—It is customary [3, 7] to decompose a tensor with 

the symmetries of Rabcd into a sum where one term is the completely symmetric part:

Rabcd = Habcd + W abcd, where Habcd = R(abcd), W abcd = Rabcd − Habcd .

It is also customary to split Habcd into a trace-free part and ‘trace part’. We start by 

defining Hab = Habc
c, H = Ha

a and then the trace-free part of Hab :H
∘

ab = Hab − 1
2Hgab so that 

Hab = H
∘

ab + 1
2Hgab. (These decompositions can be made in any dimension, but the actual 

coefficients, e.g., 1
2  above and 1

8  and 3
8  et cetera below depend on the underlying dimension.) 

It is straightforward to check that

H
∘

abcd = Habcd − g(abHcd) + 1
8 Hg(abgcd) = Habcd − g(abH

∘
cd) − 3

8 Hg(abgcd)

is also trace-free. Hence we have the decomposition

Habcd = H
∘

abcd + g(abHcd) − 1
8 H g(abgcd) = H

∘
abcd + g(abH

∘
cd) + 3

8 H g(abgcd) .

Moreover, due to the symmetry of Rabcd, we find that

Habcd = 1
3 (Rabcd + Racbd + Radbc)

and therefore that

W abcd = 1
3 (2Rabcd − Racbd − Radbc) (7)

which implies that Hab = Habc
c = 1

3(Tab + 2Sab) and W ab = W abc
c = 2

3(Tab − Sab).

The degres of freedom, which for Rabcd is six, is distributed, where Rabcd ∼ {H
∘

abcd, Hab, W abcd}, 

as

Herberthson et al. Page 8

Math Vis. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rabcd
(6)

∼ {H
∘

abcd
(2)

, Hab
(3)

, W abcd
(1)

} ∼ {H
∘

abcd
(2)

, H
∘

ab
(2)

, H
(1)

, W abcd
(1)

} .

For Hab (or the pair H
∘

ab, H) this is clear. The total symmetry of H
∘

abcd leaves only 

five components (in a basis), H
∘

1111, H
∘

1112, H
∘

1122, H
∘

1222, H
∘

2222. However, the trace-free 

condition H
∘

abcd gcd = 0 imposes three conditions. (In an orthonormal frame, H
∘

1122 = − H
∘

1111, 

H
∘

2222 = − H
∘

1122 and H
∘

1112 = − H
∘

1222.) That Wabcd has only one degree of freedom follows from 

the following lemma.

Lemma 3 Suppose that Wabcd is given by (7), and put Wab = Wabcdgcd, W = Wabgab. Then 
(in two dimensions)

W abcd = W
4 (2gabgcd − gacgbd − gadgbc)

Proof By linearity, it is enough to consider the case when Rabcd = AabAcd for some 

(symmetric) Aab. In terms of eigenvectors (to Aa
b) we can write Aab = αxaxb + βyayb, 

where xaxa = yaya = 1, xaya = 0. In particular gab = xaxb + yayb. From (7) we then get

W abcd = 1
3 (2Rabcd − Racbd − Radbc)

= 1
3 (2AabAcd − AacAbd − AadAbc)

= 1
3 (2(αxaxb + βyayb)(αxcxd + βycyd)
− (αxaxc + βyayc)(αxbxd + βybyd)
− (αxaxd + βyayd)(αxbxc + βybyc)) .

(8)

Expanding the parentheses, the components xaxbxcxd and yaybycyd vanish, leaving

αβ
3 (2xaxbycyd + 2yaybxcxd − xaxcybyd

− yaycxbxd − xaxdybyc − yaydxbxc)
= αβ

3 (2gabgcd − gacgbd − gadgbc) ,
(9)

where the last equality can be seen by inserting gab = xaxb + yayb (for all indices) and 

expanding. Taking one trace, i.e., contracting with gcd gives W ab = 2αβ
3 gab, and another trace 

gives W = 4αβ
3 , which proves the lemma. □

3 Rabcd as a Quadratic Form on ℝ3

Through the orthonormal basis for the space of symmetric two-tensors (in two dimensions) 

given by (2), the tensor Rabcd viewed as a quadratic form can be represented by a 3 × 

3-matrix. Here, we will restrict ourselves to an orthonormal basis for V(ab), namely the basis 

{eab
(1), eab

(2), eab
(3)} from Sect. 2.1.3, defined in terms of the orthonormal basis [ξa, ηa} for Va. Thus, 
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given Rabcd, we associate the symmetric matrix Mij, where (the choice of an orthonormal 

basis justifies the mismatch of the indices i, j)

Mij ≐ R cd
ab eab

(i)(e(j))cd, 1 ≤ i, j ≤ 3 .

It is instructive to see how the various derived tensors show up in Mij. In terms of the basis 

(2) it is natural to look at the various parts of Mij as follows

Mij ≐
× × ×
× × ×
× × ✕

≐
A v
vt a

. (10)

This splitting is natural for reasons which will become apparent in the next sections. Note, 

however, that with this representation it is tempting to consider coordinate changes in ℝ3, 

which is not natural in this case. Rather, of interest is the change of basis in Va and the 

related induced change of coordinates in the representation (10). See Sect. 3.2.

3.1 Representation of the Canonically Derived Parts of Rabcd

It is helpful to see how the components of the various tensors Tab, Sab, T, S, H
∘

abcd, H
∘

ab, H 

and W show up as components of Mij. As for H
∘

ab, e.g., T
∘

ab denotes the trace-free part of Tab. 

Immediate is M33:

M33 ≐ R cd
ab eab

(3)(e(3))cd ≐ 1
2R cd

ab gabgcd = 1
2T cdgcd = 1

2T . (11)

Similarly, for i = 1, 2 we have

Mi3 ≐ 1
2R cd

ab eab
(i)gcd ≐ 1

2T abeab
(i) ≐ 1

2T
∘ ab

eab
(i), (12)

where the last equality follows form the trace-freeness of eab
(1) and eab

(2). This means that 

the components of T
∘

ab (properly rescaled) goes into Mij as the components of v (and vt) 

in (10). The same holds for S
∘

ab and H
∘

ab, as S
∘

ab = T
∘

ab by Lemma 1, which then implies 

that also H
∘

ab = T
∘

ab = S
∘

ab. This latter relation follows from the trace-free part of the relation 

Hab = 1
3(Tab + 2Sab). Hence

Mij ≐
A T

∘

T
∘ t 1

2T
≐

σ
2I + Å T

∘

T
∘ t 1

2T
, (13)
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where T
∘

= S
∘

= H
∘
 encodes the two degrees of freedom in T

∘
ab = S

∘
ab = H

∘
ab. The matrix A is 

decomposed as A = σ
2 I + Å where I is the (2 × 2) identity matrix and Å is trace-free part of 

A. In particular, [A] = σ.

To investigate [Mij] = M11 + M22 + M33, i.e., the trace of Mij we note that for a 

general symmetric matrix Rij ≐ a b
b c  we have Rijeij

(1) ≐ a − c
2 , Rijeij

(2) ≐ 2b
2 , Rijeij

(3) ≐ a + c
2 . When 

Mij is constructed from Rabcd which is an outer product RabRcd the trace is given by 

M11 + M22 + M33 = (a − c
2 )2 + ( 2b

2 )2 + (a + c
2 )2 = a2 + 2b2 + c2 and from (6) this is S. Together 

with linearity, this shows that [M] = M11 + M22 + M33 = S also when Rabcd is formed as in 

(1). Taking trace in (13), this gives

S = σ + 1
2T , i.e., σ = S − 1

2T .

In addition, the relations below Eq. (7) show that

H = 1
3(T + 2S)

W = 2
3(T − S)

i.e.,
T = H + W

S = H − 1
2W so that σ = 1

2H − W .

The two degres of freedom in Å corresponds to the two degrees of freedom in H
∘

abcd.

3.2 The Behaviour of Mij Under a Rotation of the Coordinate System in Va

The components of Mij are expressed in terms of the orthonormal basis tensors given by (2), 

and these in turn are based on the ON basis {ξ, η} for V. Putting the basis vectors in a row 

matrix ξ η  and the coordinates in a column matrix 
ξ
η  so that a vector u = ξξ + ηη = ξ η ξ

η , 

and considering only orthonormal frames, the relevant change of basis is given by a rotation 

matrix Q(v) = Qv = cos v − sin v
sin v cos v , i.e., we consider the change of basis

(ξ η) ξ η = (ξ η) cos v − sin v
sin v cos v = (ξ η) Q(v) .

This means that for a vector u = ξ η ξ
η

= (ξ η) ξ
η , the coordinates transform as

ξ
η

ξ
η

= Q−1(v) ξ
η = Qt(v) ξ

η = Q( − v) ξ
η .

For the components of the basis vectors eab
(1), eab

(2), eab
(3) we find (omitting the factor 1 ∕ 2)
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1 0
0 −1

cos v sin v
− sin v cos v

1 0
0 −1

cos v − sin v
sin v cos v = cos 2v − sin 2v

− sin 2v − cos 2v
0 1
1 0

cos v sin v
− sin v cos v

0 1
1 0

cos v − sin v
sin v cos v = sin 2v cos 2v

cos 2v − sin 2v
1 0
0 1

cos v sin v
− sin v cos v

1 0
0 1

cos v − sin v
sin v cos v = 1 0

0 1 ,

(14)

and this means that the components Mij transform as

Mij ≐
A v
vt a

M ij ≐
Q2v

t A Q2v Q2v
t v

vt Q2v a
. (15)

But this latter expression is just

Q2v
t 0

0t 1

A v

vt a

Q2v 0

0t 1
,

hence we have the following important remark/observation:

Remark 1 Viewing the matrix Mij as an ellipsoid in ℝ3, the effect of a rotation by an angle v 

in Va corresponds to a rotation of the ellipsoid by an angle 2v around the z-axis in ℝ3 (where 

the z-axis corresponds to the ‘isotropic direction’ given by gab).

4 The Equivalence Problem for Rabcd

The equivalence problem for Rabcd can be formulated in different ways (for an account 

in three dimensions, we refer to [3]). Given two tensors Rabcd and Rabcd, both with the 

symmetries implied by (1), the question whether they are the same or not is straightforward 

as one can compare the components in any basis. However, Rabcd and Rabcd could live in 

different (but isomorphic) vector spaces, e.g. two tangent spaces at different points, and the 

concept of equality becomes less clear. On the other hand, in terms of components Rijkl 

and Rijkl, one could ask whether there is a change of coordinates which takes one set of 

components into the other. If so, one can find a (invertible) matrix Pi
j so that

Rijkl = RmnopPm
iPn

jPo
kP p

l,

and the tensors are then said to be equivalent. As already mentioned, it is convenient to 

restrict the coordinate systems to orthonormal coordinates. This means that two different 

coordinate systems differ only by their orientation, i.e., the change of coordinates are given 

by a rotation matrix Q ∈ SO(2). Under the ‘Cartesian convention’ that all indices are written 

as subscripts, Rabcd and Rabcd are equivalent if there is a matrix Q ∈ SO(2) so that (their 

Cartesian components satisfy)
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Rijkl = RmnopQmiQnjQokQpl .

4.1 Different Ways to Characterize the Equivalence of Rabcd and Rabcd

In this section, we will discuss three ways to determine whether two tensors Rabcd and Rabcd

are equivalent or not. In Sects. 4.1.1 and 4.1.2 we present two such methods briefly, while 

Sect. 4.1.3, which is more complete, contains the main result of this work.

As mentioned in Sect. 1.1, the results of Sects. 4.1.1 and 4.1.2, which may be used in their 

own rights, rely on particular choices of basis matrices for V(ab). The formulation in Sect. 

4.1.3 on the other hand, is expressed in the components of Rabcd (in any coordinate system) 

directly.

4.1.1 Orientation of the Ellipsoid in ℝ3—A necessary condition for Rabcd and Rabcd

to be equivalent is that their corresponding 3 × 3-matrices Mij and Mij have the same 

eigenvalues. On the other hand, this is not sufficient since the representation in ℝ3 should 

reflect the freedom in rotating the coordinate system in V a ∼ ℝ2. With the coordinates 

adopted, this corresponds to a rotation of the associated ellipsoid around the z-axis in 

ℝ3 (see Remark 1 in Sect. 3.2). This is illustrated in Fig. 2 where three ellipsoids, all 

representing positive definite symmetric mappings having identical eigenvalues, are shown. 

The two first ellipsoids can be rotated into each other by a rotation around the z-axis. This 

implies that the corresponding tensors Rabcd and Rabcd are equivalent. The third ellipsoid can 

also be rotated into the two others, but these rotations are around directions other than the 

z-axis, which means that this ellipsoid represents a different tensor.

In the generic case, with all eigenvalues different, it is easy to test whether two different 

ellipsoids can be transfered into each other through a rotation around the z-axis. This will 

be the case if the corresponding eigenvectors (of Mij and Mij) have the same angle with 

the z-axis. Hence it is just a matter of checking the z-components of the three normalized 

eigenvectors and see if they are equal up to sign.

4.1.2 Components in a Canonical Coordinate System—In a sense, this is the 

most straightforward method. In a coordinate system which respects eab
(3) as the z-axis in 

V (ab) ∼ ℝ3, two tensors Rabcd and Rabcd are equivalent if there is a rotation matrix (in two 

dimensions) Q such that

A T
∘

T
∘ t 1

2T
=

QtAQ QtT
∘

T
∘

tQ 1
2T

. (16)
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Hence, equivalence can be easily tested by first checking that T = T  and that ‖ T
∘

‖ = ‖T
∘

‖. 

If this is the case, (and if ‖ T
∘

‖ > 0) one determines the rotation matrix Q which gives 

T
∘

= QtT
∘

, and equivalence is then determined by if A = QtAQ or not. If ‖ T
∘

‖ = ‖T
∘

‖ = 0, the 

equivalence of A and A can be determined directly, i.e., by checking whether [A] = [A] and 

[A2] = [A2] or not.

4.1.3 Equivalence Through (algebraic) Invariants of Rabcd—If a solution is 

found, this is perhaps the most satisfactory way to establish equivalence, in particular if the 

invariants are constructed by simple algebraic operations only. (For instance, to a symmetric 

3 × 3-matrix A one can take the three eigenvalues as invariants or else for instance the traces 

of A, A2 and A3. The former set requires some calculations, but the latter is immediate.)

Examples of invariants are T = Rabcdgabgcd, S = Rabcdgacgbd and the invariants H = Habgab, 

W = Wabgab. To produce the invariants, we use the tensor Rabcd and the metric gab. However, 

if we regard V a ∼ ℝ2 as oriented, so that the orthonormal basis {ξ, η} for Va also is oriented, 

then invariants can also be formed in another way. Namely, since the space of symmetric 2 × 

2 matrices is 3-dimensional, and since the metric gab singles out a 1-dimensional subspace, 

it also determines a 2-dimensional subspace L; all elements orthogonal to gab. This subspace 

is the set of all symmetric 2 × 2 matrices which are also trace-free. L can be given an 

orientation through an area form, which in turn inherits the orientation from Va.

In general, with right-handed Cartesian coordinates x1, x2, the area form ϵ is given by ϵ = 

dx1 ∧ dx2 where (ω ∧ μ)ab = ωaμb − ωbμa. With the orthonormal basis {ξ, η} (for Va ) also 

right handed, we define, cf. (2),

eab
(1) = 1

2(ξaξb − ηaηb), eab
(2) = 1

2(ξaηb + ηaξb) . (17)

The area form on L is then ϵ ~ e(1) ∧ e(2), or

ϵ ∼ Eabcd = eab
(1)ecd

(2) − eab
(2)ecd

(1) . (18)

It is not hard to see that this definition is independent of the orientation of {ξ, η}. 

We observe that 2Eabcd = (ξaξb − ηaηb)(ξcηd + ηcξd) − (ξaηb + ηaξb)(ξcξd − ηcηd). By replacing ξ by 

ω = cos v ξ + sin v η and η by μ = − sin v ξ + cos v η, i.e., a rotated orthonormal basis, it is 

straightforward to check that

(ωaωb − μaμb)(ωcμd + μcωd) − (ωaμb + μaωb)(ωcωd − μcμd)
= (ξaξb − ηaηb)(ξcηd + ηcξd) − (ξaηb + ηaξb)(ξcξd − ηcηd)

(19)

so that Eabcd is well defined. We recollect that area form Eabcd is defined, through the 

induced metric, on the plane L (which in turn is also defined through the metric gab) and the 

orientation on Va. Hence Eabcd can be used when forming invariants.
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We will now state the result of this work, namely the existence of six invariants which can be 

used to investigate equivalence of two tensors Rabcd and Rabcd. We start by defining

S = Rabcdgacgbd

T = Rabcdgabgcd

J0 = RabcdRabcd

J1 = T abT ab

J2 = RabcdT abT cd

J3 = T abRabcdEcdefT ef .

(20)

where Eabcd is defined by (17) and (18). Similarly, we define S, T , J 0, J 1, J 2 and J 3 as 

the corresponding invariants formed from Rabcd. We make the remark that for most of these 

invariants, their immediate interpretations still remain to be found. Rather, their value lie in 

the fact that they form a set which can be used to establish the equivalence in Theorem 1 

below. On the other hand, some interpretations are possible. In particular, the quotient T/S 
(see Definition 1) lies in the interval [1, 2] and has the meaning given by Lemma 2.

Theorem 1 Suppose that Rabcd = ∑i = 1
n Rab

(i)Rcd
(i), with Rab

(i) ≥ 0 and that Rijkl are the components of 

Rabcd in some basis. Suppose also that Rabcd = ∑i = 1
n Rab

(i)Rcd
(i)
, with Rab

(i) ≥ 0 and that Rijkl are the 

components of Rabcd in some, possibly unrelated, basis. If (and only if) S = S, T = T , J0 = J 0, 

J1 = J 1, J2 = J 2, J3 = J 3, then there is a transformation matrix Pi
j such that

Rijkl = RmnopPm
iPn

jPo
kP p

l .

Proof Since the invariants are defined without reference to any basis, it is sufficient to 

consider the components expressed in an orthonormal frame, and in that case we must prove 

the existence of a rotation matrix Q ∈ SO(2) so that

Rijkl = RmnopQmiQnjQokQpl .

Since

Rabcd = Mijeab
(i)ecd

(j), (21)

we can consider the invariants formed from the components of

Mij =
A u
ut c

and M ij =
A u

ut c
(22)

and we must demonstrate the existence of a rotation matrix Q = Q2v such that

A = Q2v
t AQ2v, u = Q2v

t u, c = c . (23)

We make the ansatz
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Mij =

σ
2 + a

b

b
σ
2 − a

x
y

x y c
, M ij =

σ
2 + a

b

b
σ
2 − a

x
y

x y c

. (24)

Through (21) it is straightforward to see that

S = σ + c, T = 2c, J0 = 2(a2 + b2) + c2 + σ2 ∕ 2 + 2(x2 + y2),
J1 = 2(c2 + x2 + y2)

so if S = S, T = T , J0 = J 0, J1 = J 1, it follows that σ = σ, c = c , a2 + b2 = a2 + b 2 and 

x2 + y2 = x2 + y2. Since the isotropic part of A, i.e., σ
2 I is unaffected by a rotation of the 

coordinate system, we consider the traceless parts Å = a b
b −a , A

∘

= a b
b −a

, and the task is to 

assert a rotation matrix Q such that

a b
b −a = Qt a b

b −a
Q, x

y = Qt x
y ,

if also J2 = J 2, J3 = J 3. Again it is straightforward to calculate the remaining invariants, and 

we find

J2 = 4bxy + 2a(x2 − y2) + 2c3 + (4c + σ)(x2 + y2)
J3 = 4axy − 2b(x2 − y2) .

and similarly for J 2, J 3. Hence, (since σ = σ, c = c )

a2 + b2 = a2 + b 2

x2 + y2 = x2 + y2

2bxy + a(x2 − y2) = 2b xy + a(x2 − y2)
2axy − b(x2 − y2) = 2axy − b (x2 − y2) .

(25)

Suppose first that x2 + y2 > 0. The equality x2 + y2 = x2 + y2 then guarantees the existence 

of the rotation matrix Q which is determined via the relation 
x
y = Qt x

y . This can also 

be expressed as Q1
t x

y = Q2
t x

y  for some rotation matrices Q1, Q2, where Q = Q2Q1
t. We now 

choose the rotation matrix Q1 so that in the untilded coordinates, y = 0. Similarly we choose 

Q2 so that for the tilded coordinates, we get a frame where y = 0. The equalities between the 

invariants in (25) then become
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a2 + b2 = a2 + b 2

x2 = x2

ax2 = ax2

− bx2 = − b x2 ,

so that a = a , b = b . This proves the theorem when x2 + y2 > 0. When x2 + y2 = x2 + y2 = 0, 

i.e., x = y = x = y = 0, the remaining equality a2 + b2 = a2 + b 2 is sufficient since we can 

again choose frames in which b = b = 0 and a > 0, a > 0. It then follows that a = a . □

5. Discussion

In this work, we started with a family of symmetric positive (semi-)definite tensors in two 

dimensions and considered its variance. This lead us to a fourth order tensor Rabcd with the 

same symmetries as the elasticity tensor in continuum mechanics. After listing a number 

of possible issues to address, we focused on the equivalence problem. Namely, given the 

components of two such tensors Rabcd and Rabcd, how can one determine if they represent the 

same tensor (but in different coordinate systems) or not? In Sect. 4, we saw that this could be 

investigated in different ways. The result of Theorem 1 is most satisfactory in the sense that 

it is expressible in terms of the components of the fourth order tensors directly.

There are two natural extensions and/or ways to continue this work. The first is to apply 

the result to realistic families of e.g., diffusion tensors in two dimensions. The objective is 

then, apart from establishing possible equivalences, to investigate the geometric meaning of 

the invariants. The other natural continuation is to investigate the corresponding problem in 

three dimensions. The degrees of freedom of Rabcd will then increase from 6 to 21, leaving 

us with a substantially harder, but also perhaps more interesting, problem.
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Fig. 1. 
Left: the symmetric matrices eab

(1), eab
(2), eab

(3) (red) and eab
(1) + eab

(3), eab
(2) + eab

(3) (blue) as vectors in 

ℝ3. The positive semi-definite matrices correspond to vectors which are inside/above the 

indicated cone (including the boundary). Right: the fourth order tensors (eab
(1) + eab

(3))(ecd
(1) + ecd

(3))
and (eab

(2) + eab
(3))(ecd

(2) + ecd
(3)) depicted in blue, and eab

(3)ecd
(3) shown in red are viewed as quadratic 

forms and illustrated as ellipsoids (made a bit ‘fatter’ than they should be for the sake of 

clarity)
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Fig. 2. 

Three identical (truncated) ellipsoids in ℝ3 with different orientations. The two leftmost 

ellipsoids can be carried over to each other through a rotation around the (vertical in the 

figure) z-axis, which implies that they represent the same tensor Rabcd (up to the meaning 

discussed). The right ellipsoid, despite identical eigenvalues with the two others, represent 

a different tensor since the rotation which carries this ellipsoid to any of the others is not 

around the z-axis
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