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Abstract

We introduce a simple new approach to variable selection in linear regression, with a particular 

focus on quantifying uncertainty in which variables should be selected. The approach is based 

on a new model — the “Sum of Single Effects” (SuSiE) model — which comes from writing 

the sparse vector of regression coefficients as a sum of “single-effect” vectors, each with 

one non-zero element. We also introduce a corresponding new fitting procedure — Iterative 

Bayesian Stepwise Selection (IBSS) — which is a Bayesian analogue of stepwise selection 

methods. IBSS shares the computational simplicity and speed of traditional stepwise methods, 

but instead of selecting a single variable at each step, IBSS computes a distribution on variables 

that captures uncertainty in which variable to select. We provide a formal justification of this 

intuitive algorithm by showing that it optimizes a variational approximation to the posterior 

distribution under the SuSiE model. Further, this approximate posterior distribution naturally 

yields convenient novel summaries of uncertainty in variable selection, providing a Credible 

Set of variables for each selection. Our methods are particularly well-suited to settings where 

variables are highly correlated and detectable effects are sparse, both of which are characteristics 

of genetic fine-mapping applications. We demonstrate through numerical experiments that our 

methods outperform existing methods for this task, and illustrate their application to fine-mapping 

genetic variants influencing alternative splicing in human cell-lines. We also discuss the potential 

and challenges for applying these methods to generic variable selection problems.
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1 INTRODUCTION

The need to identify, or “select”, relevant variables in regression models arises in a diverse 

range of applications, and has spurred development of a correspondingly diverse range of 

methods (e.g., see O’Hara and Sillanpää 2009; Fan and Lv, 2010; Desboulets, 2018; George 
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and McCulloch, 1997, for reviews). However, variable selection is a complex problem, 

and so despite considerable work in this area there remain important issues that existing 

methods do not fully address. One such issue is assessing uncertainty in which variables 
should be selected, particularly in settings involving very highly correlated variables. Here 

we introduce a simple and computationally scalable approach to variable selection that helps 

address this issue.

Highly correlated variables pose an obvious challenge to variable selection methods, simply 

because they are hard to distinguish from one another. Indeed, in an extreme case where 

two variables (say, x1 and x2) are completely correlated, it is impossible to claim, based 

on a regression analysis, that one variable should be selected as relevant rather than the 

other. In some applications such ambiguity causes few practical problems. Specifically, 

in some applications variable selection is used only to help build an accurate predictor, 
in which case it suffices to arbitrarily select one of the two identical variables (or both); 

prediction accuracy is unaffected by this choice. However, in other scientific applications, 

variable selection is used as a means to help learn something about the world, and in 

those applications the ambiguity created by highly correlated variables is more problematic 

because scientific conclusions depend on which variables are selected. In these applications, 

it is crucial to acknowledge uncertainty in which variables should be selected. This requires 

methods that can draw conclusions such as “either x1 or x2 is relevant and we cannot 

decide which” rather than methods that arbitrarily select one of the variables and ignore 

the other. While this may seem a simple goal, in practice most existing variable selection 

methods do not satisfactorily address this problem (see Section 2 for further discussion). 

These shortcomings motivate our work here.

One particular application where these issues arise is genetic fine-mapping (e.g., Veyrieras 

et al., 2008; Maller et al., 2012; Spain and Barrett, 2015; Huang et al., 2017; Schaid et 

al., 2018). The goal of fine-mapping is to identify the genetic variants that causally affect 

some traits of interest (e.g., low density lipoprotein cholesterol in blood, or gene expression 

in cells). In other words, the main goal of fine-mapping is to learn something about the 

world, rather than build a better predictor. (This is not to say that predicting traits from 

genetic variants is not important; indeed, there is also a lot of work on prediction of genetic 

traits, but this is not the main goal of fine-mapping.) The most successful current approaches 

to fine-mapping frame the problem as a variable selection problem, building a regression 

model in which the regression outcome is the trait of interest, and the candidate predictor 

variables are the available genetic variants (Sillanpää and Bhattacharjee, 2005). Performing 

variable selection in a regression model identifies variants that may causally affect the trait. 

Fine-mapping is challenging because the variables (genetic variants) can be very highly 

correlated, due to a phenomenon called linkage disequilibrium (Ott, 1999). Indeed, typical 

studies contain many pairs of genetic variants with sample correlations exceeding 0.99, or 

even equaling 1.

Our approach builds on previous work on Bayesian variable selection in regression (BVSR) 

(Mitchell and Beauchamp, 1988; George and McCulloch, 1997), which has already been 

widely applied to genetic fine-mapping and related applications (e.g., Meuwissen et al., 

2001; Sillanpää and Bhattacharjee, 2005; Servin and Stephens, 2007; Hoggart et al., 2008; 
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Stephens and Balding, 2009; Logsdon et al., 2010; Guan and Stephens, 2011; Bottolo et al., 

2011; Maller et al., 2012; Carbonetto and Stephens, 2012; Zhou et al., 2013; Hormozdiari et 

al., 2014; Chen et al., 2015; Wallace et al., 2015; Moser et al., 2015; Wen et al., 2016; Lee 

et al., 2018). BVSR is an attractive approach to these problems because it can, in principle, 

assess uncertainty in which variables to select, even when the variables are highly correlated. 

However, applying BVSR in practice remains difficult for at least two reasons. First, BVSR 

is computationally challenging, often requiring implementation of sophisticated Markov 

chain Monte Carlo or stochastic search algorithms (e.g., Bottolo and Richardson, 2010; 

Bottolo et al., 2011; Guan and Stephens, 2011; Wallace et al., 2015; Benner et al., 2016; 

Wen et al., 2016; Lee et al., 2018). Second, and perhaps more importantly, the output from 

BVSR methods is typically a complex posterior distribution — or samples approximating 

the posterior distribution — and this can be difficult to distill into results that are easily 

interpretable.

Our work addresses these shortcomings of BVSR through several innovations. We introduce 

a new formulation of BVSR, which we call the “Sum of Single Effects” (SuSiE) model. 

This model, while similar to existing BVSR models, has a different structure that naturally 

leads to a simple, intuitive, and fast procedure for model fitting — Iterative Bayesian 

Stepwise Selection (IBSS) — which is a Bayesian analogue of traditional stepwise selection 

methods (and which enjoys important advantages over these traditional selection methods, 

as we explain below). We provide a principled justification for this intuitive algorithm by 

showing that it optimizes a variational approximation to the posterior distribution under 

the SuSiE model. Although variational approaches to BVSR already exist (Logsdon et al., 

2010; Carbonetto and Stephens, 2012), our new approach introduces a different family of 

approximating distribution that provides much more accurate inferences in settings with 

highly correlated variables.

A key feature of our method, which distinguishes it from most existing BVSR methods, 

is that it produces “Credible Sets” of variables that quantify uncertainty in which variable 

should be selected when multiple, highly correlated variables compete with one another. 

These Credible Sets are designed to be as small as possible while still each capturing a 

relevant variable. Arguably, this is exactly the kind of posterior summary that one would 

like to obtain from MCMC-based or stochastic search BVSR methods, but doing so would 

require non-trivial post-processing of their output. In contrast, our method provides this 

posterior summary directly, and with little extra computational effort.

The structure of this paper is as follows. Section 2 provides further motivation for our 

work, and brief background on BVSR. Section 3 describes the new SuSiE model and fitting 

procedure. Section 4 uses simulations, designed to mimic realistic genetic fine-mapping 

studies, to demonstrate the effectiveness of our approach compared with existing methods. 

Section 5 illustrates the application of our methods to fine-mapping of genetic variants 

affecting splicing, and Section 6 briefly highlights the promise (and limitations) of our 

methods for other applications such as change-point problems. We end with a discussion 

highlighting avenues for further work.
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2 BACKGROUND

2.1 A motivating toy example

Suppose the relationship between an n-vector y and an n × p matrix X = (x1, …, xp), is 

modeled as a multiple regression:

y = Xb + e
e Nn 0, σ2In , (2.1)

where b is a p-vector of regression coefficients, e is an n-vector of error terms, σ2 > 0 is 

the residual variance, In is the n × n identity matrix, and Nr (μ, Σ) denotes the r-variate 

normal distribution with mean μ and variance Σ. For brevity, we will refer to variables j with 

non-zero effects (bj ≠ 0) as “effect variables”.

Assume now that exactly two variables are effect variables — variables 1 and 4, say — 

and that these two effect variables are each completely correlated with another non-effect 

variable, say x1 = x2 and x3 = x4. Further suppose that no other pairs of variables are 

correlated. Here, because the effect variables are completely correlated with other variables, 

it is impossible to confidently select the correct variables, even when n is very large. 

However, given sufficient data it should be possible to conclude that there are (at least) two 

effect variables, and that:

b1 ≠ 0 or b2 ≠ 0 and b3 ≠ 0 or b4 ≠ 0 . (2.2)

Our goal, in short, is to provide methods that directly produce this kind of inferential 
statement. Although this example is simplistic, it mimics the kind of structure that occurs in, 

for example, genetic fine-mapping applications, where it often happens that an association 

can be narrowed down to a small set of highly correlated genetic variants, but not down to an 

individual variant.

Most existing approaches to sparse regression do not provide statements like (2.2), nor do 

they attempt to do so. For example, methods that maximize a penalized likelihood, such 

as the lasso (Tibshirani, 1996) or elastic net (EN; Zou and Hastie, 2005), select a single 

“best” combination of variables, and make no attempt to assess whether other combinations 

are also plausible. In our toy example, EN selects all four variables, implying b1 ≠ 0, b2 

≠ 0, b3 ≠ 0 and b4 ≠ 0, which is quite different from (2.2). Recently-developed selective 

inference approaches (Taylor and Tibshirani, 2015) do not solve this problem, because 

they do not assess uncertainty in which variables should be selected; instead they assess 

uncertainty in the coefficients of the selected variables within the selected model. In our 

toy motivating example, selective inference methods sometimes selects the wrong variables 

(inevitably, due to the complete correlation with other variables) and then assigns them 

highly significant p values (see Wang et al., 2020b, for an explicit example accompanied by 

code). The p values are significant because, even though the wrong variables are selected, 

their coefficients — within the (wrong) selected model — can be estimated precisely. An 

alternative approach, which does address uncertainty in variable selection, is to control 

the false discovery rate (FDR) among selected variables — for example, using stability 

selection (Meinshausen and Bühlmann, 2010) or the knockoff filter (Barber and Candés, 
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2015). However, in examples with very highly correlated variables no individual variable 

can be confidently declared an effect variable, and so controlling the FDR among selected 

variables results in no discoveries, and not inferences like (2.2).

One approach to producing inferences like (2.2) is to reframe the problem, and focus on 

selecting groups of variables, rather than individual variables. A simple version of this idea 

might first cluster the variables into groups of highly correlated variables, and then perform 

some kind of “group selection” (Huang et al., 2012). However, while this could work in 

our toy example, in general this approach requires ad hoc decisions about which variables 

to group together, and how many groups to create — an unattractive feature we seek to 

avoid. A more sophisticated version of this idea is to use hierarchical testing (Meinshausen, 

2008; Yekutieli, 2008; Mandozzi and Bühlmann, 2016; Renaux et al., 2020), which requires 

specification of a hierarchy on the variables, but avoids an a priori decision on where to 

draw group boundaries. However, in applications where variables are not precisely arranged 

in a known hierarchy — which includes genetic fine-mapping — this approach is also not 

entirely satisfactory. In numerical assessments shown later (Section 4), we find that this 

approach can considerably overstate the uncertainty in which variables should be selected.

Another approach that could yield statements like (2.2), at least in principle, is the Bayesian 

approach to variable selection (BVSR; see Introduction for references). BVSR methods 

introduce a prior distribution on b that favours sparse models (few effect variables), and 

then compute a posterior distribution assessing relative support for each combination of 

variables. In our toy example, the posterior distribution would roughly have equal mass (≈ 
0.25) on each of the four equivalent combinations {1, 3} {1, 4}, {2, 3} and {2, 4}. This 

posterior distribution contains exactly the information necessary to infer (2.2). Likewise, 

in more complex settings, the posterior distribution contains information that could, in 

principle, be translated to simple statements analogous to (2.2). This translation is, however, 

highly non-trivial in general. Consequently, most implementations of BVSR do not provide 

statements like (2.2), but rather summarize the posterior distribution with a simpler but less 

informative quantity: the marginal posterior inclusion probability (PIP) of each variable,

PIPj ≔ Pr bj ≠ 0 ∣ X, y . (2.3)

In our example, PIP1 = PIP2 = PIP3 = PIP4 ≈ 0.5. While not inaccurate, the PIPs do 

not contain the information in (2.2). In Wang et al. (2020b), we illustrate inference of 

Credible Sets in two additional toy examples in which the variables are correlated in more 

complicated ways.

2.2 Credible Sets

To define our main goal more formally, we introduce the concept of a Credible Set (CS) of 

variables:

Definition 1. In the context of a multiple regression model, a level-ρ Credible Set is defined 
to be a subset of variables that has probability ⩾ ρ of containing at least one effect variable 
(i.e., a variable with non-zero regression coefficient). Equivalently, the probability that all 
variables in the Credible Set have zero regression coefficients is ⩽ 1 − ρ.
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Our use of the term Credible Set here indicates that we have in mind a Bayesian 

inference approach, in which the probability statements in the definition are statements 

about uncertainty in which variables are selected given the available data and modelling 

assumptions. One could analogously define a Confidence Set by interpreting the probability 

statements as referring to the set, considered random.

Although the term Credible Set has been used in fine-mapping applications before, most 

previous uses either assumed there was a single effect variable (Maller et al., 2012), or 

defined a CS as a set that contains all effect variables (Hormozdiari et al., 2014), which 

is a very different definition (and, we argue, both less informative and less attainable; see 

further discussion below). Our definition here is closer to the “signal clusters” from Lee et 

al. (2018), and related to the idea of “minimal true detection” in Mandozzi and Bühlmann 

(2016).

With Definition 1 in place, our primary aim can be restated: we wish to report as many CSs 

as the data support, each with as few variables as possible. For example, to convey (2.2) 

we would report two CSs, {1, 2} and {3, 4}. As a secondary goal, we would also like to 

prioritize the variables within each CS, assigning each a probability that reflects the strength 

of the evidence for that variable being an effect variable. Our methods achieve both of these 

goals.

It is important to note that, if a variable is not included in any CS produced by our method, 

this does not imply that it is not an effect variable. This is analogous to the fact that, 

in hypothesis testing applications, a non-significant p value does not imply that the null 

hypothesis is true. In practice no variable selection method can guarantee identifying every 
effect variable unless it simply selects all variables, because finite data cannot rule out that 

every variable has a (possibly tiny) effect. This is why the CS definition of Hormozdiari et 

al. (2014) is unattainable, at least without strong assumptions on sparsity. It also explains 

why attempting to form confidence or credible sets for identifying the true model (i.e., the 

exact combination of effect variables) leads to very large sets of models; see Ferrari and 

Yang (2015) for example.

2.3 The single effect regression model

We now describe the building block for our approach, the “Single Effect Regression” (SER) 

model, which we define as a multiple regression model in which exactly one of the p 
explanatory variables has a non-zero regression coefficient. This idea was introduced in 

Servin and Stephens (2007) to fine-map genetic associations, and consequently has been 

adopted and extended by others, including Veyrieras et al. (2008) and Pickrell (2014). 

Although of very narrow applicability, the SER model is trivial to fit. Furthermore, when 

its assumptions hold, the SER provides exactly the inferences we desire, including CSs. For 

example, if we simplify our motivating example (Section 2.1) to have a single effect variable 

— variable 1, for example — then the SER model would, given sufficient data, infer a 95% 

CS containing both of the correlated variables, 1 and 2, with PIPs of approximately 0.5 

each. This CS tells us that we can be confident that one of the two variables has a non-zero 

coefficient, but we do not know which one.

Wang et al. Page 6

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Specifically, we consider the following SER model, with hyperparameters for the residual 

variance, σ2, the prior variance of the non-zero effect, σ0
2, and the prior inclusion 

probabilities, π = (π1, …, πp), in which πj gives the prior probability that variable j is 

the effect variable:

y = Xb + e (2.4)

e Nn 0, σ2In (2.5)

b = bγ (2.6)

γ Mult(1, π) (2.7)

b N1 0, σ0
2 . (2.8)

Here, y is the n-vector of response data; X = (x1, …, xp) is an n × p matrix containing n 
observations of p explanatory variables; b is a scalar representing the “single effect”; γ ∈ 
{0, 1}p is a p-vector of indicator variables; b is the p-vector of regression coefficients; e is 

an n-vector of independent error terms; and Mult(m, π) denotes the multinomial distribution 

on class counts obtained when m samples are drawn with class probabilities given by π. We 

assume that y and the columns of X have been centered to have mean zero, which avoids the 

need for an intercept term (Chipman et al., 2001).

Under the SER model (2.4–2.8), the effect vector b has exactly one non-zero element 

(equal to b), so we refer to b as a “single effect vector”. The element of b that is non-zero 

is determined by the binary vector γ, which also has exactly one non-zero entry. The 

probability vector π determines the prior probability distribution on which of the p variables 

is the effect variable. In the simplest case, π = (1/p, …, 1/p); we assume this uniform 

prior here for simplicity, but our methods require only that π is fixed and known (so 

in fine-mapping one could incorporate different priors based on genetic annotations; e.g., 

Veyrieras et al., 2008). To lighten notation, we henceforth make conditioning on π implicit.

2.3.1 Posterior under SER model—Given σ2 and σ0
2, the posterior distribution on b = 

γb is easily computed:

γ ∣ X, y, σ2, σ0
2 Mult(1, α) (2.9)

b ∣ X, y, σ2, σ0
2, γj = 1 N μ1j, σ1j

2 , (2.10)

where α = (α1, ⋯, αp) is the vector of PIPs, with αj ≔ Pr γj = 1 ∣ X, y, σ2, σ0
2 , and μ1j, σ1j

2

are the posterior mean and variance of b given γj = 1. Calculating these quantities simply 

involves performing the p univariate regressions of y on columns xj of X, for j = 1, …, p, as 

shown in Appendix A. From α, it is also straightforward to compute a level-ρ CS (Definition 
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1), CS(α; ρ), as described in Maller et al. (2012), and detailed in Appendix A. In brief, this 

involves sorting variables by decreasing αj, then including variables in the CS until their 

cumulative probability exceeds ρ.

For later convenience, we introduce a function, SER, that returns the posterior distribution 

for b under the SER model. Since this posterior distribution is uniquely determined by the 

values of α, μ1 ≔ (μ11, …, μ1p) and σ1
2 ≔ σ11

2 , …, σ1p
2  in (2.9–2.10), we can write

SER X, y; σ2, σ0
2 ≔ α, μ1, σ1

2 . (2.11)

2.3.2 Empirical Bayes for SER model—Although most previous treatments of the 

SER model assume σ0
2 and σ2 are fixed and known, we note here the possibility of estimating 

σ0
2 and/or σ2 by maximum-likelihood before computing the posterior distribution of b. This 

is effectively an Empirical Bayes approach. The log-likelihood for σ0
2 and σ2 under the SER,

ℓSER y; σ0
2, σ2 ≔ log p y ∣ X, σ0

2, σ2 , (2.12)

is available in closed form, and can be maximized over one or both parameters (Appendix 

A).

3 THE SUM OF SINGLE EFFECTS REGRESSION MODEL

We now introduce a new approach to variable selection in multiple regression. Our approach 

is motivated by the observation that the SER model provides simple inference if there is 

indeed exactly one effect variable; it is thus desirable to extend the SER to allow for multiple 

variables. The conventional approach to doing this in BVSR is to introduce a prior on 

b that allows for multiple non-zero entries (e.g., using a “spike-and-slab” prior; Mitchell 

and Beauchamp, 1988). However, this approach no longer enjoys the convenient analytic 

properties of the SER model; posterior distributions become difficult to compute accurately, 

and computing CSs is even harder.

Here we introduce a different approach which better preserves the desirable features of the 

SER model. The key idea is simple: introduce multiple single-effect vectors, b1, …, bL, and 

construct the overall effect vector, b, as the sum of these single effects. We call this the “Sum 

of Single Effects” (SuSiE) regression model:

y = Xb + e (3.1)

e Nn 0, σ2In (3.2)

b = ∑
l = 1

L
bl (3.3)
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bl = γlbI (3.4)

γl Mult(1, π) (3.5)

bl N1 0, σ0l
2 . (3.6)

For generality, we have allowed the variance of each effect, σ0l
2 , to vary among the 

components, l = 1, …, L. The special case in which L = 1 recovers the SER model. For 

simplicity, we initially assume σ2 and σ0
2 = σ01

2 , …, σ0L
2  are given, and defer estimation of 

these hyperparameters to Section 3.1.3.

Note that if L ≪ p then the SuSiE model is approximately equivalent to a standard BVSR 

model in which L randomly chosen variables have non-zero coefficients (see Proposition 

A2 in Appendix C for a formal statement). The main difference is that with some (small) 

probability some of the single effects bl in the SuSiE model have the same non-zero 

co-ordinates, and so the number of non-zero elements in b has some (small) probability of 

being less than L. Thus, at most L variables have non-zero coefficients in this model. We 

discuss the choice of L in Section 3.3.

Although the SuSiE model is approximately equivalent to a standard BVSR model, its novel 

structure has two major advantages. First, it leads to a simple, iterative and deterministic 

algorithm for computing approximate posterior distributions. Second, it yields a simple way 

to calculate the CSs. In essence, because each bl captures only one effect, the posterior 

distribution on each γl can be used to compute a CS that has a high probability of containing 

an effect variable. The remainder of this section describes both these advantages, and other 

issues that may arise in fitting the model.

3.1 Fitting SuSiE: Iterative Bayesian stepwise selection

A key motivation for the SuSiE model (3.1–3.6) is that, given b1, …, bL−1, estimating bL 

involves simply fitting an SER model, which is analytically tractable. This immediately 

suggests an iterative approach to fitting this model: at each iteration use the SER model 

to estimate bl given current estimates of bl′, for l′ ≠ l; see Algorithm 1. This algorithm is 

simple and computationally scalable, with computational complexity O(npL) per outer-loop 

iteration.
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We call Algorithm 1 “Iterative Bayesian Stepwise Selection” (IBSS) because it can be 

viewed as a Bayesian version of stepwise selection approaches. For example, we can 

compare it with an approach referred to as “forward stagewise” (FS) selection in Hastie et al. 

2009, Section 3.3.3 (although subsequent literature often uses this term to mean something 

slightly different), also known as “matching pursuit” (Mallat and Zhang, 1993). In brief, FS 

first selects the single “best” variable among p candidates by comparing the results of the p 
univariate regressions. It then computes the residuals from the univariate regression on this 

selected variable, then selects the next “best” variable by comparing the results of univariate 

regression of the residuals on each variable. This process repeats, selecting one variable each 

iteration, until some stopping criterion is reached.

IBSS is similar in structure to FS, but instead of selecting a single “best” variable at each 

step, it computes a distribution on which variable to select by fitting the Bayesian SER 

model. Similar to FS, this distribution is based on the results of the p univariate regressions; 

consequently each selection step in IBSS has the same computational complexity as in 

FS, O(np). However, by computing a distribution on variables — rather than choosing a 

single best variable — IBSS captures uncertainty about which variable should be selected 

at each step. This uncertainty is taken into account when computing residuals by using 

a model-averaged (posterior mean) estimate for the regression coefficients. In IBSS, we 

use an iterative procedure, whereby early selections are re-evaluated in light of the later 

selections (as in “backfitting”; Friedman and Stuetzle, 1981). The final output of IBSS is 

L distributions on variables, parameterized by αl, μ1l, σ1l
2 , for l = 1, …, L, in place of the L 

variables selected by FS. Each distribution is easily summarized, for example, by a 95% CS 

for each selection.

To illustrate, consider our motivating example (Section 2.1) with x1 = x2, x3 = x4, and 

with variables 1 and 4 having non-zero effects. To simplify the example, suppose that the 

effect of variable 1 is substantially larger than the effect of variable 4. Then FS would first 

(arbitrarily) select either variable 1 or 2, and then select (again arbitrarily) variable 3 or 4. 

In contrast, given enough data, the first IBSS update would select variables 1 and 2; that is, 

it would assign approximately equal weights of 0.5 to variables 1 and 2, and small weights 

to other variables. The second IBSS update would similarly select variables 3 and 4 (again, 

with equal weights of approximately 0.5). Summarizing these results would yield two CSs, 

{1, 2} and {3, 4}, and the inference (2.2) is achieved. This simple example is intended only 

to sharpen intuition; later numerical experiments demonstrate that IBSS also works well in 

more realistic settings.

3.1.1 IBSS computes a variational approximation to the SuSiE posterior 
distribution—The analogy between the IBSS algorithm and the simple FS procedure 

emphasizes the intuitive and computational simplicity of IBSS, but of course does not give 

it any formal support. We now provide a formal justification for IBSS. Specifically, we show 

that it is a coordinate ascent algorithm for optimizing a variational approximation (VA) to 
the posterior distribution for b1, …, bL under the SuSiE model (3.1–3.6). This result also 

suggests a method for estimating the hyperparameters σ2 and σ0
2.
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The idea behind VA methods for Bayesian models (e.g., Jordan et al., 1999; Blei 

et al., 2017) is to find an approximation q(b1, …, bL) to the posterior distribution 

ppost  ≔ p b1, …, bL ∣ X, y, σ2, σ0
2  by minimizing the Kullback-Leibler (KL) divergence from q 

to ppost, written as DKL(q, ppost), subject to constraints on q that make the problem tractable. 

Although DKL(q, ppost) itself is hard to compute, it can be formulated in terms of an 

easier-to-compute function, F, known as the “evidence lower bound” (ELBO):

DKL q, ppost  = log p y ∣ σ2, σ0
2 − F q; σ2, σ0

2 .

Because log p y ∣ σ2, σ0
2  does not depend on q, minimizing DKL over q is equivalent to 

maximizing F; and since F is easier to compute, this is how the problem is usually framed. 

See Appendix B.1 for further details. (Note that the ELBO also depends on the data, X and 

y, but we make this dependence implicit to lighten notation.)

We seek an approximate posterior, q, that factorizes as

q b1, …, bL = ∏
l = 1

L
ql bl . (3.7)

Under this approximation, b1, …, bL are independent a posteriori. We make no assumptions 

on the form of ql; in particular, we do not require that each ql factorizes over the p elements 

of bl. This is a crucial difference from previous VA approaches for BVSR (e.g., Logsdon et 

al., 2010; Carbonetto and Stephens, 2012), and it means that ql can accurately capture strong 

dependencies among the elements of bl under the assumption that exactly one element of bl 

is non-zero. Intuitively, each factor ql captures one effect variable, and provides inferences of 

the form that “we need one of variables {A, B, C}, and we are unsure about which one to 

select.” By extension, the approximation (3.7) provides inferences of the form “we need to 

select one variable among the set {A, B, C}, one variable among the set {D, E, F, G}, and so 

on.”

Under the assumption that the VA factorizes as (3.7), finding the optimal q reduces to the 

following problem:

maximize
q1, …, qL

F q1, …, qL; σ2, σ0
2 . (3.8)

Although jointly optimizing F over q1, …, qL is hard, optimizing an individual factor, ql, is 

straightforward, and in fact reduces to fitting an SER model, as formalized in the following 

proposition.

Proposition 1.

argmax
ql

F q1, …, qL; σ2, σ0
2 = SER X, rl; σ2, σ0l

2 , (3.9)

where rl denotes the expected value of the residuals obtained by removing the estimated 

effects other than l,
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rl ≔ y − X ∑
l′ ≠ l

bl′, (3.10)

and where bl denotes the expected value of bl with respect to the distribution ql.

For intuition, note that computing the posterior distribution for bl under (3.1–3.6), given 

the other effects bl′ for l′ ≠ l, involves fitting a SER to the residuals y – X ∑l′≠l bl′. Now 

consider computing an (approximate) posterior distribution for bl when bl′ are not known, 

and we have approximations ql′ to their posterior distributions. Proposition 1 states that 

we can solve for argmaxql F (q1, …, qL) using a similar procedure, except that each bl′ is 

replaced with the (approximate) posterior mean bl′.

The following is an immediate consequence of Proposition 1:

Corollary 1. IBSS (Algorithm 1) is a coordinate ascent algorithm for maximizing the 
ELBO, F, over q satisfying (3.7). Equivalently, it is a coordinate ascent algorithm for 
minimizing the KL divergence DKL(q, ppost) over q satisfying (3.7), where ppost is the true 
posterior distribution under the SuSiE model.

Further, as a consequence of being a coordinate ascent algorithm, IBSS converges to a 

stationary point of F under conditions that are easily satisfied:

Proposition 2. Provided that 0 < σ, σ0 < ∞ and πj > 0 for all j = 1, …, p, the sequence 
of iterates q generated by the IBSS method (parameterized by α1, μ11, σ11

2 , …, L, μ1L, σ1L
2 ) 

converges to a limit point that is a stationary point of F.

The proof of Propositions 1 and 2 and Corollary 1 are given in Appendix B.

3.1.2 Contrast to previous variational approximations—A critical point is that 

the VA being computed by IBSS is different from previous “fully factorized” VAs for 

BVSR (e.g., Logsdon et al., 2010; Carbonetto and Stephens, 2012). In settings with 

highly correlated variables, the new VA produces results that are not only quantitatively 
different, but also qualitatively different from the fully factorized VA. For example, in our 

motivating example (Section 2.1), the new VA provides statements like (2.2), whereas the 

fully factorized VAs do not. Rather, a fully factorized VA often selects at most one of 

two identical variables without adequately capturing uncertainty in which variable should 

be selected (Carbonetto and Stephens, 2012). This feature makes the fully factorized VA 

unsuitable for applications where it is important to assess uncertainty in which variables are 
selected.

More generally, the new VA computed by IBSS satisfies the following intuitive condition: 

when two variables are identical, inferences drawn about their coefficients are identical 

(assuming the priors on their coefficients are the same). Despite the simplicity of this 

condition, it is not satisfied by existing VAs, nor by point estimates from penalized 

likelihood approaches with L0 or L1 penalty terms. (In fact, Zou and Hastie 2005 use this 

condition as motivation for the elastic net method, which does ensure that point estimates 
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for coefficients of identical variables are equal.) This property is formalized in the following 

proposition.

Proposition 3. Consider applying the IBSS algorithm (Algorithm 1) to a data set in which 
two columns of X are identical; that is, xj = xk for some j ≠ k. Further suppose that the prior 
distributions on selecting these two variables are equal (πj = πk). Then the approximate 

posterior computed by IBSS will be exchangeable in j, k; that is, if ωjk:ℝp ℝp denotes 

the function that permutes elements j and k of a p-vector, and q denotes the approximate 
posterior obtained from the IBSS algorithm, then

q ωjk b1 , …, ωjk bL = q b1, …, bL . (3.11)

Proof. Since q b1, …, bL = ∏l = 1
L ql bl , it suffices to show that each ql is exchangeable in j, k; 

i.e, ql (ωjk (bl)) = ql (bl) for all l = 1, …, L. This exchangeability is satisfied after every 

iteration of the IBSS algorithm because the algorithm computes ql (parameterized by αl, μ1l, 

σ1l
2 ) as the exact posterior distribution under an SER model (Step 5 of Algorithm 1), and this 

posterior is exchangeable in j, k because both the prior and likelihood are exchangeable. □

Because the exchangeability is satisfied after every iteration of IBSS, and not just at 

convergence, the result is not sensitive to stopping criteria. By contrast, the corresponding 

EN property (Zou and Hastie, 2005) holds only at convergence — for example, in numerical 

implementations of the EN method (e.g., the glmnet R package), the coefficient estimates 

for identical variables can differ substantially. Similarly, MCMC-based implementations of 

BVSR may satisfy this exchangeability property only asymptotically.

3.1.3 Estimating σ2, σ0
2
—Algorithm 1 can be extended to estimate the hyperparameters 

σ2 and σ0
2 by adding steps to maximize F (q1, …, qL; σ2, σ0

2) over σ2 and/or σ0
2. Estimating 

the hyperparameters by maximizing the ELBO can be viewed as an EM algorithm 

(Dempster et al., 1977) in which the E-step is approximate (Heskes et al., 2004; Neal and 

Hinton, 1998).

Optimizing F over σ2 involves computing the expected residual sum of squares under the 

VA, which is straightforward; see Appendix B for details.

Optimizing F over σ0
2 = σ0l

2 , …, σ0L
2  can be achieved by modifying the step that computes the 

posterior distribution for bl under the SER model to first estimate the hyperparameter σ0l
2  in 

the SER model by maximum likelihood; that is, by maximizing the SER likelihood (2.12) 

over σ0
2, keeping σ2 fixed (Step 5 of Algorithm A3). This is a one-dimensional optimization 

which is easily performed numerically (we used the R function optim).

Algorithm A3 in Appendix B extends Algorithm 1 to include both these steps.

3.2 Posterior inference: posterior inclusion probabilities and Credible Sets

Algorithm 1 provides an approximation to the posterior distribution of b under the 

SuSiE model, parameterized by (α1, μ11, σ11
2 ), …, (αL, μ1L, σ1L

2 ). From these results it 
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is straightforward to compute approximations to various posterior quantities of interest, 

including PIPs and CSs.

3.2.1 Posterior inclusion probabilities—Under the SuSiE model, the effect of 

explanatory variable j is b(j) ≔ ∑l = 1
L blj, which is zero if and only if blj = 0 for all l = 1, 

…, L. Under our VA the blj are independent across l, and therefore

PIPj ≔ Pr b(j) ≠ 0 ∣ X, y ≈ 1 − ∏
l ∈ ℒ

1 − αlj . (3.12)

Here, we set ℒ ≔ l:σ0l
2 > 0  to treat the case where some σ0l

2  are zero, which can happen if σ0
2

is estimated.

3.2.2 Credible Sets—Computing the sets CS(αl; ρ) (A.4), for l = 1, …, L immediately 

yields L CSs that satisfy Definition 1 under the VA to the posterior.

If L exceeds the number of detectable effects in the data, then in practice many of the 

L CSs are large, often containing the majority of variables. The intuition is that once all 

the detectable signals have been accounted for, the IBSS algorithm becomes very uncertain 

about which variable to include at each step, and so the distributions αl become very diffuse. 

CSs that contain very many uncorrelated variables are of essentially no inferential value — 

whether or not they contain an effect variable — and so in practice it makes sense to ignore 

them. To automate this, in this paper we discard CSs with “purity” less than 0.5, where we 

define purity as the smallest absolute correlation among all pairs of variables within the CS. 

(To reduce computation for CSs containing over 100 variables, we sampled 100 variables 

at random to estimate the purity.) The purity threshold of 0.5 was chosen primarily for 

comparing with Lee et al. (2018), who use a similar threshold in a related context. While any 

choice of threshold is somewhat arbitrary, in practice we observed that most CSs are either 

very pure (> 0.95) or very impure (< 0.05), with intermediate cases being rare (Figure S2), 

so most results are robust to this choice of threshold.

3.3 Choice of L

It may seem that SuSiE would be sensitive to the choice of L. In practice, however, key 

inferences are often robust to overstating L; for example, in our simulations below, the 

simulated number of effects was between 1 and 5, whereas we still obtain good results with 

L = 10. This is because, when L is larger than necessary, the method is very uncertain about 

where to place the extra effects — consequently, it distributes them broadly among many 

variables, and therefore they are too diffuse to impact key inferences. For example, setting 

L to be larger than necessary inflates the PIPs of many variables, but only slightly, and the 

extra components result in CSs with low purity.

While inferences are generally robust to overstating L, we also note that the Empirical Bayes 

version of our method, which estimates σ0
2, also effectively estimates the number of effects: 

when L is greater than the number of signals in the data, the maximum likelihood estimate 

of σ0l
2  will be zero or close to zero for many l, which in turn forces bl to zero. This is closely 

related to the idea behind “automatic relevance determination” (Neal, 1996).
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3.4 Identifiability and label-switching

The parameter vectors b1, …, bl introduced in the SuSiE model are technically non-

identifiable, in that the likelihood p(y | X, σ2, b1, …, bl) is unchanged by permutation 

of the labels 1, …, L. As a result, the posterior distribution ppost is symmetric with respect 

to permutations of the labels (assuming the prior is also symmetric) — that is, for any 

permutation, ν : {1, …, L} → {1, …, L}, we have p(b1, …, bl | X, y, σ2) = p(bv(1), …, bv(L) 

| X, y, σ2). A similar non-identifiability also occurs in mixture models, where it is known as 

the “label-switching problem” (Stephens, 2000).

In principle, non-identifiability due to label-switching does not complicate Bayesian 

inference; the posterior distribution is well-defined, and correctly reflects uncertainty 

in the parameters. In practice, however, complications can arise. Specifically, the label-

switching typically causes the posterior distribution to be multi-modal, with L! symmetric 

modes corresponding to the L! different labellings (ν above). Care is then needed when 

summarizing this posterior distribution. For example, the posterior mean will not be a 

sensible estimate for b1, …, bl because it averages over the L! modes (Stephens, 2000).

Fortunately, our variational approximation (Section 3.1.1) avoids these potential 

complications of label-switching. This is due to the way that variational approximations 

behave when approximating the posterior distribution of a mixture model; they typically 

produce a good approximation to one of the permutations, effectively ignoring the others 

(Wang and Titterington, 2006; Blei et al., 2017; Pati et al., 2018). See also the discussion 

of “spontaneous symmetry-breaking” in Wainwright and Jordan (2007). Consequently, our 

posterior approximation q(b1, …, bl) approximates just one of the L! symmetric modes of 

the true posterior, avoiding the issues with label-switching that can occur when summarizing 

the true posterior distribution.

Formally, this non-identifiability causes the objective F optimized by the IBSS algorithm to 

be invariant to relabeling — that is,

F qv(1), …, qv(L); σ2, σ0v(1)
2 , …, σ0v(L)

2

is the same for all permutations ν — and therefore every solution q , σ, σ0
2 returned by our 

IBSS algorithm has L! equivalent solutions that achieve the same value of the ELBO, F, 

each corresponding to a different labeling (and a different mode of the true posterior). 

These L! solutions are inferentially equivalent; they all imply the same distribution for the 

unordered set {b1, …, bl}, the same distribution for the sum b = ∑l = 1
L bl (which does not 

depend on the labeling), and they all produce the same PIPs and the same CSs. Thus, it does 

not matter which mode is used.

4 NUMERICAL COMPARISONS

We performed numerical comparisons on data generated to closely mimic our main 

motivating application: genetic fine-mapping. Specifically, we generated data for fine-

mapping of expression quantitative trait loci (eQTLs), which are genetic variants associated 
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with gene expression. We used these simulations to assess our methods, and compare with 

state-of-the-art BVSR methods that were specifically developed for this problem. We also 

compared against a (frequentist) hierarchical testing method (Mandozzi and Bühlmann, 

2016; Renaux et al., 2020).

In genetic fine-mapping, X is a matrix of genotype data, in which each row corresponds to 

an individual, and each column corresponds to a genetic variant, typically a single nucleotide 

polymorphism (SNP). In our simulations, we used the real human genotype data from n = 

574 genotype samples collected as part of the Genotype-Tissue Expression (GTEx) project 

(GTEx Consortium, 2017). To simulate fine-mapping of locally-acting variants associated 

with gene expression (cis eQTLs), we randomly selected 150 genes out of the > 20, 000 

genes on chromosomes 1–22, then assigned X to be the genotypes for genetic variants 

nearby the transcribed region of the selected gene. For a given gene, between p = 1,000 and 

p = 12,000 SNPs were included in the fine-mapping analysis; for more details on how SNPs 

were selected, see Appendix D.

These real genotype matrices, X, exhibit complex patterns of correlations; see Figure A1 

for example. Furthermore, many variables are strongly correlated with other variables: for a 

randomly chosen variable, the median number of other variables with which its correlation 

exceeds 0.9 is 8; and the median number of other variables with which its correlation 

exceeds 0.99 is 1. Corresponding means are even larger — 26 and 8 other variables, 

respectively — because some variables are strongly correlated with hundreds of other 

variables. Thus these genotype matrices lead to challenging, but realistic, variable selection 

problems.

We generated synthetic outcomes y under the multiple regression model (2.1), with 

assumptions on b specified by two parameters: S, the number of effect variables; and ϕ, 

the proportion of variance in y explained by X (abbreviated as “PVE”). Given S and ϕ, we 

simulated b and y as follows:

a. Sample the indices of the S effect variables, , uniformly at random from {1, …, 

p}.

b. For each j ∈ , independently draw bj ~ N (0, 0.62), and for all j ∉ , set bj = 0.

c. Set σ2 to achieve the desired PVE, ϕ; specifically, we solve for σ2 in 

ϕ = Var(Xb)
σ2 + Var(Xb)

, where Var(·) denotes sample variance.

d. For each i = 1, …, n, draw yi ~ N (xi1b1 + ⋯ + xip bp, σ2).

We generated data sets under two simulation scenarios. In the first scenario, each data set 

has p = 1, 000 SNPs. We generated data sets using all pairwise combinations of S ∈ {1, …, 

5} and ϕ ∈ {0.05, 0.1, 0.2, 0.4}. These settings were chosen to span typical expected values 

for eQTL studies. We simulated two replicates for each gene and for each combination of 

S and ϕ. Therefore, in total we generated 2 × 150 × 5 × 4 = 6,000 data sets for the first 

simulation scenario.
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In the second simulation scenario, we generated data sets with all cis SNPs (defined as SNPs 

within 1 Megabase radius from transcription start site of a gene), ranging from 3,000 to 

12,000 SNPs, and to generate the outcomes y, we set S = 10 and ϕ = 0.3. We generated 

two replicates for each gene, resulting in a total of 2 × 150 = 300 data sets in the second 

simulation scenario.

4.1 Illustrative example

We begin with an example to illustrate that the IBSS algorithm (Algorithm 1) can perform 

well in a challenging fine-mapping setting. This example is summarized in Figure 1.

We draw this example from one of our simulations in which the variable with the strongest 

marginal association (SMA) with y is not one of the actual effect variables (in this 

example, there are two effect variables). This situation occurs because the SMA variable 

has moderate correlation with both effect variables, and these effects combine to make 

its marginal association stronger than the marginal associations of the individual effect 

variables. Standard forward selection in this case would select the wrong (SMA) variable 

in the first step; indeed, after one iteration, IBSS also yields a CS that includes the SMA 

variable (Figure 1, middle panel). However, as the IBSS algorithm proceeds, it recognizes 

that, once other variables are accounted for, the SMA variable is no longer required. After 

10 iterations (at which point the IBSS solution is close to convergence) IBSS yields two 

high-purity CSs, neither containing the SMA, and each containing one of the effect variables 

(Figure 1, right panel). Our manuscript resource repository includes an animation showing 

the iteration-by-iteration progress of the IBSS algorithm (Wang et al., 2020a).

This example, where the SMA variable does not appear in a CS, also illustrates that multiple 

regression can sometimes result in very different conclusions than a marginal association 

analysis.

4.2 Posterior inclusion probabilities

Next, we seek to assess the effectiveness of our methods more quantitatively. We 

focus initially on one of the simpler tasks in BVSR: computing posterior inclusion 

probabilities (PIPs). Most implementations of BVSR compute PIPs, making it possible to 

compare results across several implementations. Here we compare our methods (henceforth 

SuSiE, implemented in R package susieR, version 0.4.29) with three other software 

implementations specifically developed for genetic fine-mapping applications: CAVIAR 

(Hormozdiari et al., 2014, version 2.2), FINEMAP (Benner et al., 2016, version 1.1) and 

DAP-G (Wen et al., 2016; Lee et al., 2018, installed using source code from the git 

repository, commit id ef11b26). These methods are all implemented as C++ programs. 

They implement similar BVSR models, and differ in the algorithms used to fit these 

models and the priors on the effect sizes. CAVIAR exhaustively evaluates all possible 

combinations of up to L non-zero effects among the p variables. FINEMAP and DAP-

G approximate this exhaustive approach by heuristics that target the best combinations. 

Another important difference among methods is that FINEMAP and CAVIAR perform 

inference using summary statistics computed from each data set — specifically, the marginal 

association Z scores and the p × p correlation matrix for all variables — whereas, as we 
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apply them here, DAP-G and SuSiE use the full data. The summary statistic approach can be 

viewed as approximating inferences from the full data; see Lee et al. (2018) for discussion.

For SuSiE, we set L = 10 for all data sets generated in the first simulation scenario, 

and L = 20 for the second scenario. We assessed performance when both estimating the 

hyperparameters σ2, σ0
2, and when fixing one or both of these hyperparameters. Overall 

performance of these different approaches were similar, and here we show results when σ2 

was estimated, and when σ0l
2  was fixed to 0.1Var(y) (consistent with data applications in 

Section 5); other results are in Supplementary Data (Figure S4 and Figure S5). Parameter 

settings for other methods are given in Appendix D. We ran CAVIAR and FINEMAP only 

on simulations with S ⩽ 3 since these methods are computationally more intensive than the 

others (particularly for larger S).

Since these methods differ in their modelling assumptions, one should not expect their PIPs 

to be equal. Nonetheless, we found generally reasonably good agreement (Figure 2A). For S 
= 1, the PIPs from all four methods agree closely. For S > 1, the PIPs from different methods 

are also highly correlated; correlations between PIPs from SuSiE and other methods vary 

from 0.94 to 1 across individual data sets, and the number of PIPs differing by more than 

0.1 is always small — the proportions vary from 0.013% to 0.2%. In the scatterplots, this 

agreement appears less strong because the eye is drawn to the small proportion of points 

that lie away from the diagonal, but the vast majority of points lie on or near the origin. In 

addition, all four methods produce reasonably well-calibrated PIPs (Figure S1).

The general agreement of PIPs from four different methods suggests that: (i) all four 

methods are mostly accurate for computing PIPs for the data set sizes explored in our 

numerical comparisons; and (ii) the PIPs themselves are usually robust to details of the 

modelling assumptions. Nonetheless, some non-trivial differences in PIPs are clearly visible 

from Figure 2A. Visual inspection of these differences suggests that the SuSiE PIPs may 

better distinguish effect variables from non-effect variables, in that there appears a higher 

ratio of red-gray points below the diagonal than above the diagonal. This is confirmed in our 

analysis of power versus False Discovery Rate (FDR), obtained by varying the PIP threshold 

independently for each method; at a given FDR, the SuSiE PIPs always yield higher power 

(Figure 2B).

Notably, even though SuSiE is implemented in R, its computations are much faster than 

the other methods implemented in C++: for example, in the data sets simulated with S = 3, 

SuSiE is, on average, roughly 4 times faster than DAP-G, 30 times faster than FINEMAP, 

and 4,000 times faster than CAVIAR (Table 1).

Because SuSiE computations scale linearly with data size (computational complexity 

O(npL) per iteration) it can easily handle data sets much larger than the ones in these 

simulations. To illustrate, running SuSiE (L = 10) on two larger simulated data sets — one 

with n = 100, 000, p = 500; another with n = 1, 000, p = 50, 000; each with 4 effect variables 

— took 25s and 43s on a modern Linux workstation (see Appendix D.2 for details). This is 

competitive with lasso, implemented in the glmnet R package, version 2.0.18, which with 

10-fold cross-validation (and other parameters at their defaults) took 82s for each data set.
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In summary, in the settings considered here, SuSiE produces PIPs that are as or more 

reliable than existing BVSR methods, and does so at a fraction of the computational effort.

4.3 Credible Sets

Comparison with DAP-G—A key feature of SuSiE is that it yields multiple Credible 

Sets (CSs), each aimed at capturing an effect variable (Definition 1). The only other BVSR 

method that attempts something similar, as far as we are aware, is DAP-G, which outputs 

signal clusters defined by heuristic rules (Lee et al., 2018). Although the authors do not refer 

to their signal clusters as CSs, and they do not give a formal definition of signal cluster, the 

intent of these signal clusters is similar to our CSs, and so for brevity we henceforth refer to 

them as CSs.

We compared the level 95% CSs produced by SuSiE and DAP-G in several ways. First 

we assessed their empirical (frequentist) coverage levels; that is, the proportion of CSs 

that contain an effect variable. Since our CSs are Bayesian Credible Sets, 95% CSs are 

not designed, or guaranteed, to have frequentist coverage of 0.95 (Fraser, 2011). Indeed, 

coverage will inevitably depend on simulation scenario; for example, in completely null 

simulations, in which the data are simulated with b = 0, every CS would necessarily 

contain no effect variable, and so the coverage would be zero Nonetheless, under reasonable 

circumstances that include effect variables, one might hope that the Bayesian CSs would 

have coverage near the nominal levels. And, indeed, we confirmed this was the case: in the 

simulations, CSs from both methods typically had coverage slightly below 0.95, and in most 

cases above 0.90 (Figure 3; see Figure S3 for additional results).

Having established that the methods produce CSs with similar coverage, we compared them 

by three other criteria: (i) power (overall proportion of simulated effect variables included 

in a CS); (ii) average size (median number of variables included in a CS) and (iii) purity 

(here, measured as the average squared correlation of variables in a CS since this statistic 

is provided by DAP-G). By all three metrics, the CSs from SuSiE are consistently an 

improvement over DAP-G — they achieve higher power, smaller size, and higher purity 

(Figure 3).

Although the way that we construct CSs in SuSiE does not require that they be disjoint, 

we note that the CSs rarely overlapped (after filtering out low purity CSs; see Section 

3.2.2). Indeed, across the thousands of simulations, there was only one example of two CSs 

overlapping.

Comparison with hierarchical testing—Finally, we compared our CSs with results 

produced by the R package hierinf (Renaux et al., 2020) (version 1.3.1), which implements 

a frequentist approach to identifying significant clusters of variables based on hierarchical 

testing (Meinshausen, 2008; Mandozzi and Bühlmann, 2016). In brief, this approach starts 

by assuming that the variables are organized in a given hierarchy. Then, starting from the 

top of the hierarchy, it proceeds to test whether groups of variables (clades in the hierarchy) 

contain at least one non-zero effect. Each time a group is deemed significant, the method 

proceeds to test clades in the next level of the hierarchy. The procedure ultimately reports the 

smallest significant clades detected, where the significance criteria are designed to control 
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the overall family-wise error rate (FWER) at a pre-specified level, α We note that FWER 

control is not guaranteed when p > n and variables are highly correlated (Mandozzi and 

Bühlmann, 2016), which is the situation in our simulations.

Although the theory for controlling FWER in hierarchical testing is elegant, genetic variants 

do not come in a natural hierarchy, and so for fine-mapping the need to specify a hierarchy 

is a drawback. Here we use the cluster_var function from hierinf, which infers 

a hierarchical clustering. There is no simple correspondence between the level α and 

(frequentist) coverage rates of the significant clusters, so selecting a suitable α is non-trivial; 

in our simulations, we found that empirical coverage was typically close to 0.95 when α = 

0.1, so we report results for α = 0.1.

The results (Table 2) show that the hierinf clusters are substantially larger, and have lower 

purity than the CSs from SuSiE, as well as DAP-G. For example, in simulations with 5 

effect variables, the SuSiE CSs have a median size of 7 variables with an average r2 of 0.97, 

whereas the hierinf clusters have a median size of 54 variables with an average r2 of 0.56. 

Further, SuSiE and DAP-G achieved greater power — that is, they identified more credible 

sets containing true signals — than the significant clusters from hierinf.

We believe that the much larger number of variables included in the hierinf clusters partly 

reflects a fundamental limitation of the hierarchical approach to this problem. Specifically, 

by assuming a hierarchy that does not truly exist, the method artificially limits the clusters 

of variables it can report. This will sometimes force it to report clusters that are larger than 

necessary. For example, with 3 variables, if variables 2 and 3 are grouped together at the 

bottom of the hierarchy, then the method could never report a cluster {1, 2}, representing the 

statement “either variable 1 or 2 is an effect variable, but we cannot tell which,” even if the 

data support such an inference. Instead, it would have to report the larger cluster, {1, 2, 3}.

While our work here was under peer review, and available as a preprint (Wang et al., 2019), 

we became aware of new related work in a preprint by Sesia et al. (2020). Similar to 

hierinf this new method tests groups of variables at multiple resolutions in a hierarchy; 

but it improves on hierinf by controlling the false discovery rate of selected groups 

(rather than type I error), and with statistical guarantees that hold even in the presence of 

highly correlated variables. Comparisons with our method find that their significant groups 

are typically larger than ours (Sesia et al., 2020, Figure 4), presumably in part due to the 

fundamental limitation with the hierarchical approach (discussed above).

5 APPLICATION TO FINE-MAPPING SPLICING QTLS

To illustrate SuSiE for a real fine-mapping problem, we analyzed data from Li et al. (2016) 

aimed at detecting genetic variants (SNPs) that influence splicing (known as “splicing 

QTLs”, sQTLs). These authors quantified alternative splicing by estimating, at each intron 

in each sample, a ratio capturing how often the intron is used relative to other introns 

in the same “cluster” (roughly, gene). The data involve 77,345 intron ratios measured on 

lymphoblastoid cell lines from 87 Yoruban individuals, together with genotypes of these 

individuals. Following Li et al. (2016), we preprocessed the intron ratios by regressing out 

Wang et al. Page 20

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the first 3 principle components of the matrix of intron ratios; the intent is to control for 

unmeasured confounders (Leek and Storey, 2007). For each intron ratio, we fine-mapped 

SNPs within 100 kb of the intron, which is approximately 600 SNPs on average. In short, we 

ran SuSiE on 77,345 data sets with n = 87 and p ≈ 600.

To specify the prior variance σ0l
2 , we first estimated typical effect sizes from the data on all 

introns. Specifically, we performed univariate (SNP-by-SNP) regression analysis at every 

intron, and estimated the PVE of the top (strongest associated) SNP. The mean PVE of the 

top SNP across all introns was 0.096, so we applied SuSiE with σ0l
2 = 0.096Var(y), and with 

the columns of X standardized to have unit variance. The residual variance parameter σ2 was 

estimated by IBSS.

We then ran SuSiE to fine-map sQTLs at all 77,345 introns. After filtering for purity, this 

yielded a total of 2,652 CSs (level 0.95) spread across 2,496 intron units. These numbers are 

broadly in line with the original study, which reported 2,893 significant introns at 10% FDR. 

Of the 2,652 CSs identified, 457 contain exactly one SNP, representing strong candidates for 

being the causal variants that affect splicing. Another 239 CSs contain exactly two SNPs. 

The median size of a CS was 7, and the median purity was 0.94.

The vast majority of intron units with a CS had exactly one CS (2,357 of 2,496). Thus, 

SuSiE could detect at most one sQTL for most introns. Of the remainder, 129 introns 

yielded 2 CSs, 5 introns yielded 3 CSs, 3 introns yielded 4 CSs, and 2 introns yielded 5 

CSs. This represents a total of 129 + 10 + 9 + 8 = 156 additional (“secondary”) signals 

that would be missed in conventional analyses that report only one signal per intron. Both 

primary and secondary signals were enriched in regulatory regions (Appendix E), lending 

some independent support that SuSiE is detecting real signals. Although these data show 

relatively few secondary signals, this is a small study (n = 87); in larger studies, the ability of 

SuSiE to detect secondary signals will likely be greater.

6 AN EXAMPLE BEYOND FINE-MAPPING: CHANGE POINT DETECTION

Although our methods were motivated by genetic fine-mapping, they are also applicable 

to other sparse regression problems. Here we apply SuSiE to an example quite different 

from fine-mapping: change point detection. This application also demonstrates that the IBSS 

algorithm can sometimes produce a poor fit — due to getting stuck in a local optimum 

— which was seldom observed in our fine-mapping simulations. We believe that examples 

where algorithms fail are just as important as examples where they succeed — perhaps more 

so — and that this example could motivate improvements.

We consider a simple change point model

yt = μt + et, t = 1, …, T , (6.1)

where t indexes a dimension such as space or time, and the errors et are independently 

normal with zero mean and variance σ2. The mean vector μ ≔ (μ1, …, μT) is assumed to be 

piecewise constant; the indices t where changes to μ occur, μt ≠ μt+1, are called the “change 

points.”
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To capture change points being rare, we formulate the change point model as a sparse 

multiple regression (2.1) in which X hasT − 1 columns, and the tth column is a step function 

with a step at location t; that is, xst = 0 for s ⩽ t, and xst = 1 for all s > t). The tth element 

of b then determines the change in the mean at position t, μt+1 − μt. Therefore, the non-zero 

regression coefficients in this multiple regression model correspond to change points in μ.

The design matrix X in this setting has a very special structure, and quite different from 

fine-mapping applications; the (T − 1) × (T – 1) correlation matrix decays systematically 

and very slowly away from the diagonal. By exploiting this special structure of X, SuSiE 
computations can be made O(TL) rather than the O(T2L) of a naive implementation; for 

example, the matrix-vector product XT y, naively an O(T2) computation, can be computed as 

the cumulative sum of the elements of the reverse of y, which is an O(T) computation.

Change point detection has a wide range of potential applications, such as segmentation of 

genomes into regions with different numbers of copies of the genome. Software packages 

in R that can be used for detecting change points include changepoint (Killick and 

Eckley, 2014), DNAcopy (Seshan and Olshen, 2018; Olshen et al., 2004), bcp (Erdman and 

Emerson, 2007) and genlasso (Tibshirani, 2014; Arnold and Tibshirani, 2016); see Killick 

and Eckley (2014) for a longer list. Of these, only bcp, which implements a Bayesian 

method, quantifies uncertainty in estimated change point locations, and bcp provides only 

PIPs, not CSs for change point locations. Therefore, the ability of SuSiE to provide CSs is 

unusual, and perhaps unique, among existing change point detection methods.

To illustrate its potential for change point estimation, we applied SuSiE to a simulated 

example included with the DNAcopy R package. In this example, all settings for running 

SuSiE remain unchanged from the fine-mapping simulations (Section 4). The top label of 

Figure 4 shows results of applying SuSiE and DNAcopy to the data set. Both methods 

provide accurate estimates of the change points; indeed all change point locations except 

the left-most one are recovered nearly exactly. However, only SuSiE provides 95% CSs for 

each estimate of a change point location. And, indeed, SuSiE is most uncertain about the 

left-most change point. All the true change points in this example are contained in a SuSiE 
CS, and every CS contains a true change point. This occurs even though we set L = 10 

to be greater than the number of true change points (7); the three extra CSs were filtered 

out because they contained variables that were very uncorrelated. (To be precise, SuSiE 
reported 8 CSs after filtering, but two of the CSs overlapped and contained the same change 

point; this observation of overlapping of CSs contrasts with the fine-mapping simulations in 

Section 4 where overlapping CSs occurred very rarely.)

To demonstrate that IBSS can converge to a poor local optimum, consider the simulated 

example shown in the bottom panel of Figure 4, which consists of two change points in 

quick succession that cancel each other out (the means before and after the change points 

are the same). This example was created specifically to illustrate a limitation of the IBSS 

procedure: IBSS can only introduce or update one change point at a time, and every update 

is guaranteed to increase the objective, whereas in this example introducing one change 

point will make the fit worse. Consequently, when SuSiE is run from a null initialization, 

IBSS finds no change points, and reports no CSs.

Wang et al. Page 22

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This poor outcome represents a limitation of the IBSS algorithm, not a limitation of the 

SuSiE model or the variational approximation. To show this, we re-ran the IBSS algorithm, 

but initializing at a solution that contained the two true change points. This yielded a fit 

with two CSs, each containing the one of the correct change points. This also resulted in a 

much improved value of the objective function (−148.2 versus −181.8). Better algorithms for 

fitting SuSiE models, or more careful initializations of IBSS, will be needed to address this 

shortcoming,

7 DISCUSSION

We have presented a simple new approach to variable selection in regression. Compared 

with existing methods, the main benefits of our approach are its computational efficiency, 

and its ability to provide CSs summarizing uncertainty in which variables should be 

selected. Our numerical comparisons demonstrate that for genetic fine-mapping our methods 

outperform existing methods at a fraction of the computational cost.

Although our methods apply generally to variable selection in linear regression, further 

work may be required to improve performance in difficult settings. In particular, while the 

IBSS algorithm worked well in our fine-mapping experiments, for change point problems 

we showed that IBSS may converge to poor local optima. We have also seen convergence 

problems in experiments with many effect variables (e.g. 200 effect variables out of 1,000). 

Such problems may be alleviated by better initialization, for example using fits from convex 

objective functions (e.g., lasso) or from more sophisticated algorithms for non-convex 

problems (Bertsimas et al., 2016; Hazimeh and Mazumder, 2018). More ambitiously, 

one could attempt to develop better algorithms to reliably optimize the SuSiE variational 

objective function in difficult cases. For example, taking smaller steps each iteration, rather 

than full coordinate ascent, may help.

At its core, the SuSiE model is based on adding up simple models (SERs) to create 

more flexible models (sparse multiple regression). This additive structure is the key to 

our variational approximations, and indeed our methods apply generally to adding up any 

simple models for which exact Bayesian calculations are tractable, not only SER models 

(Appendix B; Algorithm A2). These observations suggest connections with both additive 

models and boosting (e.g., Friedman et al., 2000; Freund et al., 2017). However, our 

methods differ from most work on boosting in that each “weak learner” (here, SER model) 

itself yields a model-averaged predictor. Other differences include our use of backfitting, 

the potential to estimate hyper-parameters by maximizing an objective function rather than 

cross-validation, and the interpretation of our algorithm as a variational approximation to a 

Bayesian posterior. Although we did not focus on prediction accuracy here, the generally 

good predictive performance of methods based on model averaging and boosting suggest 

that SuSiE should work well for prediction as well as variable selection.

It would be natural to extend our methods to generalized linear models (GLMs), particularly 

logistic regression. In genetic studies with small effects, Gaussian models are often adequate 

to model binary outcomes (e.g. Pirinen et al., 2013; Zhou et al., 2013). However, in other 

settings this extension may be more important. One strategy would be to directly modify 
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the IBSS algorithm, replacing the SER fitting procedure with a logistic or GLM equivalent. 

This strategy is appealing in its simplicity, although it is not obvious what objective function 

the resulting algorithm is optimizing. Alternatively, for logistic regression one could use the 

variational approximations developed by Jaakkola and Jordan (2000).

For genetic fine-mapping, it would also be useful to modify our methods to deal with 

settings where only summary data are available (e.g. the p univariate regression results). 

Many recent fine-mapping methods deal with this (e.g., Chen et al., 2015; Benner et al., 

2016; Newcombe et al., 2016) and ideas used by these methods can also be applied to 

SuSiE. Indeed, our software already includes preliminary implementations for this problem.

Beyond genetic fine-mapping, one could consider applying SuSiE to related tasks, such as 

genetic prediction of complex traits and heritability estimation (Yang et al., 2011). However, 

we do not expect SuSiE to provide substantial improvements over existing methods for 

these tasks. This is because, in general, the best existing approaches to these problems 

do not make strict sparsity assumptions on the effect variables; they allow for models in 

which many (or all) genetic variants affect the outcome (Meuwissen et al., 2001; Moser 

et al., 2015; Speed and Balding, 2014; Vilhjálmsson et al., 2015; Zhou et al., 2013). 

Nonetheless, it is possible that the ideas introduced here for sparse modelling could be 

combined with existing methods allowing non-sparse effects to improve prediction and 

heritability estimation, similar to Zhou et al. (2013).

Finally, we are particularly interested in extending these methods to select variables 

simultaneously for multiple outcomes (multivariate regression and multi-task learning). 

Joint analysis of multiple outcomes should greatly enhance power and precision to identify 

relevant variables (e.g., Stephens, 2013). The computational simplicity of our approach 

makes it particularly appealing for this complex task, and we are currently pursuing this 

direction by combining our methods with those from Urbut et al. (2019).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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DATA AND RESOURCES

SuSiE is implemented in the R package susieR available at https://github.com/stephenslab/

susieR. Source code and a website detailing the analysis steps for numerical comparisons 
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and data applications are available at our manuscript resource repository (Wang et al., 

2020b), also available at https://github.com/stephenslab/susie-paper.

Appendices

A: DETAILS OF POSTERIOR COMPUTATIONS FOR THE SER MODEL

A.1 Bayesian simple linear regression

To derive posterior computations for the SER model (2.4–2.8), it helps to start with an even 

simpler (univariate) linear regression model:

y = xb + e

e Nn 0, σ2In

b N1 0, σ0
2 .

Here, y is an n-vector of response data (centered to have mean zero), x is an n-vector 

containing values of a single explanatory variable (similarly centered), e is an n-vector 

of independent error terms with variance σ2, b is the scalar regression coefficient to be 

estimated, σ0
2 is the prior variance of b, and In is the n × n identity matrix.

Given σ2 and σ0
2, the posterior computations for this model are very simple; they can be 

conveniently written in terms of the usual least-squares estimate of b, b ≔ x⊤x −1x⊤y, its 

variance s2 ≔ σ2
x⊤x

, and the corresponding z score, z ≔ b /s. The posterior distribution for b is

b ∣ y, σ2, σ0
2 N1 μ1, σ1

2 ,

where

σ1
2 x, y; σ2, σ0

2 ≔ 1
1/s2 + 1/σ0

2 (A.1)

μ1 x, y; σ2, σ0
2 ≔ σ1

2

s2 × b , (A.2)

and the Bayes Factor (BF) for comparing this model with the null model (b = 0) is
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BF x, y; σ2, σ0
2 ≔ p y ∣ x, σ2, σ0

2

p y ∣ x; σ2, b = 0

= s2

σ0
2 + s2 exp z2

2 × σ0
2

σ0
2 + s2 .

(A.3)

This expression matches the “asymptotic BF” of Wakefield (2009), but here, because we 

consider linear regression given σ2, it is an exact expression for the BF, not just asymptotic.

A.2 The single effect regression model

Under the SER model (2.4–2.8), the posterior distribution of (b1, …, bp) = (bγ1, …, bγp) 

conditioned on σ2, σ0
2, π is given in the main text (eqs. 2.9 and 2.10), and is reproduced here 

for convenience:

γ ∣ X, y, σ2, σ0
2 Mult(1, α)

b ∣ X, y, σ2, σ0
2, γj = 1 N1 μ1j, σ1j

2 ,

where the vector of posterior inclusion probabilities (PIPs), α = (α1, …αp), can be 

expressed in terms of the simple linear regression BFs (A.3),

αj = Pr γj = 1 ∣ X, y, σ2, σ0
2 =

πjBF xj, y; σ2, σ0
2

∑j′ = 1
p πj′BF xj′, y; σ2, σ0

2
,

where μ1j and σ1j
2  are the posterior mean (A.2) and variance (A.1) from the simple regression 

model of y on xj :

μ1j = μ1 xj, y; σ2, σ0
2

σ1j = σ1 xj, y; σ2, σ0
2 .

Our algorithm requires the first and second moments of this posterior distribution, which are

E bj ∣ X, y, σ2, σ0
2 = αjμ1j

E bj
2 ∣ X, y, σ2, σ0

2 = αj σ1j
2 + μ1j

2 .
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A.3 Computing Credible Sets

As noted in the main text, under the SER model it is straightforward to compute a level-ρ CS 

(Definition 1), CS(α; ρ). The procedure is given in Maller et al. (2012), and for convenience 

we describe it here as well.

Given, let r = (r1, …, rp) denote the indices of the variables ranked in order of decreasing αj, 

so that αr1 > αr2 > ⋯ > αrp, and let Sk denote the cumulative sum of the k largest PIPs:

Sk ≔ ∑
j = 1

k
αrj .

Now take

CS(α; ρ) ≔ r1, …, rk0 , (A.4)

where k0 = mint{k : Sk ⩾ ρ}. This choice of k0 ensures that the CS is as small as possible 

while satisfying the requirement that it is a level-ρ CS.

A.4 Estimating hyperparameters

As noted in the main text, it is possible to take an empirical Bayes approach to estimating 

the hyperparameters σ2, σ0
2. The likelihood is

ℓSER y; σ0
2, σ2 ≔ p y ∣ X, σ0

2, σ2 = p0 y ∣ σ2 ∑
j = 1

p
πjBF xj, y; σ2, σ0

2 , (A.5)

where p0 denotes the distribution of y under the “null” that b = 0 (i.e. Nn(0, σ2In)), and 

BF(x, y; σ2, σ0
2) is given in eq. A.3. The likelihood (A.5) can be maximized over one or both 

parameters using available numerical algorithms.

B: DERIVATION OF VARIATIONAL ALGORITHMS

B.1 Background: Empirical Bayes and variational approximation

Here we introduce some notation and elementary results which are later applied to our 

specific application.

B.1.1 Empirical Bayes as a single optimization problem

Consider the following generic model:

y p(y ∣ b, θ)

b g(b),

Wang et al. Page 27

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where y represents a vector of observed data, b represents a vector of unobserved (latent) 

variables of interest, g ∈  represents a prior distribution for b (which in the empirical 

Bayes paradigm is treated as an unknown to be estimated), and θ ∈ ⊝ represents an 

additional set of parameters to be estimated. This formulation also includes as a special case 

situations where g is pre-specified rather than estimated simply by making  contain a single 

distribution.

Fitting this model by empirical Bayes typically involves the following two steps:

1. Obtain estimates (g, θ ) of (g, θ) by maximizing the log-likelihood:

(g, θ ) ≔ argmax
g ∈ G, θ ∈ Θ

ℓ (g, θ; y),

where

ℓ (y; g, θ) ≔ log ∫ p(y ∣ b, θ)g(b)db .

2. Given these estimates, g and θ , compute the posterior distribution for b,

ppost (b) ≔ ppost (b; y, g, θ) = p(b ∣ y, g, θ) ∝ p(y ∣ b, θ)g(b) .

This two-step procedure can be conveniently expressed as a single optimization problem:

ppost , g, θ = argmax
g ∈ G, θ ∈ Θ, q

F (q, g, θ; y), (B.1)

with

F (q, g, θ; y) ≔ ℓ (g, θ; y) − DKL q ppost , (B.2)

and where

DKL(q‖p) ≔ ∫ q(b) log q(b)
p(b)db

is the Kullback-Leibler (KL) divergence from q to p, and the optimization of q in (B.1) 

is over all possible distributions on b. The function F (B.2) is often called the “evidence 

lower bound”, or ELBO, because it is a lower bound for the “evidence” (the marginal 

log-likelihood). (This follows from the fact that KL divergence is always non-negative.)

This optimization problem (B.1) is equivalent to the usual two-step EB procedure. This 

equivalence follows from two observations:

1. Since the marginal log-likelihood, ℓ, does not depend on q, we have

argmax
q

F (q, g, θ; y) = argmin
q

DKL q‖ppost  = ppost  .
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2. Since the minimum of DKL with respect to q is zero for any (θ, g), we have that 

maxq F (q, g, θ; y) = ℓ(y; g, θ), and as a result

(g, θ ) = argmax
g ∈ G, θ ∈ Θ

ℓ (y; g, θ) = argmax
g ∈ G, θ ∈ Θ, q

max
q

F (q, g, θ; y) .

B.1.2 Variational approximation

The optimization problem (B.1) is often intractable. The idea of variational approximation 

is to adjust the problem to make it tractable, simply by restricting the optimization over all 

possible distributions on b to q ∈ , where  denotes a suitably chosen class of distributions. 

Therefore, we seek to solve B.1 subject to the additional constraint that q ∈ :

ppost , g, θ = argmax
g ∈ G, θ ∈ Θ, q ∈ Q

F (q, g, θ; y) . (B.3)

From the definition of F, it follows that optimizing F over q ∈  (for a given g and θ) 

corresponds to minimizing the KL divergence from q to the posterior distribution, and so 

can be interpreted as finding the “best” approximation to the posterior distribution for b 
among distributions in the class . And the optimization of F over (g, θ) can be thought of 

as replacing the optimization of the log-likelihood with optimization of a lower bound to the 

log-likelihood (the ELBO).

We refer to solutions of the general problem (B.1), in which q is unrestricted, as “empirical 

Bayes (EB) solutions,” and we refer to solutions of the restricted problem (B.3) as 

“variational empirical Bayes (VEB) solutions.”

B.1.3 Form of ELBO

It is helpful to note that, by simple algebraic manipulations, the ELBO (B.2) can be 

decomposed as

F (q, g, θ; y) = Eq log p(y, b ∣ g, θ)
q(b)

= Eq[log p(y ∣ b, θ)] + Eq logg(b)
q(b) .

(B.4)

B.2 The additive effects model

We now apply the above results to fitting an additive model, ℳ, that includes the SuSiE 

model (3.1–3.6) as a special case:

y = ∑
l = 1

L
μl + e

e Nn 0, σ2In
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μl gl, independently for l = 1, …, L,

where y = (y1, …, yn), e = (e1, …, en), μI = μl1, …, μln ∈ ℝn. We let ℳl denote the simpler 

model that is derived from ℳ by setting μl′ = 0 for all l′ ≠ l (i.e., ℳl is the model that 

includes only the lth additive term), and we use ℓl to denote the marginal log-likelihood for 

this simpler model:

ℓl y; gl, σ2 ≔ log p y ∣ ℳl, gl, σ2 . (B.5)

The SuSiE model corresponds to the special case of ℳ where μl = Xbl, for l = 1, …, L, 

and each gl is the “single effect prior” in (2.6–2.8). Further, in this special case each ℳl is a 

“single effect regression” (SER) model (2.4–2.8).

The key idea introduced in this section is that we can fit ℳ by variational empirical Bayes 

(VEB) provided we can fit each simpler model ℳl by EB. To expand on this, consider fitting 

the model ℳ by VEB, where the restricted family  is the class of distributions on (μ1, …, 

μL) that factorize over μ1, …, μL; that is, for any q ∈ ,

q μ1, …, μL = ∏
l = 1

L
ql μl .

For q ∈ , using expression (B.4), we obtain the following expression for the ELBO, F:

F q, g, σ2; y = − n
2log 2πσ2 − 1

2σ2Eq ‖y − ∑l = 1

L μl‖
2 + ∑

l = 1

L
Eql loggl μl

ql μl
, (B.6)

in which ∥ · ∥ denotes the Euclidean norm, and g denotes the collection of priors (g1, …, 

gL). The expected value in the second term of (B.6) is the expected residual sum of squares 

(ERSS) under the variational approximation q, and depends on q only through its first and 

second moments. Indeed, if we denote the posterior first and second moments by

μli ≔ Eql μli (B.7)

μli
2 ≔ Eql μli

2 , (B.8)

and we define μl ≔ μl1, …, μln , μl
2: = μl1

2 , …, μln
2 , μ ≔ μ1, …, μL , μ2 ≔ μ1

2, …, μL
2 , then we 

have that

ERSS y, μ, μ2 = Eq ‖y − ∑l = 1

L μl‖
2 = ‖y − ∑l = 1

L μl‖
2 + ∑

l = 1

L
∑
i = 1

n
Var μli , (B.9)
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where Var μli = μli
2 − μli

2. This expression follows from the definition of the expected 

residual sum of squares, and from independence across l = 1, …, L, after some algebraic 

manipulation; see Section B.7.

Fitting ℳ by VEB involves optimizing F in (B.6) over q, g, σ2. Our strategy is to update each 

(ql, gl) for l = 1, …, L while keeping σ2 and other elements of q, g fixed, and with a separate 

optimization step for σ2 with q, g fixed. This strategy is summarized in Algorithm A1.

The update for σ2 in Algorithm A1 is easily obtained by taking partial derivative of (B.6), 

setting to zero, and solving for σ2, giving

σ2 ≔
ERSS y, μ, μ2

n . (B.10)

The update for ql, gl corresponds to finding the EB solution for the simpler (single effect) 

model ℳl in which the data y are replaced with the expected residuals,

rl ≔ Eq rl ≔ Eq y − ∑l′ ≠ l μl′ = y − ∑l′ ≠ l μl′ .

The proof of this result is given below in Proposition A1.

Substituting these ideas into Algorithm A1 yields Algorithm A2, which generalizes the IBSS 

algorithm (Algorithm 1) given in the main text.

B.3 Special case of SuSiE model

The SuSiE model is a special case of the above additive effects model when μl = Xbl. In this 

case, ℳl is the SER model, and the first and second moments of μl are easily found from the 

first and second moments of bl:

E μli = E ∑j = 1
p xijblj = ∑j = 1

p xijE blj

E μli
2 = E ∑j = 1

p xijblj
2 = ∑j = 1

p xij
2E blj

2 .
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The expression for the second moment simplifies because only one element of bl is non-

zero under the SER model, and so bljblj′ = 0 for any j ≠ j′. Because of this, we can 

easily formulate ERSS(y, μ, μ2) as a function of the first and second moments of bl — 

denoting this as ERSS(y, b, b2) — and Algorithm A2 can be implemented using posterior 

distributions of b instead of posterior distributions of μ.

For completeness, we give this algorithm, which is Algorithm A3. This algorithm is the 

same as the IBSS algorithm in the main text (Algorithm 1), with additional steps for fitting 

the hyperparameters σ2 and σ0
2. This is the algorithm implemented in the susieR software. 

The step to update σ0l
2  is a one-dimensional optimization problem; we implemented this step 

using the R function optim, which finds a stationary point of the likelihood surface with 

respect to σ0l
2 . The algorithm terminates when the increase in the ELBO between successive 

iterations is smaller than a small non-negative number, δ (set to 0.001 unless otherwise 

stated). This is a commonly used stopping criterion in algorithms for fitting variational 

approximations.

B.4 Update for ql, gl in additive effects model is EB solution for simpler 

model, ℳl

Here we establish that the update to ql, gl in Algorithm A1 can be implemented as the EB 

solution for ℳl (Steps 5 and 6 in Algorithm A2). This result is formalized in the following 

proposition, which generalizes Proposition 1 in the main text.

Proposition A1. The ql, gl that maximizes F in (B.6), the ELBO for the additive model, ℳ, 
can be found by maximizing the ELBO for the simpler model, ℳl, in which the observed 
responses y are replaced by the expected residuals, rl:

argmax
ql, gl

F q, g, σ2; y = argmax
ql, gl

F l ql, gl, σ2; rl ,

where μl is the vector of posterior mean effects defined above (see eq. B.7), and we define

F l ql, gl, σ2; y = − n
2log 2πσ2 − 1

2σ2Eql ‖y − μl‖2 + Eql loggl μl

ql μl
. (B.11)
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Proof. Omitting terms in the expression for F (from eq. B.6) that do not depend on ql, gl 

(these terms are captured by “const”), we have

F q, g, σ2; y = − 1
2σ2Eq rl − μl

⊤ rl − μl + Eql loggl μl
ql μl

+  const 

= − 1
2σ2Eq −2rl

⊤μl + μl
⊤μl + Eql loggl μl

ql μl
+  const 

= − 1
2σ2Eql −2rl

⊤μl + μl
⊤μl + Eql loggl μl

ql μl
+  const 

= FI ql, gl, σ2; rl +  const .

□

Further note that the optimization of Fl does not restrict ql, so the maximum 

yields the exact EB solution for Ml (refer to Section B.1.1); that is 

ql μl = p μl ∣ rl, ℳl, gl, σ2 ∝ p rl ∣ ℳl, gl, σ2 gl μl  at the maximum.

B.5 Convergence of IBSS algorithm

B.5.1 Proof of Corollary 1

Proof. Step 5 of Algorithm 1 is simply computing the right-hand side of (3.9), in which the 

posterior distribution is determined by parameters αl, μ1l, σ1l
2 . Therefore, by Proposition 1, it 

is a coordinate ascent step for optimizing the lth coordinate of F (q1, …, qL; σ2, σ0
2) in which 

ql is determined by the parameters αl, μ1l, σ1l
2 . □

B.5.2 Proof of Proposition 2

Proof. By Proposition 2.7.1 of Bertsekas (1999), the sequence of iterates q converges to a 

stationary point of F provided that argmaxql,gl Fl (ql, gl, σ2; rl) is uniquely attained for each l. 

When ℳl is the SER model and μl = Xbl, the lower bound Fl (B.11) is

F l ql, gl, σ2; y = − n
2log 2πσ2 − ‖y − Xb‖2

2σ2 + ‖Xb‖2

2σ2 − 1
2σ2 ∑

j = 1

p
xj

⊤xjαj μ1j
2 + σ1j

2

+ ∑
j = 1

p αj
2 1 + logσ1j

2

σ0
2 − μ1j

2 + σ1j
2

σ0
2 + ∑

j = 1

p
αj logπj

αj
,

To lighten notation in the above expression, the l subscript was omitted from the quantities 

α = (α1, …,αp), μ1 = (μ11, …, μ1p) and σ1
2 = σ11

2 , …, σ1p
2  specifying the SER approximate 

posterior, ql, and likewise for the vector of posterior means, b ≔ bl with elements bj = αjμ1j. 

Taking partial derivatives of this expression with respect to the parameters α, μ1 and σ1
2, the 

maximum can be expressed as the solution to the following system of equations:

αj
1
σ1j

2 − xj
Txj

σ2 + 1
σ0

2 = 0 (B.12)
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αj
μ1j

σ1j
2 −

XTy
σ2 = 0 (B.13)

log αj

πj
− logσ1j

σ0
− μ1j

2

2σ1j
2 + λ = 0, (B.14)

where λ ∈ ℝ is an additional unknown, set so that α1 + ⋯ + αp = 1 is satisfied. The solution 

to this set of equations is finite and unique if 0 < σ, σ0 < ∞ and πj > 0 for all j = 1, …, 

p. Also note that the solution to (B.12–B.14) recovers the posterior expressions for the SER 

model. □

B.6 Computing the evidence lower bound

Although not strictly needed to implement Algorithms A2 and A3, it can be helpful to 

compute the objective function, F (e.g., to monitor the algorithm’s progress, or to compare 

solutions). Here we outline a practical approach to computing F for the SuSiE model.

Refer to the expression for the ELBO, F, given in (B.6). Computing the first term is 

straightforward. The second term is the ERSS (B.9). The third term can be computed from 

the marginal log-likelihoods ℓl in (B.5), and computing this is straightforward for the SER 

model, involving a sum over the p possible single effects (see eq. A.5). This is shown by the 

following lemma:

Lemma A1. Let qI ≔ argmaxqF l ql, gl, σ2; rl . Then

Eql log gl μl

q l μl
= ℓl rl; gl, σ2 + n

2log 2πσ2 + 1
2σ2Eql‖rl − μl‖2 . (B.15)

Proof. Rearranging (B.11), and replacing y with rl, we have

Eql loggl μI

ql μl
= F l ql, gl, σ2; rl + n

2log 2πσ2 + 1
2σ2Eql‖rl − μl‖2 . (B.16)

The result then follows from observing that Fl is equal to ℓl at the maximum, ql = q l; that is, 

F l q l, gl, σ2; rl = ℓl rl; gl, σ2 . □

B.7 Expression for the expected residual sum of squares (ERSS)

The expression (B.9) is derived as follows:
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ERSS y, μ, μ2 = Eq ‖y − ∑l = 1
L μl‖

2

= y⊤y − 2y⊤ ∑
l = 1

L
μl + ∑

l = 1

L
∑

l′ = 1

L
μl

⊤μl′ − ∑
l = 1

L
μl

⊤μl + ∑
l = 1

L
Eql μl

⊤μl

= ‖y − ∑l = 1
L μl‖

2 + ∑
l = 1

L
∑

i = 1

n
Var μli ,

where Var μli = μli
2 − μli

2.

C: CONNECTING SUSIE TO STANDARD BVSR

When L ≪ p, the SuSiE model (3.1–3.6) is closely related to a standard BVSR model in 

which a subset of L regression coefficients are randomly chosen to have non-zero effects.

To make this precise, consider the following regression model:

y = Xb + e

e Nn 0, σ2In

with n observations and p variables, so that b is a p-vector. Let ΠL, p
standard  ⋅ ; σ0

2  denote the prior 

distribution on b that first randomly selects a subset S ⊂ {1, …, p} uniformly among all 
p
L  subsets of cardinality |S| = L, and then randomly samples the non-zero values bS – {bj : 

j ∈ S} independently from N1 0, σ0
2 , setting the other values bS ≔ bj: j ∉ S  to 0. (This is a 

version of the prior considered by Castillo et al. 2015, with |S| = L.) Further, let ΠL, p
susie  ⋅ ; σ0

2

denote the prior distribution on b induced by the SuSiE model (3.1–3.6) with identical prior 

variances, σl0
2 = σ0

2, for all l = 1, …, L.

Proposition A2. With L fixed, letting p → ∞, the SuSiE prior is equivalent to the standard 
prior. Specifically, for any event A,

lim
p ∞

ΠL, p
susie  A; σ0

2 − ΠL, p
standard  A; σ0

2 = 0.

Proof. Fix L and p, and let B denote the event that the L vectors γ1, …, γL in the SuSiE 

model are distinct from one another. Conditional on B, it is clear from symmetry that the 

SuSiE prior exactly matches the standard prior; that is, ΠL, p
susie (A ∣ B) = ΠL, p

standard (A), dropping 

notational dependence on σ0
2 for simplicity. Thus,

ΠL, p
susie (A) − ΠL, p

standard (A) = ΠL, p
susie (A) − ΠL, p

susie (A ∣ B)
= ΠL, p

susie (A ∣ B)PrL, p(B) + ΠL, p
susie (A ∣ B)PrL, p(B) − ΠL, p

susie (A ∣ B),
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where the last line follows from the law of total probability. The result then follows from the 

fact that the probability PrL,p(B) → 1 as p → ∞:

PrL, p(B) = [p/p][(p − 1)/p][(p − 2)/p]⋯[(p − L + 1)/p] 1 as p ∞ .

D: SIMULATION DETAILS

D.1 Simulated data

For the numerical simulations of eQTL fine mapping in Section 4, we used n = 574 

human genotypes collected as part of the Genotype-Tissue Expression (GTEx) project 

(GTEx Consortium, 2017). Specifically, we obtained genotype data from whole-genome 

sequencing, with imputed genotypes, under dbGaP accession phs000424.v7.p2. In our 

analyses, we only included SNPs with minor allele frequencies 1% or greater. All reported 

SNP base-pair positions were based on Genome Reference Consortium (GRC) human 

genome assembly 38.

To select SNPs nearby each gene, we considered two SNP selection schemes in our 

simulations: (i) in the first scheme, we included all SNPs within 1 Megabase (Mb) of the 

gene’s transcription start site (TSS); (ii) in the second, we used the p = 1, 000 SNPs closest 

to the TSS. Since the GTEx data contain a very large number of SNPs, the 1,000 closest 

SNPs are never more than 0.4 Mb away from the TSS. Selection scheme (i) yields genotype 

matrices X with at least p = 3,022 SNPs and at most p = 11,999 SNPs, and an average of 

7,217 SNPs.

For illustration, correlations among the SNPs for one of the data sets are shown in Fig. A1 

(see also Fig. 1).

FIGURE A1. Correlations among variables (SNPs) in an example data set used in the fine 
mapping comparisons.
Left-hand panel shows correlations among variables shown at positions 100–200 in Fig. 1; 

right-hand panel shows correlations among variables shown at positions 350–450. For more 

details on this example data set, see Section 4.1 in the main text.
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D.2 Software and hardware specifications for numerical comparisons 

study

In CAVIAR, we set all prior inclusion probabilities to 1/p to match the default settings 

used in other methods. In CAVIAR and FINEMAP, we set the maximum number of effect 

variables to the value of S that was used to simulate the gene expression data. The maximum 

number of iterations in FINEMAP was set to 100,000 (this is the FINEMAP default). We 

estimate σ2 in SuSiE for all simulations.

All computations were performed on Linux systems with Intel Xeon E5–2680 v4 (2.40 

GHz) processors. We ran SuSiE in R 3.5.1, with optimized matrix operations provided by 

the dynamically linked OpenBLAS libraries (version 0.3.5). DAP-G and CAVIAR were 

compiled from source using GCC 4.9.2, and pre-compiled binary executables, available 

from the author’s website, were used to run FINEMAP.

E: FUNCTIONAL ENRICHMENT OF SPLICE QTL FINE MAPPING

To strengthen results of Section 5, here we provide evidence that splice QTLs identified by 

SuSiE are enriched in functional genomic regions, thus likely to contain true causal effects. 

To perform this analysis, we labelled one CS at each intron the “primary CS.” We chose 

the CS with highest purity at each intron as the primary CS; any additional CSs at each 

intron were labelled as “secondary CSs.” We then tested both primary and secondary CSs 

for enrichment of biological annotations by comparing the SNPs inside these CSs (those 

with PIP > 0.2) against random “control” SNPs outside all primary and secondary CSs.

We tested for enrichment of the same generic variant annotations used in Li et al. 

(2016). These include LCL-specific histone marks (H3K27ac, H3K27me3, H3K36me3, 

H3K4me1, H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9me3, H4K20me1), DNase 

I hypersensitive sites, transcriptional repressor CTCF binding sites, RNA polymerase II 

(PolII) binding sites, extended splice sites (defined as 5 base-pairs upstream and downstream 

of an intron start site, and 15 base-pairs upstream and downstream of an intron end site), 

as well as intron and coding annotations. In total, 16 variant annotations were tested for 

enrichment.

Figure A2 shows the enrichments in both primary and secondary CSs for the 12 out of 16 

annotations that were significant at p-value < 10−4 in the primary signals (Fisher’s exact test, 

two-sided, no p-value adjustment for multiple comparisons). The strongest enrichment in 

both primary and secondary signals was for extended splice sites (odds ratio ≈ 5 in primary 

signals), which is reassuring given that these results are for splice QTLs. Other significantly 

enriched annotations in primary signals include PolII binding, several histone marks, and 

coding regions. The only annotation showing a significant depletion was introns. Results for 

secondary signals were qualitatively similar to those for primary, though all enrichments are 

less significant, which is most likely explained by the much smaller number of secondary 

CSs.
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FIGURE A2. Splicing QTL enrichment analysis results.
Estimated odds ratios, and ± 2 standard errors, for each variant annotation, obtained by 

comparing the annotations of SNPs inside primary/secondary CSs against random “control” 

SNPs outside CSs. The p-values are from two-sided Fisher’s exact test, without multiple 

testing correction. The vertical line in each plot is posited at odds ratio = 1.
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FIGURE 1. Fine-mapping example to illustrate that IBSS algorithm can deal with a challenging 
case.
Results are from a simulated data set with p = 1, 000 variables (SNPs). Some of these 

variables are very strongly correlated (Figure A1). Two out of the 1,000 variables are 

effect variables (red points, labeled “SNP 1” and “SNP 2” in the left-hand panel). We 

chose this example from our simulations because the strongest marginal association (SMA) 

is a non-effect variable (yellow point, labeled “SMA” in the left-hand panel). After 1 

iteration (middle panel), IBSS incorrectly identifies a CS containing the SMA and no effect 

variable (orange points). However, after 10 iterations (and also at convergence) the IBSS 

algorithm has corrected itself (right-panel), finding two 95% CSs — dark blue and green 

open circles — each containing a true effect variable. Additionally, neither CS contains the 

SMA variable. One CS (blue) contains only 3 SNPs (purity of 0.85), whereas the other CS 

(green) contains 37 very highly correlated variables (purity of 0.97). In the latter CS, the 

individual PIPs are small, but the inclusion of the 37 variables in this CS indicates, correctly, 

high confidence in at least one effect variable among them.
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FIGURE 2. Evaluation of posterior inclusion probabilities (PIPs).
Scatterplots in Panel A compare PIPs computed by SuSiE against PIPs computed using 

other methods (DAP-G, CAVIAR, FINEMAP). Each point depicts a single variable in one 

of the simulations: dark red points represent true effect variables, whereas light gray points 

represent variables with no effect. The scatterplot in Panel B combine results across the 

first set of simulations. Panel B summarizes power versus FDR from the first simulation 

scenario of. These curves are obtained by independently varying the PIP threshold for 

each method. The open circles in the left-hand plot highlight power versus FDR at PIP 

thresholds of 0.9 and 0.95). These quantities are calculated as FDR ≔ FP
TP+FP  (also known as 

the “false discovery proportion”) and  power  ≔ TP
TP+FN , where FP, TP, FN and TN denote the 

number of False Positives, True Positives, False Negatives and True Negatives, respectively. 

(This plot is the same as a precision-recall curve after reversing the x-axis, because 

 precision  = TP
TP+FP = 1 − FDR, and recall = power.) Note that CAVIAR and FINEMAP were 

run only on data sets with 1 − 3 effect variables.
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FIGURE 3. Comparison of 95% credible sets (CS) from SuSiE and DAP-G.
Panels show A) coverage, B) power, C) median size and D) average squared correlation of 

the variables in each CS. These statistics are taken as mean over all CSs computed in all data 

sets; error bars in Panel A show 2 × standard error. Simulations with 1–5 effect variables 

are from the first simulation scenario, and simulations with 10 effect variables are from the 

second scenario.
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FIGURE 4. Illustration of SuSiE applied to two change point problems.
The top panel shows a simulated example with seven change points (the vertical black 

lines). The blue horizontal lines show the mean function inferred by the segment method 

from the DNAcopy R package (version 1.56.0). The inference is reasonably accurate — 

all change points except the left-most one are nearly exactly recovered — but provides no 

indication of uncertainty in the locations of the change points. The red regions depict the 

95% CSs for change point locations inferred by SuSiE; in this example, every CS contains a 

true change point. The bottom panel shows a simulated example with two change points in 

quick succession. This example is intended to illustrate convergence of the IBSS algorithm 

to a (poor) local optimum. The black line shows the fit from the IBSS algorithm when it is 

initialized to a null model in which there are no change points; this fit results in no change 

points being detected. The red line also shows the result of running IBSS, but this time the 

fitting algorithm is initialized to the true model with two change points. The latter accurately 

recovers both change points, and attains a higher value of the objective function (−148.2 

versus −181.8).
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TABLE 1:

Runtimes from data sets simulated with S = 3 (all runtimes are in seconds)

method mean min. max.

SuSiE 0.64 0.34 2.28

DAP-G 2.87 2.23 8.87

FINEMAP 23.01 10.99 48.16

CAVIAR 2907.51 2637.34 3018.52
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TABLE 2:

Comparison of CSs from SuSiE and DAP-G to significant clusters from hierarchical inference (hierinf 

software, with FWER level α = 0.1). Results are averages across all data sets in the first simulation scenario.

#effects
power coverage median size average r2

SuSiE DAP-G hierinf SuSiE DAP-G hierinf SuSiE DAP-G hierinf SuSiE DAP-G hierinf

1 0.99 0.89 0.97 0.98 0.99 0.94 3 3 8 0.99 0.99 0.82

2 0.67 0.60 0.55 0.95 0.92 0.96 4 5 20 0.99 0.97 0.71

3 0.52 0.49 0.39 0.93 0.91 0.95 6 7 34 0.98 0.96 0.64

4 0.45 0.40 0.29 0.92 0.89 0.95 6 8 37 0.98 0.95 0.60

5 0.37 0.32 0.24 0.90 0.87 0.98 7 9 54 0.97 0.95 0.56
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