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Abstract

Carcinogenesis is a multi-step process by which normal cells acquire genetic and epigenetic 

changes that result in cancer. In combination with host genetic susceptibility and environmental 

exposures, a prominent pro-carcinogenic role for the microbiota has recently emerged. In 

colorectal cancer (CRC), three nefarious microbes have been consistently linked to cancer 

development: 1) Colibactin-producing Escherichia coli initiates carcinogenic DNA damage, 2) 

Enterotoxigenic Bacteroides fragilis promotes tumorigenesis via toxin-induced cell proliferation 

and tumor-promoting inflammation, 3) Fusobacterium nucleatum enhances CRC progression 

through two adhesins, FadA and Fap2, that promote proliferation, anti-tumor immune evasion, 

and may contribute to metastases. Herein, we use these three prominent microbes to discuss the 

experimental evidence linking microbial activities to carcinogenesis and the specific mechanisms 

driving this stepwise process. Precisely defining mechanisms by which the microbiota impact 

carcinogenesis at each stage is essential for us to develop microbiota-targeted strategies for the 

diagnosis, prognosis, and treatment of cancer.
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Introduction to the microbiota

At birth, humans are seeded with a diverse collection of microbes, including bacteria, 

viruses, fungi, archaea, protozoa, and helminths (1-3). Humans and microbes are in 

symbiosis, supporting host physiology, immunological development, and metabolism among 

other essential functions (4-6). This human-associated microbial consortium is termed the 
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“microbiota”. Bacteria are the best studied gut microbiota members, due to advances 

in sequencing technology and bioinformatics pipelines that distinguish bacterial taxa by 

polymorphisms in the ubiquitous bacterial 16S ribosomal RNA genomic sequence (7-9). 

By scrutinizing the genomic content (“microbiome”) of these microbes, our research 

community has uncovered some general principles regarding the gut microbiota.

Microbial communities are finely tuned to fit the ecology and function of each body site, 

likely benefiting from the nutrients in each microenvironment (3, 10). Many of our microbial 

species evolve with us, acquiring traits through mutation and horizontal gene transfer over 

our lifetime that may influence health and disease (11). The gut microbiota is the best 

studied human-associated microbial community, due to its diversity, abundance, and ease 

of sample collection (feces/stool). The gut microbiota community composition and function 

differ longitudinally down the gastrointestinal (GI) tract from mouth to anus, depending 

on the physiological needs of each niche (12). Interestingly, gut microbiota are more 

similar between individuals than between body sites of one individual (i.e. skin vs. gut) 

(5). However, the composition of our individual gut microbiota significantly differs (3).

Researchers have not found a “core microbiota”. However, when we consider the 

capabilities – genes and pathways – harbored in individual microbiomes, we see strong 

similarities amongst people (3) Thus, it appears that the function of the microbiota may 

be more important than the presence or absence of species within the community (13). 

Therefore, individual microbiota hold a potential to impact human health and disease 

that may be overlooked when simply classifying by taxonomy. The pro-carcinogenic 

microbes discussed in this review all harbor specific genes and capabilities absent from 

the core genome of their particular species (i.e. Escherichia coli, Bacteroides fragilis, and 

Fusobacterium nucleatum) (14-16). Therefore, we have an obligation to look deeper than 

community structure to evaluate the pro-carcinogenic capability of the microbiota.

We previously explored this body of knowledge using Hanahan and Weinberg’s “Hallmarks 

of Cancer” (17) as a framework to classify specific mechanisms by which microbes, 

microbial communities, and microbial metabolites may impact cancer development (15). 

These ten Hallmarks comprise key biological capabilities acquired by normal cells as they 

develop traits of cancer cells and progress toward tumor development. Here we will review 

and expand upon mechanisms by which specific members of the microbiota influence the 

development of cancer and speculate upon what stages of carcinogenesis they principally 

impact.

Foundational associations between inflammation, cancer, and the 

microbiome

In 1984, Drs. Barry Marshall and J. Robin Warren performed an unprecedented experiment 

in which self-colonization of Dr. Marshall with patient-derived Helicobacter pylori rapidly 

induced gastritis that was ameliorated by eradication of H. pylori with antibiotics (18, 

19). Others in the gastric cancer field had been skeptical that bacteria could survive the 

acidic environment of the stomach and attributed gastric cancer development to genetic 

susceptibility or other host physiological causes. Helicobacter is now recognized as a group 
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I carcinogen and the primary cause of gastritis, peptic ulcers, and gastric cancer (20). 

Helicobacter deploys the cytotoxin-associated gene A (CagA) toxin as the predominant 

oncoprotein that hijacks multiple epithelial signaling pathways and initiates carcinogenesis 

with chronic inflammation fueling cancer progression (20). With their infamous experiment, 

Drs. Marshall and Warren had not simply fulfilled Koch’s postulates for H. pylori and 

gastritis – they piqued interest in the nuances of this complex relationship between host and 

microbe(s) and a new field of research emerged in microbial-induced chronic inflammation 

and carcinogenesis.

With the advent of high-throughput sequencing and an explosion of knowledge about our 

intestinal microbiota, it is now clear that our gut microbiota influences cancer development, 

most notably colorectal cancer (CRC) (21-23). Microbiota impact host metabolism, 

inflammation, immunity, and cellular proliferation, which are all processes that when 

dysregulated can promote tumorigenesis (24). Furthermore, ample evidence suggests that 

the microbiota can directly impact tumor formation. Fecal transplants from human patients 

with CRC promote carcinogenesis in germ-free (sterile mice devoid of any microbiota) 

and conventional mice administered the colon-specific carcinogen azoxymethane (AOM) 

(25). Transferring the microbiota of tumor-bearing mice versus non-tumor-bearing mice 

accelerates the development and severity of tumorigenesis in the AOM/dextran sulphate 

sodium (DSS) mouse model (26). The structure and physiological state of the microbiota 

also influences pro-carcinogenic effects, as biofilm-associated communities from both CRC 

and healthy individuals induce more tumorigenesis than non-biofilm communities in mouse 

models (27). These studies demonstrate a causal relationship between the microbiota and 

CRC development and provide rationale for further mechanistic studies.

The microbiota in carcinogenesis: Initiation, promotion, and progression

Over the past decade, pre-clinical and clinical evidence connects the microbiota and their 

metabolites to carcinogenesis. The conventional paradigm proposes microbial eubiosis 

(balanced flora) is positively health-associated, while a change in microbial diversity or 

functionality (dysbiosis, unbalanced flora) can promote disease development, including 

various cancers (14, 28). Dysbiotic triggers include changes in genetics, environment (e.g. 

inflammation, medication, diet), or pathogenic infection. However, it is still debated whether 

microbial community alterations are a cause or effect of carcinogenesis.

Data suggests microbial pathogens drive cancer formation in 15-20% of cancer cases (29). 

Currently, the International Agency for research on Cancer (IARC) classifies 10 microbial 

species as group 1 human carcinogens with Helicobacter pylori, Hepatitis B virus (HBV), 

Hepatitis C virus (HCV), and Human papillomavirus (HPV) driving 90% of infection-

associated cancers (21, 29, 30). Despite pathogen-triggered carcinogenesis being the focus 

for the past 10 years, association studies and studies with selectively colonized (gnotobiotic) 

mouse models clearly demonstrate the pro-carcinogenic capability of commensal microbes 

(Table 1).

Carcinogenesis can be divided into three stages: Initiation, promotion, and progression (31). 

Initiation is defined by spontaneous or induced genetic alterations, such as exposure to a 
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carcinogenic agent; this alters the responsiveness of cells to their environment and provides 

a proliferative advantage (31). Promotion is a period of preneoplastic cell proliferation 

and accumulation, inducing additional genetic damage and amplifying mutations (31). 

Progression is marked by further neoplastic expansion, with enhanced tumor growth rate, 

invasiveness, and metastasis. The microbiota has the potential to impact carcinogenesis at all 

stages (Table 1). Here we provide a detailed discussion of three prominent microbes and the 

mechanisms by which they initiate, promote, and enhance progression of carcinogenesis in 

CRC.

Colibactin-producing pks+ Escherichia coli: Initiates carcinogenesis

During carcinogenesis, normal host cells acquire mutations that confer growth and survival 

advantages. Cancer formation is often initiated by a chemical carcinogen, which induces 

genotoxicity or DNA damage (31). The microbiota is predicted to produce hundreds of 

unique small molecules and secondary metabolites that may influence host health and 

disease (32). These metabolites are often synthesized by complex enzymatic assembly 

lines encoded by biosynthetic gene clusters. One cancer-associated genotoxic molecule is 

colibactin, produced from the polyketide synthase (pks) gene cluster present among certain 

strains of E. coli (33, 34). Pks+ E. coli strains are prevalent in the microbiota of CRC 

patients (34, 35), induce CRC in mouse models (34, 36-38), and leave a distinct mutational 

fingerprint in human colorectal tumors that signifies former exposure and points to a role in 

cancer initiation (39, 40) (Figure 1).

The pks island was first described in 2006, as a 54kb genomic island of 19 genes (clbA to 

clbS) that encodes a large and sophisticated non-ribosomal peptide and polyketide synthase 

assembly line (NRPS-PKS) (33, 41). Not all E. coli harbor the pks island, but those that do 

are restricted to E. coli phylotype B2 and represent both commensal and pathogenic strains 

(42). Among human microbiota, pks+ E. coli are highly prevalent in CRC patients (34, 35), 

with one study estimating carriage among 66.7% of CRC patients, 40.0% of inflammatory 

bowel disease patients, and only 20.8% of healthy patients (34). These correlative findings 

suggested pks may play a role in disease promotion.

Early studies demonstrated pks was responsible for inducing cell cycle arrest and 

activation of DNA repair machinery in mammalian cells exposed to E. coli, suggesting 

pks products were microbially-derived genotoxins (33, 43). More specifically, epithelial 

cells that encounter colibactin-producing E. coli exhibit DNA double-strand breaks and 

are characterized by ɣ-H2AX foci, G2/M cell cycle arrest, megalocytosis, and activation 

of ATM/CHK/CDC25/CDK1 DNA damage signaling cascades (33, 34, 43). The pro-

tumorigenic role of the pks+ island was first demonstrated to enhance tumor multiplicity 

and invasion in the AOM/interleukin 10-deficient (Il10−/−) colitis-associated CRC mouse 

model (34). These pro-carcinogenic effects were validated by multiple groups in additional 

mouse models that also defined the role of various pks genes and proteins required for 

colibactin’s genotoxic effects (reviewed in (42)).

While the precise chemical identity of bioactive colibactin has remained elusive, chemical 

and structural analyses have defined inactive precolibactins and stable colibactin-DNA 
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lesions that can lead to mutation and tumorigenesis (44-46). Briefly, inactive precursors 

are synthesized in the bacterial cytoplasm and then deacetylated in the periplasm by the 

peptidase ClbP (42, 47, 48). In the mammalian cell nucleus, colibactin alkylates DNA 

with a ‘double warhead’ comprised of a cyclopropane ring conjugated to an alpha,beta-

unsaturated imine, creating adenine-colibactin adducts and DNA crosslinks (49-51). 

Although bacterial:mammalian cell contact is required (33) for genotoxicity, beyond that 

it is currently unknown how bioactive colibactin is released from the bacteria and enters the 

mammalian cell to cause DNA damage.

It was predicted that colibactin-DNA lesions lead to mutations in oncogenes or tumor 

suppressors that drive cancer. Indeed, two recent studies defined unique mutational 

signatures caused by colibactin exposure (39, 40). Both studies repeatedly exposed 

mammalian cells to pks+ E. coli in culture and identified single base pair substitutions 

contained in specific AT-rich motifs that are structurally and chemically consistent with the 

effects of previously identified adenine-colibactin adducts. The single base pair substitution 

(SBS) signature was termed SBS-pks and includes ATA, ATT and TTT with the middle 

base mutated (39). An additional signature contained single T deletions at T homopolymers, 

with enrichment of adenines upstream of the insertion/deletion site (termed indels) and 

was termed ID-pks (39). Importantly, mining established whole-genome sequencing (WGS) 

datasets revealed that these signatures predominated in CRC tumors and metastases 

relative to other cancer types (39, 40). SBS-pks and ID-pks signatures were positively 

correlated, suggesting they derived from a common origin – colibactin exposure (39). Both 

studies linked the location of these pks signatures to CRC mutational hotspots, with the 

adenomatous polyposis coli gene APC (the most commonly mutated gene in CRC (52, 

53)) harboring the highest amount of mutations with the SBS-pks or ID-pks mutational 

signatures (39). These signatures can serve as biomarkers of past colibactin exposure and the 

findings clearly link the mutational signature of colibactin exposure to known CRC driver 

mutations.

Intriguingly, a separate study examining non-neoplastic colon tissue detected SBS-pks and 

ID-pks in 29 of 42 healthy individuals and data modeling revealed these signatures were 

likely acquired before 10 years of age (54). Thus, early exposure to pks+ E. coli and 

a prominent pks mutational signature found early in life may indicate a greater risk for 

CRC. In combination with genetic susceptibility and other risk factors, the presence of 

colibactin-derived mutational signatures may inform new prognostic algorithms for CRC. 

It will be important to better understand how the genomic location and/or abundance of 

colibactin-DNA adducts may relate to future cancer risk.

Enterotoxigenic Bacteroides fragilis (ETBF): Promotes carcinogenesis

Almost every neoplastic lesion contains immune cells. Once thought to solely be an anti-

tumoral response, inflammation can enhance tumor promotion and progression (30, 55, 56). 

The close proximity of the microbiota and mucosal immune system provides opportunity 

for resident microbes to elicit pro-tumorigenic immune responses. Bacteroides spp. are 

normal inhabitants of the intestinal microbiota, representing approximately 30% of the gut 

community members, and help shape mucosal immune responses (57).
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B. fragilis is a key Bacteroides community member that represents about 0.5-2% of the 

entire gut microbiota (57). Strain level differences render B. fragilis either beneficial or pro-

inflammatory and pro-carcinogenic. Beneficial B. fragilis, referred to as non-toxigenic B. 
fragilis (NTBF), promotes regulatory T cell development and suppression of inappropriate 

inflammation through the production of Polysaccharide A (PSA) (58, 59). In contrast, 

enterotoxigenic B. fragilis (ETBF) produces a proteolytic enterotoxin, termed B. fragilis 

toxin (BFT) or fragilysin (60). BFT is a heat-labile metalloprotease that is produced as a 

pro-toxin and activated by the B. fragilis cysteine protease, fragipain (57). ETBF promotes 

inflammation and CRC predominantly through BFT.

Genetically susceptible mouse models have been instrumental in demonstrating the 

inflammatory and tumorigenic effects of ETBF. APC is a chief tumor suppressor protein, 

commonly mutated in CRC patients (52, 53). Apcmin/+ mice and mouse models with 

truncated Apc spontaneously develop numerous intestinal tumors, mainly localized to the 

small intestine. However, when colonized with ETBF, tumors now develop in the colon 

within a month of inoculation (61). ETBF primarily resides in the colon, where it is thought 

to drive tumorigenic effects via local production of BFT. Colonization with NTBF does not 

induce colonic tumors, demonstrating the reliance on BFT for B. fragilis pro-carcinogenic 

activities (61).

Upon exposure to epithelial cells, BFT damages colonic epithelial barrier integrity by 

inducing cleavage of the zonula adherens protein, E-cadherin (62). Oncogenic beta-catenin 

is released from E-cadherin and translocates to the nucleus where it acts as a transcription 

factor and induces epithelial hyperproliferation (63). Normally, cytosolic beta-catenin is 

restrained by the host APC protein and is continually targeted for proteasomal degradation 

(63). However, the APC gene is mutated in 70-80% of CRC patients (52, 53), diminishing 

APC tumor suppressive function. Therefore, beta-catenin oncogenic signaling is likely 

enhanced by microbial-derived BFT.

BFT-mediated E-cadherin cleavage not only induces proliferative signaling, but also 

increases gut permeability that enhances translocation of microbial products (57). The 

disruption of epithelial integrity triggers a pro-inflammatory cascade that leads to rapid 

and sustained interleukin-17 (IL-17) production by colonic T cells, the defining feature of T 

helper 17 (Th17) cell immune responses (60, 64). IL-17 production evoked by B. fragilis is 

a key driver of colon tumorigenesis, which is inhibited by IL-17 neutralization. Thus, ETBF 

promote cancer development by invoking tumorigenic inflammation, in part through BFT 

(Figure 1).

Th17 immune responses, induced by microbes and their metabolites, are associated with 

worsened CRC patient prognosis (55, 65). Under homeostatic conditions and exposure 

to epithelial-adherent commensals, Th17 immunity is trained as a protective host defense 

response (66). However, Th17 release can be maladaptive in the context of inflammation 

and cancer (64). At sites of inflammation and on developing adenomas, epithelial barrier 

defects and defective mucin production permit microbial sampling by intra-tumoral dendritic 

cells that then produce IL-23 (55). Neutrophils, other local immune cells, and epithelial cells 

produce pro-inflammatory cytokines including IL-1β and IL-6 in this microenvironment 
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(56). This intra-tumoral cytokine milieu including IL-23 and IL-6 causes recruitment and 

expansion of IL-17 producing T cells (IL-17A specifically), which signal to epithelial 

cells through the receptor IL-17RA (64, 65). Epithelial recognition of IL-6 and IL-17 

activates a signaling cascade that involves phosphorylated Stat3, NF-kB, and MAPK (64). 

This signaling cascade induces anti-apoptotic and pro-proliferative genes that promote 

cancer development (60). These data suggest that inappropriate exposure to BFT induces 

a coordinated response between epithelial, myeloid, and lymphoid cells, which establishes a 

microenvironment of tumor-promoting inflammation that enhances cancer development.

Fusobacterium nucleatum: Enhances cancer progression

Healthy tissues tightly control cellular signals to modulate growth, maintain homeostatic 

cell densities, tissue architecture, and function. Dysregulated cellular signaling can permit 

sustained and potentially deleterious cell proliferation. As discussed above in relation to 

ETBF, microbial-induced dissociation of beta-catenin from E-cadherin drives proliferative 

pathways that support tumor promotion and progression (63). Fusobacterium nucleatum is a 

normal inhabitant of the oral microbiota that can cause inflammation in the gingival tissue 

and infectious inflammatory conditions at multiple body sites (28, 30, 67-69).

Mis-localization of F. nucleatum to the colon is associated with CRC. Although luminal 

spread seems possible from the oral cavity to the colon, evidence suggests that F. nucleatum 
reaches sites of inflammation and tumorigenesis via a hematogenous route (70, 71). 

Fusobacterium is prevalent in CRC patient tissue (72, 73) and its abundance positively 

correlates with cancer severity (74, 75), supporting a role for Fusobacterium in cancer 

progression.

As with other pro-carcinogenic bacteria, strain-specific differences in F. nucleatum drive 

commensal versus pro-carcinogenic behavior (68). An early study demonstrated that daily 

gastric inoculation of F. nucleatum into CRC-susceptible mice enhanced tumorigenesis, 

suggesting a causative role (72). Since early associations, the pro-tumorigenic role of F. 
nucleatum has been supported by ample evidence (67, 72, 73, 76-80). Furthermore, we 

now understand F. nucleatum carcinogenic effects are primarily mediated by the adhesins 

Fusobacterial apoptosis protein 2 (Fap2) and Fusobacterium adhesin A (FadA) (Figure 1).

A transposon screen revealed the importance of the adhesin Fap2 in binding microbial and 

mammalian cells (81). Galactose-inhibited adhesion had been reported previously in studies 

involving various oral microbes and mammalian cells (67). Fap2 binding was blocked by 

galactose (81), whose partner was Gal-GalNAc, a disaccharide highly expressed on CRC 

tumors and metastases (82). Thus F. nucleatum can hone to developing and established 

tumors, contributing to cancer progression.

For tumorigenesis to progress, neoplastic cells must avoid immune detection and 

destruction. Natural killer (NK) cells are a key part of immune surveillance by killing 

non-self cells (i.e. virus-infected and tumor cells) via coordination of activating and 

inhibitory receptors. F. nucleatum Fap2 binds NK cell inhibitory receptor TIGIT (T 

cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibitory 
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motif (ITIM) domains), which inhibits NK cell activation and allows tumor cells to 

evade elimination (78). Fusobacterium also induces immunosuppressive myeloid-derived 

suppressor cells (MDSCs), which can boost tumor development by interfering with immune 

surveillance (78).

Another Fusobacterium adhesin, FadA, is implicated in carcinogenesis. FadA binds E-

cadherin, activates beta-catenin, and enhances experimental CRC tumor xenograft growth 

(79). FadA is essential for active invasion of epithelial and endothelial cells (80, 83). A 

recent study demonstrated that FadA+ F. nucleatum invades HCT116 CRC cells and induces 

production of CXCL1 and IL-8, chemokines that then promote HCT116 migration (80). 

These data suggest that colorectal cell invasion by F. nucleatum may enhance metastatic 

potential. Interestingly, invasion of phagocytic cells – cultured neutrophils and macrophages 

– was FadA independent (80). Fusobacterium likely harbor additional factors that facilitate 

invasion and pathogenic interactions with mammalian cells, as invasive strains harbor large 

genomes predicted to encode multiple FadA-related adhesins and similar surface-associated 

proteins (84). Thus, FadA promotes proliferative signaling and upon invading CRC cells, 

may enable cellular migration and metastasis.

Although it is unclear precisely what role the microbiota may play in metastatic growth, 

some evidence suggests that F. nucleatum plays a role in CRC metastases. One study 

identified that clonal Fusobacterium strains were found in a majority of primary CRC 

tumors and paired liver metastases (77). Furthermore, when Fusobacterium was found 

in CRC metastases, much of the primary tumor microbiome was present as well 

(77); this suggests that Fusobacterium may be a hub for multi-species pro-carcinogenic 

activities. Fusobacterium-containing patient-derived xenografts had viable Fusobacterium 
that appeared to be cancer cell invasive (77). In addition, tumor growth was reduced by 

treatment with metronidazole, an antibiotic highly effective against Fusobacterium (77). 

Interestingly, a recent study reported that F. nucleatum could accelerate experimental breast 

cancer and metastatic progression (71). Similar to findings in CRC, this pro-carcinogenic 

activity involved Fap2 binding Gal-GalNAc on breast cancer cells and suppression of tumor 

infiltrating T cells (71). Metastatic progression was inhibited by antibiotic treatment with 

metronidazole (71). Overall, it is clear that F. nucleatum contributes to cancer progression, 

in part via FadA and Fap2 adhesins. While additional investigation is needed, evidence 

suggests a likely role for F. nucleatum in metastasis (Figure 1).

Carcinogenesis is mediated by diverse microbial functions

Our microbiota adapt to an array of microenvironmental shifts during our lifetime, shaping 

human development, health, and survival. At the same time, these diverse microbial 

communities can impact chronic disease and diseases of aging, including cancer (24). 

Carcinogenesis is a multi-step process by which normal host cells acquire genetic and 

epigenetic changes that result in cancer (31). In combination with host genetic susceptibility 

and environmental exposures, a prominent pro-carcinogenic role for the microbiota has 

recently emerged (85).

Lopez et al. Page 8

Annu Rev Med. Author manuscript; available in PMC 2023 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The microbiota comprises vast communities of microbes that inhabit most body sites. 

Although we generally exist in a healthy symbiotic relationship with our microbiota, an 

altered or “dysbiotic” microbial community can contribute to the carcinogenic process. 

Links between carcinogenesis and ecological alterations to the microbiota are exemplified 

by CRC, where there is intimate association between host and a rich/diverse community 

of microbes. Human microbiota studies and experimental animal models of cancer have 

consistently highlighted several microbes that impact carcinogenesis: E. coli, ETBF, and 

F. nucleatum (28, 30). In this review, we have described mechanisms driving the pro-

carcinogenic effects of these key bacterial species. Furthermore, we proposed that each of 

these microbes uniquely influence specific stages of carcinogenesis. Colibactin-producing 

E. coli initiate, ETBF promote, and Fap2+ and FadA+ F. nucleatum enhance progression 

of carcinogenesis. We use these microbes to give tangible evidence to the stepwise pro-

carcinogenic potential of the microbiota.
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Outstanding questions and future directions

Recently in 2019, the International Cancer Microbiome Consortium published a 

consensus statement on the role of the human microbiome in carcinogenesis stating, 

“The microbiome is one apex of a tripartite, multidirectional interactome alongside 

environmental factors and an epigenetically/genetically vulnerable host that combine 

to cause cancer” (85). As elaborated herein, microbiota have local effects on 

cancer formation and contribute to systemic effects through biotransformation of 

chemotherapeutics and immunotherapies (see Sidebar for more information). In this 

review, we have discussed recent evidence that human-associated microbes can impact 

each stage of carcinogenesis: initiation, promotion, and progression. However, many 

important questions remain:

What other microbial factors induce, promote, or progress carcinogenesis?

The microbiota harbors a tremendous capacity for generating novel metabolites (32). 

Microbial-derived metabolites like short chain fatty acids (SCFAs) and hydrogen sulfide 

(H2S) can impact CRC (28, 30). The SCFA butyrate provides energy to healthy 

colonocytes and is less abundant in CRC patients. Administering butyrate or butyrate-

producing microbes enhances mitochondrial respiration in healthy colonocytes and is 

tumor-suppressive in a mouse model of cancer (86, 87). Conversely, H2S is enriched in 

early stage tumor samples and may promote inflammation/tumorigenesis (88). Various 

species like B. wadsworthia and Alistipes spp. are abundant in CRC patients and produce 

H2S that is toxic to epithelial cells and causes DNA damage (28, 30).

Do microbial factors drive specific types of CRC?

One study evaluated 83 patients with a 44 patient validation cohort, in which patients 

were stratified by mismatch repair (MMR) status (88). This study found MMR status was 

one of the strongest predictors of microbial community variance and that MMR-deficient 

patients harbor different microbes and metabolites than MMR-proficient patients (88). 

Larger cohorts and longitudinal studies are likely to uncover stronger links between the 

presence of certain microbial signatures and CRC subtypes.

How do the microbiota alter host products to influence cancer development?

Many microbes and their metabolites stimulate reactive oxygen species (ROS) production 

from host cells, leading to ROS-induced DNA damage that can promote genomic 

instability and mutations (89-91). In addition, bile acids are notoriously altered by 

the microbiota and can impact colorectal and hepatocellular carcinoma (92). With 

the vast amount of metabolites evoked or chemically transformed by the microbiota, 

carcinogenesis is undoubtedly altered by the milieu of an individual’s microbiota.

Does the physiological state of microbial communities impact their pro-carcinogenic 
potential?

Biofilms have consistently been found in right-sided (proximal) CRC and can contain 

ETBF and pks+ E. coli (93, 94). Genetically susceptible mice develop tumors upon 

inoculation with human colonic biofilms, but rarely with non-biofilm communities, 

from both healthy individuals and cancer patients (27). However, taxonomy differed 
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between biofilm-positive and biofilm-negative microbial communities (27), making it 

difficult to discern whether the pro-carcinogenic effects were biofilm-dependent or 

due to differences in microbial composition. Nonetheless, these findings suggest the 

biogeographic distribution of the microbiota and inter-microbial interactions play an 

understudied role in host interactions and possibly cancer.

How does the external environment shape the microbiome to a carcinogenic state?

Chronic inflammation increases cancer risk and severity. A recent manuscript 

demonstrates that reducing inflammation through TNF-alpha neutralization alters the 

microbiota and renders it less carcinogenic when transplanted to germ-free cancer-

susceptible mice (95). In healthy individuals, the microbiota adapts over a lifetime. 

B. fragilis and other members of the microbiota continually adapt in the gut via de 

novo mutations, with the appearance of novel strain variants that could perhaps acquire 

pro-carcinogenic traits (11).
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Significance and therapeutic potential

Over the past ~250 years, life-changing discoveries have informed cancer research and 

improved patient prognoses (96). Today, we continue to see an overall decrease in cancer-

related deaths amongst men, woman, and children in the United States (96). However, 

rates of new cancers remain stable or are increasing for some demographics (96). 

Sustained cancer incidence means the millennia-long fight against cancer persists. Two 

large limitations to fighting cancer are: 1) modeling the complexity of the host-microbe 

interactions within the tumor microenvironment and 2) personalization of medicine 

to optimally treat an individual’s unique disease features, including pro-carcinogenic 

microbes.

To address these limitations, we need to build longitudinal clinical studies to truly 

demonstrate microbial-causation among human carcinogenesis. Mechanistic studies and 

experiments with animal models build the foundation for human-based research. By 

understanding how and at what stage microbes impact carcinogenesis, we can lessen 

the gap towards improved clinical intervention. By defining which microbes initiate 

cancer, we identify biomarkers to predict cancer formation in susceptible individuals. 

Looking at microbes that promote cancer, we can estimate therapeutic efficiency. Finally, 

by addressing cancer progressing microbes, we can get a better understanding of 

prognosis. Furthermore, this information will allow us to best target these carcinogenic 

microbes and microbial metabolites for elimination, in combination with strategies to 

enhance beneficial community function. This knowledge can be broadly applied to 

other microbial-driven conditions of chronic inflammation, infection, and extraintestinal 

cancers. This should be our focus in the next decade to continue the fight against cancer.
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Summary points:

1. Our microbiota influence the initiation, promotion, and progression of carcinogenesis.

2. Currently, microbiota-mediated pro-carcinogenic effects are best exemplified by the 

gut microbiota in colorectal cancer (CRC).

3. Colibactin-producing polyketide synthase (pks+) E. coli initiate carcinogenesis by 

inducing DNA damage.

4. Enterotoxigenic Bacteroides fragilis (ETBF) promote carcinogenesis, directly through 

B.fragilis-derived toxin (BFT) and indirectly through interleukin-17 (IL-17) dominant 

tumor-promoting inflammation.

5. Fusobacterium nucleatum enhances cancer progression via its adhesins Fusobacterial 

apoptosis protein 2 (Fap2) and Fusobacterium adhesin A (FadA), which enhance 

proliferation, promote cellular invasion, and help evade anti-tumor immunity.

6. Defining how and when the microbiota impact carcinogenesis will improve the timing 

and strategies for risk assessment and personalized cancer treatments.
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Sidebar: Biotransformation of chemotherapeutics by the microbiota

The microbiota can directly impact metabolism of xenobiotics, including 

chemotherapeutics (97, 98). Pancreatic ductal adenocarcinomas (PDACs) can harbor 

Gammaproteobacteria able to metabolize gemcitabine, a common chemotherapeutic for 

PDAC. Gemcitabine inactivation is dependent upon expression of a particular isoform of 

the bacterial enzyme cytidine deaminase (CDDL), common among Gammaproteobacteria 

(99). Although the host also produces cytidine deaminases, these results suggest 

intratumor bacteria may contribute to PDAC resistance to gemcitabine. Irinotecan, a 

chemotherapeutic used to treat colorectal and pancreatic cancer, has limited efficacy 

due to GI toxicity caused by reactivation of the drug in the colon by bacterial β-

glucuronidases (100). Inhibiting bacterial β-glucuronidases prevents GI toxicity and 

reduces gut epithelial damage, which may allow administration of higher effective doses 

(100-102). In future, clinicians may consider individual variations in the microbiome 

to inform the most effective use of chemotherapeutics, as personalized medicine. 

Some approaches include building pharmacokinetic models to predict microbiome 

contributions to the metabolism and absorption of specific drugs and chemotherapeutics 

(103). Another way to capture the variability in drug metabolism across various patient 

microbiota is to employ in fimo screening (experimental examination of stool samples), 

inoculating patient-derived fecal samples with a drug of choice to determine the 

functional output of an individual’s microbial community (104).
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Figure 1: Microbiota impact all stages of carcinogenesis.
Initiation (left): first stage of carcinogenesis characterized by DNA alterations to normal 

cells. Colibactin, a specialized metabolite produced by pks+ E. coli (green), has genotoxic 

activity that damages DNA and leads to mutations. Promotion (center): second stage 

of carcinogenesis characterized by proliferation of transformed cells. BFT produced by 

ETBF (blue) damages the colonic epithelium and barrier integrity. This disruption leads to 

pro-carcinogenic T helper 17 (Th17) dominant inflammation. Epithelial cells, neutrophils, 

and dendritic cells produce cytokines that activate T cells to promote Th17 inflammation, 

including dendritic cell derived IL-23. IL-17-producing T cells signal back to the epithelium 

and induce epithelial cell proliferation driven by pStat3 and NF-kB pathways. Progression 

(right): final stage of carcinogenesis characterized by tumor growth and invasion, leading 

to metastases. Fusobacterium (orange) uses adhesins FadA to bind to E-cadherin and Fap2 

to bind to Gal-GalNAc on tumor cells to promote proliferative signaling. Fap2 also binds 

TIGIT on Natural Killer (NK) cells to enhance immune evasion. Although there is not yet 

strong evidence that these bacteria promote metastasis, Fusobacterium and a pks+ mutagenic 

signature have been found in metastases and may contribute to this stage of carcinogenesis.
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