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Abstract

Background: It is unclear whether 25(OH)D concentrations in children and female adults 

may be influenced by inflammation and thus require adjustment when estimating the population 

prevalence of vitamin D deficiency.

Objectives: We examined correlations between inflammation biomarkers, CRP or alpha-1-acid 

glycoprotein (AGP), and serum 25(OH)D concentrations among preschool children (PSC; 6–59 

mo) and nonpregnant females of reproductive age (FRA; 15–49 y).

Methods: We analyzed cross-sectional data from 6 nationally representative nutrition surveys 

(Afghanistan, Cambodia, Pakistan, UK, USA, and Vietnam) conducted among PSC (n = 9880) 

and FRA (n = 14,749) from the Biomarkers Reflecting Inflammation and Nutritional Determinants 

of Anemia project. Rank correlations between CRP or AGP and 25(OH)D concentrations were 

examined while taking into account complex survey design effects.

Results: Among both PSC and FRA, correlations between inflammation and vitamin D 

biomarkers were weak and inconsistent across surveys. For PSC, correlation coefficients between 

CRP and 25(OH)D concentrations ranged from −0.04 to 0.08, and correlations between AGP and 

25(OH)D ranged from 0.01 to 0.05. Correlation coefficients between CRP and 25(OH)D for FRA 

ranged from −0.11 to 0.14, and correlations between AGP and 25(OH)D concentrations ranged 

from −0.05 to 0.01.
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Conclusions: Based on the weak and inconsistent correlations between CRP or AGP and 

25(OH)D, there is no rationale to adjust for these inflammation biomarkers when estimating 

population prevalence of vitamin D deficiency in PSC or FRA.
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Introduction

Vitamin D deficiency is an important public health problem that can contribute to the 

loss of bone density leading to osteoporosis and fractures as well as rickets in children 

[1, 2]. Although population data on vitamin D deficiency prevalence is limited, the 

available evidence suggests widespread global vitamin D deficiency, particularly in countries 

where calcium intake is low and vitamin D fortification is not mandatory [3]. Accurate 

assessment of vitamin D is critical to evaluate the prevalence of vitamin D deficiency, 

identify at-risk subgroups, and guide public health actions to mitigate the burden of 

deficiency. Studies worldwide commonly assess vitamin D status using the circulating, 

intermediate form, 25(OH)D, because of its long half-life, relatively stability, and high 

plasma concentration. In contrast, the active form of vitamin D, 1,25-dihydroxyvitamin 

D (1,25(OH)2D), has unstable serum concentrations owing to its dependence on calcium 

concentrations and thus is not considered a good indication of vitamin D status [4]. 

Disagreement exists about the thresholds to define risk of deficiency; the Institute of 

Medicine defines deficiency as 25(OH)D below 30 nmol/L [5], whereas the Endocrine 

Society [6] and European Food Safety Authority [7] recommend a threshold of 50 nmol/L. 

Debates also exist surrounding laboratory approaches to quantify 25(OH)D concentrations 

(e.g., radioimmunoassay, chemiluminescent assay or liquid chromatography), making it 

challenging to choose the cutoff to define deficiency [8–10].

Some studies have also suggested that persistent inflammation and chronic infections may 

alter the concentration of 25(OH)D [11]. Inflammation is characterized by high circulating 

concentrations of inflammatory mediators and associated with diverse pathophysiology 

of various infections and chronic diseases [12]. During inflammation, the activation of 

toll-like receptors and several cytokines such as IFN-γ can up-regulate vitamin D-binding 

receptors in macrophages and as a result stimulate a rapid conversion from 25(OH)D to 

1,25(OH)2D, whereas other cytokines such as IL-4 can induce the catabolism of 25(OH)D 

to the inactive metabolite 24,25-dihydroxycholecalciferol (24,25(OH)2D) [11]. Although 

there are many different indicators of inflammation, national surveys typically measure acute 

phase proteins, including CRP and alpha 1-acid glycoprotein (AGP). CRP and AGP are 

enhanced by several cytokines such as IL-6, IL-1, and TNF (13). The associations of CRP 

and AGP with biomarkers of iron and vitamin A have been demonstrated in previous studies 

from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia 

(BRINDA) project, and as a result adjustment methods were recommended for iron and 

vitamin A serum concentrations [14].
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However, evidence of the association between vitamin D status and biomarkers of 

inflammation is sparse and conflicting [15–21], and it remains unclear if adjustment is 

merited. A study in Sri Lanka assessing vitamin D status during infections showed a 

lower concentrations of 25(OH)D in hospitalized children with dengue symptoms than 

in healthy children [19], whereas other studies tracking 25(OH)D concentrations during 

the course of pneumonia infections in children in Nepal [18] or malarial infections in 

adults in the UK [20] showed no significant changes in 25(OH)D concentrations. Studies 

assessing the correlations between vitamin D and inflammatory biomarkers have also 

reported mixed findings. For example, a cohort study of adult patients referred for nutritional 

assessment and adult patients with critical illnesses in Scotland showed that serum 25(OH)D 

concentrations were inversely related to CRP concentration [15], and a cross-sectional study 

of children with obesity in Spain also found an inverse correlation between 25(OH)D and 

CRP or IL-6 concentrations [16]. In contrast, other studies of patients with inflammatory 

bowel disease in Germany [17] or periodontal disease in the United States [21] found 

a stable concentration of 25(OH)D regardless of the presence of elevated CRP. Given 

the conflicting evidence about the need for inflammation adjustment in vitamin D status 

assessment, the aim of the present study was to examine whether inflammatory biomarkers 

(CRP and AGP) are correlated with 25(OH)D among preschool children (PSC) as well as 

females of reproductive age (FRA) in studies included in the BRINDA project.

Methods

We used cross-sectional survey data from the BRINDA project (www.BRINDA-

nutrition.org). Methods for data acquisition and management and for defining inclusion 

and exclusion criteria have been previously described [22, 23]. The BRINDA protocol was 

reviewed by the institutional review boards of the National Institute of Health and was 

deemed to be non-human-subjects research. In the present study, we included nationally 

representative surveys in PSC (aged 6–59 mo) and nonpregnant FRA (15–49 y), where 

the sample size was larger than 100 and data were available for at least one biomarker of 

inflammation (CRP, AGP, or both) and 25(OH)D (Supplemental Figure 1). After applying 

these criteria, we obtained 5 data sets that included data from PSC and FRA and an 

additional data set that included only FRA. Our final data sample included 5 datasets for 

PCS (n = 9880) and 6 for FRA (n = 14,749) (Supplemental Table 1).

Laboratory analysis

Venous blood was obtained from all survey participants. Plasma and serum samples were 

kept at −20 °C until analysis in all participating surveys. The concentrations of 25(OH)D, 

CRP, and AGP were measured using several laboratory methods that are summarized for 

each survey in Supplemental Table 2. Methods for CRP and AGP assessment are mostly 

consistent across assays owing to the availability of reference materials and external quality 

assessment programs [26–30]. We defined inflammation using CRP concentration > 5 mg/L 

or AGP concentration > 1 g/L [24].
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Statistical analysis

We first described the distribution of 25(OH)D, CRP, and AGP concentrations using median 

and IQR and calculated the prevalence of deficiency by survey. All analyses took into 

account complex survey design effects, including cluster, strata, and biomarker-specific 

sampling weights, unless otherwise specified. We calculated weighted rank correlation 

coefficients because the variables did not necessarily follow normal distribution (Gaussian 

distribution), and because we did not want to assume that monotonic relationships were 

linear. This was done by first calculating the ranks of inflammation (CRP or AGP) 

and 25(OH)D within each survey and then estimating the weighted Pearson’s correlation 

between the rank variables. The prevalence of 25(OH) D < 30 nmol/L was plotted by 

unweighted CRP and AGP decile to investigate whether there was a linear relationship 

between inflammation and 25(OH)D. Results were considered significant at P value < 0.05. 

We categorized BMI values as underweight (BMI < 18.5), normal weight (18.5 ≤ BMI < 

25), overweight (25 ≤ BMI < 30), and obesity (BMI ≤ 30) and conducted stratification 

analyses to examine the potential role of BMI in modifying the associations between 

inflammation and vitamin D status among FRA. In addition, we built a general linear model 

and accounted for the complex survey design to test the significance of interaction between 

BMI category and inflammatory markers on vitamin D, with each survey as a fixed effect. 

All statistical analyses were performed using SAS 9.4 (SAS Institute) and incorporated 

complex survey design effects, including cluster, strata, and biomarker-specific sampling 

weights, as done previously [14, 25].

Results

Participant characteristics

Mean age among PSC (n = 9880) ranged from 27.4 mo in Pakistan to 37.4 mo in Vietnam, 

whereas the mean age of FRA (n = 14,749) varied between 20.9 y in Afghanistan and 34.4 y 

in the UK (Table 1). The percentage of individuals included in each survey based on vitamin 

D biomarker availability was similar to CRP and AGP availability and ranged from 3% 

in Afghanistan to 93% in USA (Supplemental Table 3). Demographic characteristics were 

similar among those included and excluded for all surveys, and population groups except for 

Afghanistan where included PSC and FRA had higher SES than those who were excluded 

Supplemental Table 4). The prevalence of PSC with elevated CRP, defined as CRP higher 

than 5 mg/L, was lowest in USA (6.0%) and highest in Vietnam (12.4%). In contrast, the 

prevalence of elevated CRP among FRA was lowest in Vietnam (7.0%) and highest in USA 

(25.6%). The prevalence of elevated AGP was higher than that of elevated CRP. It was 

lowest in Afghanistan (23.7% among PSC or 11.6% among FRA) and highest in Cambodia 

(36.0% among PSC and 33.6% among FRA). The prevalence of PSC with 25(OH)D lower 

than 30 nmol/L ranged between 0.8% in USA and 41% Afghanistan, whereas the prevalence 

among FRA ranged between 5.9% in Cambodia and 84.5% in Afghanistan. Similarly, when 

using 50 nmol/L cutoff to define vitamin D deficiency, the prevalence of deficiency among 

PSC ranged between 11.9% in USA and 82.2% in Afghanistan, whereas the prevalence 

among FRA varied from 30.5% in Cambodia to 92.9% in Afghanistan.
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Relationship between vitamin D and inflammation

Most surveys had very weak correlations that were not statistically significant between 

25(OH)D and inflammatory biomarkers (CRP or AGP) in both PSC and FRA (Table 

2). Regarding 25(OH)D and CRP, all surveys of PSC had non-statistically significant 

associations whereas 3 surveys of FRA in UK, USA, and Vietnam had statistically 

significant associations (although still small), of which the surveys conducted in the 

UK and USA had inverse correlations, and the survey conducted in Vietnam had a 

positive correlation. Correlations between 25(OH)D and AGP concentrations were all non-

statistically significant for both PSC and FRA. The assoication between 25(OH)D and CRP 

or AGP does not consistently vary at different concentrations of 25(OH)D (results not 

shown). The prevalence of vitamin D deficiency (25(OH)D < 30 nmol/L) varied across the 

deciles of CRP and AGP; however, there was no evidence of linear trend for PSC or FRA 

(Figure 1). Similar results were found in country specific analysis compared with the pooled 

results (results not shown).

In terms of testing for interaction between BMI and inflammatory markers on vitamin D, 

the interaction term was significant between CRP and BMI category and non-significant 

between AGP and BMI category (data not shown). In our stratification analysis according 

to BMI (Table 3), the correlation coefficients were small and non-significant across BMI 

categories in Afghanistan and Pakistan. In the Vietnam sample, the association was small, 

positive, and statistically significant in the normal weight group. In contrast, the association 

was small, negative, and statistically significant in the overweight group in the UK sample 

as well as in the obesity group in the Cambodia sample. In the US sample, where the overall 

association was significantly negative, the associations were not significant in the obesity 

group and significantly positive in the normal weight group.

Discussion

The result of this large, multicountry analysis showed little evidence of a relationship 

between biomarkers of inflammation (CRP or AGP) and 25(OH)D concentrations among 

PSC and FRA. Correlations between CRP and AGP and 25(OH)D concentrations were all 

close to zero for PSC and FRA samples. Furthermore, the directions of the correlations 

were inconsistent and most P values > 0.05. In addition, in both pooled and country specific 

samples, there was no clear pattern of vitamin D deficiency across deciles of inflammatory 

markers. These results suggest that adjusting for these inflammation biomarkers may not be 

required to estimate vitamin D deficiency in population-based surveys.

The weak and inconsistent correlations between 25(OH)D and CRP or AGP found in our 

study are in alignment with the conflicting research results to date [17, 18, 26–28]. For 

example, in our analysis, among PSC there were no clear associations between vitamin D 

and inflammatory biomarkers, which is consistent with a previous longitudinal analysis of 

PSC with pneumonia [18]. However, a cross-sectional analysis of children aged between 

0 and 8 y in 6 African countries and a randomized trial of adolescents in Iran both found 

inverse relationships between vitamin D and CRP concentrations [26, 27]. Similarly, we 

found no consistent associations between vitamin D and inflammatory biomarkers among 

FRA. Few studies have studied the subgroup of FRA alone; however, the existing studies 
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on adults also showed conflicting results. A recent cross-sectional analysis of older females 

with periodontal diseases and a randomized trial of female adults with depressive symptoms 

both found no associations between vitamin D biomarkers and CRP concentrations [21, 29]. 

In contrast, 2 studies of patients with cardiovascular diseases found an inverse association 

between vitamin D and high-sensitive CRP biomarkers [28, 30].

These conflicting findings may be due to the variation in age group, illnesses, and severity 

of inflammation that modify the associations between vitamin D and inflammation. One 

potential modifying factor is body fat status. Obesity status was correlated with elevated 

CRP in FRA in previous BRINDA analyses [31]. In our analysis of the UK survey, we 

found that the negative correlations between 25(OH)D and CRP in the overall FRA sample 

may have been driven by the negative associations found in the overweight group. In the 

NHANES, although the overall correlations between 25(OH)D and CRP were weak and 

negative, there were non-significant negative correlations in the obesity group but positive 

significant correlations in the normal BMI group. Previous analyses of the NHANES 

surveys in US have reported negative associations [32, 33]. A cross-sectional study of 

pregnant females in China indicated a modifying relationship between lipid profile, vitamin 

D, and CRP suggesting that high 25(OH)D concentrations prevent the rise of high-sensitive 

CRP induced by high concentrations of lipid biomarkers [34]. A study of US adult patients 

with cardiovascular diseases also found positive association between BMI and high-sensitive 

CRP [30], and another study of Tanzanian adult patients with tuberculosis reported a 

positive association between BMI and vitamin D [35]. Several mechanisms can account 

for the relationship between body fat, vitamin D, and inflammation such as increased 

uptake of vitamin D by adipose tissue, reduced sun exposure that is indispensable for 

cutaneous vitamin D synthesis, and negative feedback loop on hepatic synthesis of vitamin 

D [36]; however, more studies with more sensitive measurements of body fat are needed to 

investigate the complex relationship between body fat, vitamin D, and inflammation.

The justification to adjust estimates of the prevalence of vitamin D deficiency for 

inflammation requires a strong biologic basis; however, our understanding remains limited 

about the bidirectional relationship between vitamin D and inflammation. Many have 

postulated that vitamin D deficiency is the consequence of inflammation, possibly owing 

to the rapid renal conversion between prohormone 25(OH)D to 1,25(OH)2D which is up-

regulated during infection or inflammation [17, 37]. Evidence supporting this hypothesis 

remained mixed as several studies observed that the concentration of 25(OH)D dropped 

after inflammation [28], whereas other studies found that the concentration of 25(OH)D 

was relatively stable during and after the course of infection and inflammation [18, 

20, 38]. In contrast, others have argued that vitamin D deficiency can contribute to 

inflammation through promoting the synthesis of antimicrobial peptides, up-regulating 

anti-inflammatory cytokines, activating adaptive immune response, and modulating cytosol 

calcium concentrations [37]. Furthermore, excess 25(OH)D concentrations could also lead 

to proinflammatory effects and increase the risk of chronic diseases [39, 40]. The biological 

mechanisms linking vitamin D and inflammatory biomarkers need to be better understood 

before justifying the adjustment of vitamin D biomarkers for inflammation.
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At least 99% of the 25(OH)D in serum is bound to vitamin D-binding protein (VDBP) or 

albumin, both of which are negative acute phase reactants [41, 42]. Therefore, declines in 

serum VDBP and albumin concentrations may contribute to a decline in the total 25(OH)D 

with inflammation [41]; however, VDBP data were not available in the datasets included 

in this study to examine this mechanism. Measurement of unbound (“free”) 25(OH)D or 

bioavailable 25(OH)D has been proposed as an alternative biomarker of vitamin D status 

that may be less affected by variations in VDBP or albumin concentrations [43, 44]. 

However, total 25(OH)D (including bound and unbound fractions) is a standard biomarker 

of vitamin D status, whereas the measurement of the much reduced, free or bioavailable 

25(OH)D concentration is challenging, not standardized and not widely implemented in 

epidemiological studies or population surveys [43].

The key strength of this study is the large and diverse populationbased data that included 

several countries in Asia, one from Europe and one from America regions, in contrast to 

most existing studies that are clinical-based. Our large sample, including close to 10,000 

PSC and 15,000 FRA, lend a strong statistical power to detect the assoication between 

inflammation and vitamin D and enable a more comprehensive understanding of the 

common patterns or divergence in the relationships between different contexts. However, 

the study had several limitations. First, our findings are limited to FRA and PSC population-

based surveys and cannot be generalizable to other populations groups (school-aged children 

or pregnant females), or clinical settings, which merits further examination. Second, we 

lack data on other biomarkers of inflammation such as ILs and tumor necrosis factor, 

which correlate with vitamin D status in studies of healthy adolescents [27] or patients 

with heart failure [45]. Future studies should look at a range of inflammatory biomarkers 

to better understand its reciprocal relationship with vitamin D. Third, our analysis was 

constrained by the variability of the conditions and methods that were used to obtain blood 

samples and analyze vitamin D, CRP, and AGP concentrations. In particular, we lacked 

information about CRP in the data sets, for which the limit of detection (LOD)/limit of 

quantification (LOQ) can vary widely across assays and for which a high proportion of 

undetectable or unquantifiable observations may be observed. Unfortunately, information 

on the LODs and LOQs was not available for all surveys, and future nutrition surveys 

should include information on LOD/LOQ in survey reports and publications to allow 

for standardized approach across datasets. Furthermore, the low proportion of individuals 

included in the analysis based on biomarker availability in some countries could have 

generated selection bias. Lastly, random measurement error on single measurements of 

biomarkers may attenuate correlations coefficients. Future research would benefit from 

longitudinal designs with repeat measurements of biomarkers.

In conclusion, our multicountry analysis of nationally representative surveys found no 

evidence to justify the adjustment of 25(OH)D concentrations by CRP and AGP among 

PSC and FRA in population-based surveys. There is a need for better understanding of 

the reciprocal relationships between vitamin D and inflammation and standardization of 

laboratory methods across surveys to enable measurement of reliable biomarkers.
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Figure 1. 
Prevalence of 25(OH)D < 30 nmol/L by (A) CRP deciles and (B) AGP deciles in preschool-

age children (n = 9880) and prevalence of 25(OH)D < 30 nmol/L by (C) CRP deciles 

and (D) AGP deciles in females of reproductive age (n= 14,749). AGP, alpha-1-acid 

glycoprotein.
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Table 2

Weighted rank correlations between 25(OH)D and CRP and AGP in preschool children and nonpregnant 

females of reproductive age, the BRINDA project
1,2

Survey n 25(OH)D and CRP correlation n 25(OH)D and AGP correlation

r p r p

PSC

Afghanistan, 2013 662 −0.04 0.50 662 0.04 0.61

Cambodia, 2014 646 0.04 0.32 646 0.05 0.29

Pakistan, 2011 6943 0.01 0.63

USA, 2006 1314 0.01 0.78 — — —

Vietnam, 2010 315 0.08 0.08 — — —

FRA

Afghanistan, 2013 1044 0.01 0.92 1044 0.01 0.81

Cambodia, 2014 699 0.05 0.40 699 −0.05 0.47

Pakistan, 2011 6305 0.001 0.92 8045 −0.01 0.56

UK, 2014 894 −0.11 0.02 — — —

USA, 2006 3197 −0.10 0.001 — — —

Vietnam, 2010 528 0.14 0.002 — — —

1
AGP, alpha-1-acid glycoprotein; BRINDA, Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia; and — not measured.

2
P value was calculated from T test in regression model that took into account complex sampling (cluster, strata, and sampling weight).
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