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ABSTRACT. Purpose: Image denoising based on deep neural networks (DNN) needs a big data-
set containing digital breast tomosynthesis (DBT) projections acquired in different
radiation doses to be trained, which is impracticable. Therefore, we propose exten-
sively investigating the use of synthetic data generated by software for training
DNNs to denoise DBT real data.

Approach: The approach consists of generating a synthetic dataset representative
of the DBT sample space by software, containing noisy and original images.
Synthetic data were generated in two different ways: (a) virtual DBT projections gen-
erated by OpenVCT and (b) noisy images synthesized from photography regarding
noise models used in DBT (e.g., Poisson–Gaussian noise). Then, DNN-based
denoising techniques were trained using a synthetic dataset and tested for denois-
ing physical DBT data. Results were evaluated in quantitative (PSNR and SSIM
measures) and qualitative (visual analysis) terms. Furthermore, a dimensionality
reduction technique (t-SNE) was used for visualization of sample spaces of syn-
thetic and real datasets.

Results: The experiments showed that training DNN models with synthetic data
could denoise DBT real data, achieving competitive results to traditional methods
in quantitative terms but showing a better balance between noise filtering and detail
preservation in a visual analysis. T-SNE enables us to visualize if synthetic and real
noises are in the same sample space.

Conclusion: We propose a solution for the lack of suitable training data to train
DNN models for denoising DBT projections, showing that we just need the syn-
thesized noise to be in the same sample space as the target image.
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1 Introduction
Digital breast tomosynthesis (DBT)1 has arisen as a new radiation technique that fills the gaps in
digital mammography (DM). While DM has problems with dense breasts and tissue overlapping,
DBT aims to acquire several breast projections and reconstruct a three-dimensional (3D) model
composed of several slices with reduced tissue overlapping. In this way, the specialist can
visualize microcalcifications that DM could hide, increasing the accuracy of detecting lesions.
However, like other radiation-based imaging approaches, DBT must use a radiation dose as low
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as possible, to reduce the risks to the patients. Reducing the radiation dose results in a higher
presence of noise in the projections, implying a lower quality of the reconstructed DBT image.
Thus, it is necessary to use computational denoising methods to improve the image quality, either
applying them in the projection domain (pre-reconstruction step) or directly in the reconstructed
DBT images (post-reconstruction step).

Multiple works have studied denoising techniques to improve DBT image quality,2–4 others
have investigated techniques to synthesize DBT virtual images5 and still others for generating
low radiation dose projections from full radiation dose projections,6 enabling studies without
exposing patients to additional scans. With the advent of deep neural networks (DNN), several
DNN-based denoising approaches were proposed, showing important results when applied to
filter DBT projections.7

Considering only the denoising approaches, the DNN-based methods need a training step to
learn a model that will be applied to filter noisy DBT data, which requires intensive computation
and a big dataset of original and noisy data. On the other hand, the traditional non-DNN
approaches can be applied directly to the desired DBT noisy data, without a training step.

In our previous work found in Ref. 7, it was shown that DNN-based blind denoising methods
trained and tested on synthetic data achieved results similar or better than the best traditional
denoising methods, even with a limited dataset size and computational power. These synthetic
image datasets were generated in two different ways: (a) by a software simulating DBT virtual
clinical trials and (b) by synthesizing noisy versions of the general images from a photography
dataset. The reason to evaluate some DNN-based denoising methods in the second case (b) was
to verify how these methods perform on noise models commonly used for modeling DBT pro-
jections but not evaluated yet for them in the literature [e.g., denoising CNN (DnCNN)8 was not
evaluated for denoising images corrupted by Poisson–Gaussian noise].

Thus, due to the relevant results of DNN approaches achieved by Ref. 7 and from other
works in the literature, and the lack of real data available for training DNN methods, this paper
has the following objetives: (1) evaluate if trained DNN-based denoising methods in synthetic
datasets generated by software (virtual dataset or photography dataset) can achieve suitable
results when tested in real DBT image datasets (physical dataset); (2) compare the combination
of several cost-functions for DNN-based denoising methods; and (3) evaluate the sample space of
noisy data of the different datasets (synthetic, virtual, and physical) using a data visualization
technique.

The main contributions of this paper can be summarized as follows:

• DNN-based blind denoising methods trained on synthetic data simulating noise models of
DBT were suitable to denoise real DBT projections. In fact, the models trained on the
virtual phantoms dataset and those models trained on the photography dataset with
synthetic noise had similar results, showing that DNN-based denoising methods do not
depend on the image content itself, but sample spaces of both synthetized and real
noises must be similar, enabling other medical imaging systems to be trained on general
images;

• Data visualization technique proved to be a useful tool to explore the sample space of noisy
data of the different datasets, which is important to clarify the similarity (distribution) of
training and test datasets;

• Cost functions defined by a combination of complementary loss functions can improve the
results of DBT projection denoising, achieving a better balance in both quantitative and
qualitative terms, especially in microcalcification areas.

The remainder of this work is organized as follows: Sec. 2 presents a brief literature review
related to our proposal. Section 3 describes the datasets used in the experiments and the meth-
odology. Section 4 presents the results achieved in the experiments. Finally, Sec. 5 discusses the
experimental results and presents the conclusions and proposals for future works.

2 Related Works
In the literature, noise in DBT projections has been modeled as the following distributions:
Poisson,2 Gaussian,3 or Poisson–Gaussian.4
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Several works have been studying how to apply denoising methods to improve DBT pro-
jection quality. To bring a brief review of these methods, this section was organized in traditional
(non-DNN-based) methods (Sec. 2.1) and DNN-based methods (Sec. 2.2). In addition, other
related works of DNN-based methods for denoising but applied for other domains or imaging
modalities are discussed in Sec. 2.3.

2.1 Traditional Methods for Denoising DBT Projections
Reference 2 performed the noise filtering in the projections using Gaussian denoising algorithms
combined with the Anscombe transform,9 concluding that the transform improved the quality of
the image. Reference 3 analyzed the viability of two non-local algorithms to denoise DBT pro-
jections, finding that the method block matching and 3D collaborative filtering (BM3D)10 is more
effective than the non-local means (NLM).11

Reference 4 proposed a pipeline with five steps to apply any denoising technique to filter
additive white Gaussian noise in the projections: (1) remove the calibration, (2) variance stabi-
lization by using the generalized Anscombe transform to convert from Poisson–Gaussian noise to
a signal-independent Gaussian noise, (3) apply a denoising method suitable to Gaussian noise,
(4) apply the inverse of the generalized Anscombe transform to return to the original domain, and
(5) insert the calibration. After the last step, the filtered image is achieved. The authors showed
that the calibration step combined with the generalized Anscombe transform improved the result
of Gaussian denoising methods.

An extensive comparison of non-DNN denoising methods in DBT projections was made by
Ref. 12. For the noise considered as Poisson (i.e., the Anscombe transform was not applied), the
denoising methods used were: pointwise maximum a posteriori (MAP)13 and Poisson non-local
means (P-NLM).14 For the noise considered as Gaussian (i.e., Anscombe transform used), the
methods were non-local means (NLM), BM3D, pointwise Wiener filter (PWF),15 generalized
Wiener filter (GWF),16 isotropic Wiener filter (IWF),17 and separable Wiener filter (SWF).17

The best results were achieved by BM3D. The authors also compared the denoising applied
in different steps: (a) pre-reconstruction step (i.e., on projection domain), which is the focus
of this paper; (b) post-reconstruction step (i.e., on reconstructed image domain); (c) double filter-
ing (i.e., denoising in both pre- and post-reconstruction steps). The best result was achieved when
the noise filtering was performed only on projections.

2.2 DNN-Based Methods for Denoising DBT Projections
Recently, DNNs have been applied to denoise DBT projections, especially due to the limitation
that the traditional methods are attached to the noise model (i.e., non-blind filtering) and cannot
be applied when the noise is unknown.

The work of Liu et al.18 proposed a DNN-based method called neural network convolution
(NNC) to improve DBT projections in terms of noise and artifact reduction. They used a cadaver
phantom in which projections were acquired by a DBT system (Selenia Dimensions, Hologic,
Inc., Bedford, Massachusetts). For training the NNC, they used the projections acquired with
25% of protocol dose as noisy data and projections with 200% of protocol dose as ground truth,
expecting that the NNC learn how to map low-quality to high-quality projections. They evaluated
the NNC in terms of structural similarity index measure (SSIM),19 achieving the best results in
comparison with bilateral filtering, BM3D, and K-singular value decomposition (K-SVD).

Reference 20 proposed a DNN-based method trained with adversarial loss to denoise DBT
projections generated by OpenVCT,5 which is a software that generates DBT virtual clinical
trials. They used the generated virtual phantoms for training and physical phantoms for testing
and compared the proposed method with K-SVD21 and BM3D using the metrics peak signal-to-
noise ratio (PSNR)19 and HaarPSI. Although the proposed denoising approach reached the best
result using the HaarPSI metric, it achieved third place among the compared methods using the
PSNR metric. In general, the results show that simulated data (generated by virtual clinical trials
software) used as a training dataset has high potential, but lacks a greater quantity of comparison
methods.

Two previous works of ours investigated the use of DNN-based denoising methods.
Reference 22 focused on denoising DBT projections using convolutional neural networks
(CNNs) by training and testing on virtual DBT data generated by OpenVCT. In turn, the work
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of Ref. 7 extends the previous paper by presenting a benchmark of DNN-based denoising
approaches when the training and test datasets are composed of small patches from virtual
DBT projections. Both works showed that DNN-based methods achieved the best results in
comparison to traditional methods.

For summarizing and establishing the state-of-the-art methods for denoising DBT projec-
tions found in the literature, Tables 1 and 2 show the PSNR and SSIM19 of methods using virtual
phantoms and physical phantoms, respectively. These measures are widely used to evaluate
denoising approaches and are better explained in Sec. 3.4. The prefix AT+ means the Anscombe

Table 1 Comparison of denoising methods to filter projections of virtual
phantoms. Bold PSNR values indicate the highest values in each column.

Method Reference PSNR SSIM

AT + adaptive Wiener filter 2, 23 39.65 0.931

Adaptive Wiener filter 2, 23 35.65 0.828

DnCNN 7 33.93 0.86

WST 7 33.41 0.79

DnCNN10 7 31.75 0.88

CNN 7 30.46 0.78

AT+PWF 12 29.91 0.51

AT+SWF 12 29.80 0.50

AT+IWF 12 29.79 0.50

AT+GWF 12 29.64 0.51

BM3D 7 29.49 0.79

NLM 7 29.07 0.76

AT+BM3D 12 28.68 0.40

MAP 12 27.89 0.41

Autoencoder 7 27.72 0.78

AT+NLM 12 26.94 0.27

DnCNN 22 26.92 0.70

P-NLM 12 26.83 0.26

CGAN 7 26.19 0.71

BM3D 22 25.93 0.62

NLM 22 24.98 0.50

WST 22 24.96 0.56

K-SVD 7 23.56 0.77

Wiener filter 7 21.84 0.75

Wiener filter 22 21.70 0.57

DIP 7 21.0 0.80

K-SVD 20 20.16 —

GAN 20 18.91 —

BM3D 20 18.44 —

MLP 7 7.31 0.09
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transform was applied before the denoising method and the inverse of the Anscombe tranform
was applied after it. Note that the dataset and methodology used in each paper (row) are different,
meaning that this is the reason for the PSNR and SSIM obtained by some papers being higher
than others.

Observing the references in Table 1, the works of Refs. 2 and 23 used 18 virtual phantoms,
in which each phantom has 15 projections generated by the system GE DBT (Senographe DS,
General Electric Healthcare, Chalfront St. Giles, United Kingdom), totaling 270 projections. The
work of Ref. 12 used the software OpenVCT5 to generate 15 virtual phantoms with 15 projec-
tions each, totaling 225 projections. Reference 20 used 30 virtual phantoms with 25 projections
each, generated by the OpenVCT, totaling 750 projections. References 22 and 7 also used
OpenVCT to generate 100 exams with 15 projections each. There is an evident difficulty in
directly comparing each work due to the difference in the methodology and datasets. Nevertheless,
we can note the high performance of the Wiener filter and its variations.

Observing Table 2, Refs. 3, 6, and 12 used an anthropomorphic phantom prototyped by
CIRS, Inc. (Reston, Virginia), and the acquisition of projections was made by the DBT Selenia
Dimensions scanner, Hologic, Bedford, Massachusetts. Reference 18 used a cadaver phantom
and a DBT Selenia Dimensions scanner, Hologic, Bedford, Massachusetts, to acquire the pro-
jections. To the test, they used 10 clinic cases at the DBT system of the University of Iowa. In
Table 2, we can note the BM3D applied after the Anscombe transform achieved the best results in
terms of PSNR, followed by the variations of Wiener filter on the Anscombe domain. In addition,
the highest SSIM of 0.97 was achieved by the method NNC, which is a DNN-based approach.

2.3 Other Related DNN-Based Works for Denoising
Other works also evaluated the training of DNN-based denoising methods using simulated data,
but not for DBT projections. For instance, Ref. 24 proposed a training procedure using two data-
sets for denoising DBT reconstructed images: (i) the first composed by an anthropomorphic

Table 2 Comparison of denoising methods to filter pre-reconstruction images
(on the projection domain) of physical phantoms. The references in the last four
lines did not calculate PSNR and SSIM values. Bold PSNR values indicate the
highest values in each column.

Method Reference PSNR SSIM

AT+BM3D 12 30.58 0.36

AT+PWF 12 30.11 0.40

AT+IWF 12 30.08 0.39

AT+SWF 12 30.03 0.39

AT+GWF 12 29.54 0.40

MAP 12 28.83 0.36

AT+NLM 12 28.41 0.26

P-NLM 12 28.25 0.24

NNC 18 — 0.97

K-SVD 18 — 0.94

BM3D 18 — 0.93

Bilateral filter 18 — 0.91

NLM 3 — —

BM3D 3 — —

Calibration+AT+BM3D 4 — —

AT+RF3D 6 — —
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breast model generated by VICTRE project25 and virtually scanned by an x-ray imaging
simulation tool, developed by GE Global Research, named Computer Assisted Tomography
SIMulator2 (CatSim);26 (ii) a physical phantom made with tissue-mimicking materials to sim-
ulate a real breast, imaged by a real DBT imaging system. The use of synthetic datasets made it
possible to obtain low dose (LD) images and high dose (HD) images. In the training, the DNN
received as input the LD images and expected as output a denoised image similar to the cor-
responding HD image. For training, they used a combination of mean squared error (MSE) and
adversarial loss functions between the DNN output and the corresponding HD image. All the
training was made using patches of the reconstructed breast image. The trained DNN model was
tested using real human subject DBT containing biopsy-proven invasive ductal carcinomas
(masses) and ductal carcinomas in situ (microcalcification clusters). The results showed that the
proposed training process using virtual and physical phantoms made the denoiser applicable to
denoise the real human subject DBT, with competitive results.

In Ref. 27, the authors of Ref. 24 used a DNN-based denoising method to evaluate the
influence of the target image quality in the DNN training. The datasets used were the same
of Ref. 24: (i) the training set was the digital breast phantoms and (ii) the test set was the physical
phantom. This work found competitive results in this cross domain evaluation and also found that
the DNN-based denoiser is heavely dependent of target image quality.

Other instance was Ref. 28 that used a dataset with real DBT data29 and artificial noise to
train a denoising model, in which presented good results at restoring the DBT reconstructed
images.

Finally, works that studied the training and evaluation of DNN-based denoising with syn-
thetically noise addition for other imaging modalities, e.g., magnetic reasonance. This is the case
of Ref. 30 that used a dataset composed of prostate mp-MRI real image data, acquired by two
different scanners. They proposed a DNN to improve the quality of MRI images. The model was
trained using the images with Gaussian and Rician noise added, whereas the test data were the
original data without noise. The denoising method achieved competitive results.

3 Materials and Methods
This section presents the approach of this work and the main resources used. In Sec. 3.1, the
data used in the experiments are described. In Sec. 3.2, the denoising methods used in the experi-
ments are explained. In Sec. 3.3, the tools, programming languages, and frameworks used to
generate the results are detailed. Finally, in Sec. 3.4, the methodology and experimental setup
are detailed.

3.1 Data
The projection datasets (Sec. 3.1.1) are the source of our experiments. To train the DNNs, we
processed the projections (images), splitting them into patches (Sec. 3.1.2). Furthermore,
Sec. 3.1.3 presents the regions with microcalcifications used in the experiments for a qualitative
evaluation.

3.1.1 Image datasets

This work used three image sources to perform the experiments, which are described below:

• Berkeley segmentation dataset (BSD):31 contains 500 gray-scale images of a large variety,
such as natural images and images containing people, animals, and objects. This dataset is
out of the medical image domain, and it is not related to DBT projections, but in Sec. 4, the
reader will observe relevant results using these images. Artificial noise (such as Gaussian,
Poisson, and Poisson–Gaussian distribution) was synthesized on the original images to
generate noisy versions of them. The parameters used for the Gaussian noise were mean
μ ¼ 0 and standard deviation σ ¼ 0.1. On the Poisson–Gaussian noise, the Poisson noise
was applied before the Gaussian noise. Therefore, there are the noisy versions (original
image with simulated noise) and the ground truth (original image). Table 3 shows the
projection databases. Note that in the row related to BSD (second row) the columns
“realization” and “aquisition” are empty because it contains only general images.
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• Virtual DBT Dataset: Virtual DBT projections were generated using the software
OpenVCT,5 which provided the generation of realistic images simulating a variety of radi-
ation dose, noise, breast tissue density, breast lesions, number of projections, spacing
between projections, etc. Furthermore, this tool allows the reconstruction of the projections
resulting in the 3D virtual breast. In this study, OpenVCT was used to create the virtual
breasts and to simulate the DBT acquisition process (exam) of these breasts by a virtual
DBT scanner, generating versions of each projection with and without noise.

As done by Ref. 7, this work used seven virtual DBT datasets: (i) Alvarado, (ii) Benson,
(iii) Burke, (iv) Burnett, (v) Drake, (vi) Hurst, and (vii) Steele. All these virtual datasets follow
the Selenia Dimensions (Hologic Inc., Bedford, Massachusetts) architecture, acquiring 15 pro-
jections in an arc of 15-deg, following an equally spaced angular trajectory above the breast.
Each projection from each exam is a gray-scale image with 1792 × 2048 pixels as dimensions.
Table 3 shows these seven datasets (in lines 3–9). Alvarado is the only one that contains 100
realizations, meaning that there are 100 different virtual breast phantoms, each of them contain-
ing 15 projections with noisy and ground truth versions. The other virtual DBT datasets contain
only one virtual breast phantom, with 15 noisy and noise-free projections.

• Physical DBT Dataset: We used physical artificial phantoms with specific materials to sim-
ulate the human breasts generated by Ref. 3. Unlike the virtual DBT dataset, where the
samples and the acquisition are completely generated using software, here the object that
mimics the breast is scanned by a real DBTequipment. This approach allows us to carry out
experiments using the noise generated by a real DBT equipment. However, because just
one physical phantom was used, the low variety of the internal breast structure is a limi-
tation. In this dataset, the phantom was scanned 16 times with a protocol dose by Selenia
Dimensions (Hologic Inc., Bedford, Massachusetts) equipment. The dimension of each
projection is 2048 × 1664 px.

To perform the experiments, the phantom was also scanned using lower doses (85% and
50%) from the protocol radiation dose (100%), commonly used in real exams, resulting in three
dataset variations. The phantom was scanned five times for 85% and five times for 50% from the
protocol radiation dose. Table 4 presents the radiation exposure (in uAs) and the entry dose
(in mGy) for the scanning. Figure 1 presents a patch from the three first projections from each
variation (50%, 85%, and 100% dosis) and the ground truth. Lines 9 to 12 of Table 3 show four
datasets. Note that 85% and 50% have five realizations, which means there are five different
scans from the same object. The ground truth is the result of the mean of 11 of the 16 realizations
acquired with protocol radiation dose (100%), representing the noiseless realization of the object.

Table 3 Number of realizations and acquisition type in each dataset.

Name Realizations Acquisition type

BSD — —

Alvarado 100 Virtual

Benson 1 Virtual

Burke 1 Virtual

Burnett 1 Virtual

Drake 1 Virtual

Hurst 1 Virtual

Steele 1 Virtual

100% 5 Real

85% 5 Real

50% 5 Real
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This will be used as the target in the test phase for all experiments described in the remaining of
this work. The five remaining realizations were used as samples (input for DNN) in some experi-
ments in the training phase. Note that the images used to construct the ground truth and the
images used as training samples in the 100% dataset were different. The images used to construct
the ground truth were never used as a training set.

The target patches of physical dataset used to calculate and backpropagate the error back to
the DNN were extracted from the ground truth in both training and test phases. However, in the
training phase, the patches were extracted from a different region than in the test phase. Thus,
even though the targets in the training and test phases come from the same ground truth, they are
different images for the DNN.

3.1.2 Patch datasets

As seen in the previous section, the projections are large images and would require a huge com-
putational capability to train DNN models with a large sample size. Therefore, 52 × 52 px

patches were extracted for each image. For images in the virtual and physical DBT projection
datasets, we extracted patches from the central breast region. From a single DBT projection, we
extracted 200 patches, creating the patch datasets shown in Table 5, where we trained all the
DNN models. The column “image dataset” indicates the dataset used to create the corresponding
patch dataset.

The virtual patch dataset (row 5 in Table 5) is an aggregation of all seven virtual DBT
datasets shown in Table 3, including Alvarado, where the patches were shuffled and selected
randomly. This division was made to analyze if only Alvarado would be able to improve the
results, because it has 100 virtual breast models, whereas the other ones have only one model.

Table 4 Radiation exposition and the entry dose for the physical
DBT dataset.

Name Exposition (uAs) Dose (mGy)

100% 60,000 5.62

85% 51,000 4.79

50% 30,000 2.81

Fig. 1 A patch from the first three projections from each physical DBT dataset variation and ground
truth. Each path has 52 × 52 px.
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To explore the influence of mixed datasets in the experiments, mixed-physical means the
partitions 50%, 80%, and 100% of the protocol radiation dose of the physical DBT dataset were
mixed in the same proportion (33.33%), shuffled, and randomly selected. Finally, mixed-dataset
was built as a mix between the physical DBT dataset and the virtual DBT dataset, in which
sample patches were collected randomly.

3.1.3 Regions of interest

We extracted regions with microcalcifications from the physical DBT projection dataset since
these regions have lower contrast in noisier projections. From the 15 projections, we extracted
two regions of interest of 300 × 300 pixels, as shown in Fig. 2, showing the region of interest
(ROI) for the first projection of an exam. In this figure, the red ROI will be referenced as ROI 1
and the yellow as ROI 2.

Table 5 Patch datasets used to train the deep learning models, with the number of patches and
the projection dataset where the patches were extracted.

Patch dataset Training set size Image dataset

Gaussian 20,000 BSD (with Gaussian noise)

Poisson 20,000 BSD (with Poisson noise)

Poisson–Gaussian 20,000 BSD (with Poisson–Gaussian noise)

Alvarado 20,000 Virtual DBT dataset

Virtual 19,200 Virtual DBT dataset

Mixed-dataset 19,200 Physical and virtual DBT datasets

Mixed-physical 19,200 Physical DBT dataset

50% 19,200 Physical DBT (50% from protocol radiation dose)

Fig. 2 Regions of interest from a breast region with some microcalcifications. This breast region
was extracted from the first projection of one example with 85% of the protocol radiation dose in
the physical DBT dataset.
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3.2 Methods
In this work, several methods for DBT denoising were used for comparison, as specified in
Secs. 3.2.1 and 3.2.2 for non-trainable and trainable denoising methods, respectively.

3.2.1 Non-trainable denoising methods

These denoising methods are already available to be applied directly to filter the noisy image,
with the drawback that they are not blind methods (except DIP), meaning that they need extra
parameters to estimate the noise. The methods used in this work are BM3D,10 NLM,32 K-SVD,21

wavelet soft-thresholding (WST),33 PWF,15 and deep image prior (DIP).34 Although the DIP is
based on a neural network, it does not need to be trained, which is why it is placed in this
category.

These methods were chosen due to the reasons explained as follows. BM3D was chosen
because it is compared as a benchmark in almost all the related works. NLM and Wiener are
justified because of the experiments of Ref. 12. K-SVD is an efficient sparse method used as a
benchmark on Ref. 20 and WST is a simpler sparse method.

About the implementation details, K-SVD was executed with k ¼ 11, patch size ¼ 5 × 5,
and 15 iterations. NLM was executed with patch size ¼ 7 × 7, search area size ¼ 11 × 11, and
h ¼ 0.1. DIP was tested using 100 iterations.

3.2.2 Trainable denoising methods

These denoising methods need to be trained in a dataset before being applied to filter the noisy
image, with the advantage of blind methods. The methods used in this work are denoising CNN
(DnCNN)8 with 19 layers, DnCNN with 10 layers (DnCNN10), CNN with five layers, CGAN,35

autoencoder,36 and multilayer perceptron with five layers (MLP).37,38

These trainable methods were chosen due to the reasons explained as follows. DnCNN was
applied to denoise DBT projections on Refs. 7 and 22 achieving good results. Autoencoder was
applied because it usually reaches good results in denoising task. GAN is used because Ref. 20
proposes a GAN for denoising DBT projections. Since we do not have the source code of
the proposed method in Ref. 20, a general GAN was used with sigmoid cross-entropy as cost
function. Likewise, we used CNN because Ref. 18 proposes to use a CNN to denoise DBT
projections. The MLP was also compared since its the simpler feedforward neural network.

About implementation details, they were trained in the 52 × 52 px patches from the patch
datasets (as described in Sec. 3.1.2). In addition, the images in both training and test phases are
normalized linearly to interval [0, 1] and the implementation hyperparameters are described in
Table 6. A validation set was not used in any experiment shown in this paper, and training was
stopped at epoch 40 without early stopping technique.

3.3 Tools
All experiments were developed mostly in the programming language Python, using the machine
learning libraries Numpy,39 SciPy,40 Scikit Image,41 TensorFlow,42 PyTorch,43 Keras, and others.

Table 6 Hyperparameters of the neural networks applied in this work.

Network model Layers Learning rate Optimizer Cost function Batch size

MLP 5 0.001 Adam MSE 128

CNN 5 0.001 Adam MSE 128

DnCNN 19 0.0001 Adam MSE 128

DnCNN10 10 0.0001 Adam MSE 128

Autoencoder 10 0.001 Adam MSE 128

CGAN 14 0.0001 Adam SCE 256
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The source code is freely available to the research community (Code available in a Github reposi-
tory: https://github.com/darlannakamura/masters-degree).

3.4 Methodology and Experimental Setup
The experiments were divided into four parts: (1) comparing different training datasets
(Sec. 3.4.1), (2) comparing cost functions for training DNN-based denoising models (Sec. 3.4.2),
(3) dataset visualization (Sec. 3.4.3), and (4) visualization of ROIs (Sec. 3.4.4). All the results are
analyzed in terms of SSIM19 and PSNR44 for quantitative results, and also in a visual way for
qualitative results. SSIM is used to evaluate the structural difference between two images (in our
case the denoised image and the ground truth) and is related to the human visual perception. The
latter is an objective metric frequently used to evaluate denoising algorithms. The methodology
used in each experiment is described below.

3.4.1 Comparing different training datasets

The goal of the experiments whose results are in Sec. 4.1 is to compare the influence of the
training datasets, including datasets of different domains (e.g., BSD, which is not related to medi-
cal images and virtual DBT dataset), assessing the results of reducing noise in the physical DBT
dataset. The models trained in the patch datasets named Gaussian, Poisson, Poisson–Gaussian,
and Alvarado are the same models trained by Ref. 7.

To test the trainable methods, the patches of 52 × 52 px were submitted to each denoising
method and the result patches were aggregated again, resulting in a 300 × 300 px image. It is
important to mention that the patches for the testing stage were extracted from the larger image
considering some overlapping among them. In fact, they are necessary because when we recon-
struct the patches to create the 300 × 300 px image, we need to overlap them together by an
aggregation algorithm. The aggregation algorithm used here is simple: we just apply the mean
of pixels in the place when two patches are overlapped. Note that the DBT tomographic
reconstruction was not performed, i.e., all experiments were realized in the projection domain.
Each denoising method was evaluated in terms of PSNR and SSIM, calculated only in the
300 × 300 px aggregated final image. Figure 3 shows this process.

In turn, to test the non-trainable methods, the filtering process was applied directly in the
300 × 300 px region, as shown in Fig. 4. Note that the test region was the 300 × 300 px region
instead of the individual 52 × 52 px patches, because the non-local methods (i.e., BM3D and

Fig. 3 Test pipeline of trainable DNN-based denoising methods.

Fig. 4 Test pipeline of non-trainable denoising methods.
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NLM) may be impaired due to the small area available since they naturally use the whole image
for the filtering process. Note also that in the test process of non-trainable methods (Fig. 4),
the noise standard deviation is estimated by the method proposed by Ref. 45. Both categories
(trainable and non-trainable methods) were tested on the physical DBT dataset (Sec. 3.1.1) using
the 300 × 300 px region.

Figure 5 shows 2 of the 15 regions used as tests from the physical DBT dataset. Each region
was extracted from one projection. As the physical DBT datasets were acquired from one physi-
cal phantom, varying the radiation dose, it is possible to have paired results as shown in Fig. 5.
The first row shows the first region and the second row the second region. Column 1 shows
the ground truth; columns 2 to 4 show versions of each patch acquired with 100%, 85%, and
50% of the protocol radiation dose. In the ground truth column, the SSIM value is 1.0 and the
PSNR is inf because this is the ideal image. In the other columns, where the images contain noise,
comparing the PSNR and SSIM with the ground truth, we can note that the images in the last
column have more noise and inferior results for PSNR and SSIM values.

3.4.2 Cost functions comparison

In turn, the goal of the experiments whose results are in Sec. 4.2 aims to compare different cost
functions in the training phase of the denoising methods DnCNN, DnCNN10, CNN, and
Autoencoder. The cost functions used were: (1) mean absolute error (MAE),46 2) MSE,19

(3) SSIM, and (4) mutiscale SSIM (MS-SSIM).47 More details of these cost functions can
be found in Appendix A.

The combination of these cost functions was also tested by simply adding them to
create another one. The combinations, represented by the symbol +, are: (1) MAE+MSE,
(2) SSIM+MAE, (3) SSIM+MSE, (4) MS-SSIM+SSIM, (5) MS-SSIM+MAE, and (6) MS-
SSIM+MSE. The training was performed using 500,000 patches from the Alvarado dataset.
This test aims to verify if there exists one or a combination of two cost functions that can improve
the DBT projection denoising.

3.4.3 Exploration of datasets using data visualization technique

The goal of this experiment is to visualize the sample spaces of noise from the training set of
datasets Alvarado, physical dataset (50%, 85%, 100% of the protocol radiation dose), Gaussian,
Poisson, and Poisson–Gaussian through the dimensionality reduction method t-distributed
stochastic neighbor embedding (t-SNE),48 which enable us to compare the noise distribution in
a spatial manner.

For each dataset, patches were selected and the noise data were obtained by subtracting the
ground truth patch from the noisy patch, defining d-dimensional points in sample space of noise,

Fig. 5 Some instances of patches from physical DBT dataset. The first column is the ground truth
and the other columns show the images acquired with different radiation doses (100%, 85%, and
50% from the protocol dose radiation) in the physical DBT dataset.
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where d is the patch size. The t-SNE was executed using two components, perplexity 40 and 800
iterations to reduce the point dimensions from d to only 2, enabling a visualization in a two-
dimensional (2-D) cartesian plane. The results of this experiment are found in Sec. 4.3.

3.4.4 Analysis of regions of interest

The last experiment aims to apply the tested denoising methods in some special patches, focusing
on assessing visually the methods in microcalcification regions, whose selected patches and
denoising results are in Sec. 4.4. This section will present the RoI with breast lesions, and the
capability of methods to preserve the details.

4 Results
The results section is organized as follows. Section 4.1 will discuss the comparison results of
the denoising methods: trainable or non-trainable methods. Section 4.2 will present the results
with different cost functions. Section 4.3 will describe an exploration using a data visualization
technique. Section 4.4 will analyze the results qualitatively.

4.1 Comparing Different Training Datasets
Considering the trainable denoising methods, it was selected just three models to present their
results here: DnCNN, DnCNN10 and CNN as shown by Ref. 7, which were the methods capable
of producing satisfactory results. These models were trained by Ref. 7, meaning that each dataset
represents the training set used to train the model.

To summarize these results, Fig. 6 shows the mean value of PSNR and SSIM reached by
DnCNN, DnCNN10, and CNN for each training dataset. Note that, in this Fig. 6, the methods
were tested in the 50% of the protocol radiation dose dataset from Physical DBT Dataset
(Sec. 3.1.1). The samples in the training phase are different from the test phase. More details
and results can be seen in Appendix B, which contains all results for each (trainable and non-
trainable) denoising methods evaluated in this work,

Observing Fig. 6, the methods trained in Poisson, Gaussian, Poisson-Gaussian, and
Alvarado datasets have superior results compared to the others. In terms of SSIM, these four
datasets achieved a mean of 0.714, whereas the other datasets are below 0.586. In terms of
PSNR, the first datasets achieved mean values above 27.56 dB, and the other achieved mean
values below 23.87 dB.

The models trained in synthetic BSD and virtual DBT datasets reached better results than the
models trained on the dataset with DBT physical exams. In other words, we found that models
trained on the dataset different from the medical image domain with synthetic noise were able to
reach better quantitative results than the models trained on the same dataset domain of the target
domain (in this case physical DBT dataset) as the test set.

Fig. 6 Mean of (a) SSIM and (b) PSNR for the models DnCNN, DnCNN10, and CNN, trained in
different datasets.
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4.2 Cost Functions Comparison
This section summarizes the results of using different cost functions used during the training step
of some trainable denoising methods. Table 7 shows the mean and standard deviation of PSNR
and SSIM of the methods DnCNN, DnCNN10, CNN, and Autoencoder, trained on the samples
of 100% of the protocol radiation dose in Physical DBT Dataset and tested in the ground truth.

Observing the Table 7, the cost function that achieved the best results in terms of SSIM is
SSIM+MSE (0.745). However, the cost function MSSSIM+MSE presented the best PSNR value
(27.66 dB). On the other hand, the MSSSIM+MAE cost function presented a better balance
between PSNR and SSIM, with an SSIM difference of just 0.004 from the best cost function
in terms of SSIM and a PSNR difference of just 0.23 dB from the best cost function in terms
of PSNR.

In turn, Table 8 shows the mean and standard deviation of PSNR and SSIM of the methods
DnCNN, DnCNN10, CNN, and Autoencoder trained on the samples of 85% of the protocol
radiation dose in Physical DBT Dataset and tested in the ground truth.

Table 7 Mean and standard deviation of SSIM and PSNR for the DnCNN, DnCNN10, CNN, and
autoencoder trained on the samples of 100% of the protocolar radiation dose in physical dataset.
The values are ordered in descending order by SSIM.

Ranking Cost function SSIM PSNR (dB)

1 SSIM+MSE 0.745 ± 0.06 25.95 ± 3.73

2 MSSSIM+MAE 0.741 ± 0.07 27.43 ± 3.94

3 SSIM+MAE 0.740 ± 0.06 26.59 ± 3.54

4 MSSSIM+SSIM 0.739 ± 0.06 23.66 ± 3.90

5 MSSSIM+MSE 0.737 ± 0.08 27.66 ± 4.81

6 MSSSIM 0.733 ± 0.07 24.56 ± 7.22

7 MAE 0.733 ± 0.07 26.41 ± 3.46

8 MSE 0.732 ± 0.07 25.49 ± 2.86

9 MAE+MSE 0.700 ± 0.07 22.28 ± 6.21

10 SSIM 0.681 ± 0.11 20.57 ± 8.12

Table 8 SSIM and PSNR mean and standard deviation for the DnCNN, DnCNN10, CNN, and
autoencoder trained on the samples of 85% of the protocol radiation dose in physical DBT dataset.
The values are ordered in descending order by SSIM.

Ranking Cost function SSIM PSNR (dB)

1 SSIM+MSE 0.742 ± 0.05 26.18 ± 3.90

2 MSSSIM+MAE 0.739 ± 0.06 27.58 ± 3.74

3 SSIM+MAE 0.738 ± 0.06 26.81 ± 3.46

4 MSSSIM+SSIM 0.737 ± 0.06 23.96 ± 4.16

5 MSSSIM+MSE 0.734 ± 0.07 27.36 ± 4.28

6 MAE 0.731 ± 0.07 26.70 ± 3.42

7 MSE 0.731 ± 0.07 25.86 ± 2.90

8 MSSSIM 0.731 ± 0.07 24.86 ± 7.19

9 MAE+MSE 0.705 ± 0.07 22.82 ± 5.88

10 SSIM 0.680 ± 0.10 20.54 ± 7.91
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Analyzing the Table 8, as before, the cost function SSIM+MSE achieved the best result in
terms of SSIM (0.742), whereas the cost function MSSSIM+MAE presented the best PSNR
value (27.58 dB), being the one that achieved the better balance between both metrics, with
an SSIM difference of just 0.003 from the SSIM+MSE.

Regarding noisier DBT data, Table 9 shows the mean and standard deviation of PSNR and
SSIM of the methods DnCNN, DnCNN10, CNN, and Autoencoder trained on the samples of
50% of the protocol radiation dose in Physical DBT Dataset and tested in the ground truth.

Analyzing the Table 9, the cost function SSIM+MSE achieved the best value in terms of
SSIM (0.724), similar to previous cases. The cost function MSSSIM+MAE presented the best
value in terms of PSNR (27.68 dB) and the better balance in terms of both measures, staying just
0.002 of SSIM behind the SSIM+MSE.

Independently of the dataset (100%, 85% or 50% of the protocol radiation dose), the same
three cost functions achieved the best results in terms of SSIM and PSNR were SSIM+MSE,
MSSSIM+MAE, and SSIM+MAE. In this way, the MSSSIM+MAE is the cost function with a
better balance between both metrics, reaching the highest PSNR and a close SSIM to the high-
est one.

Observe that in the Tables 7, 8, and 9 when the cost function MSE is used alone, poor results
are generated. This happens because the MSE takes into account only the difference between
pixels, ignoring the structural differences between images. On the other hand, when the cost
function SSIM is used alone, we can observe that the poorest results are generated. This happens
because SSIM will consider only the luminance, contrast, and structure, ignoring the pixel-to-
pixel relation, which makes the model insensitive to big changes in the pixel intensity. Alone,
these two cost functions are poorly ranked in the former tables, but when used together, the MSE
calculates the quadratic difference between pixels and therefore solves the pixel-to-pixel problem
that occurs in SSIM. Thus, as can be seen in the former tables, the cost function SSIM+MSE
achieved the best values in terms of SSIM. A similar procedure occurs with the MS-SSIM.

In Tables 11, 12 and 13 in Appendix B, there are the complete results comparing all methods
with all cost functions used, regarding the partitions of the Physical DBT Dataset with 100%,
85% and 50% of the protocol radiation dose, respectively.

4.3 Exploration of Dataset using Data Visualization Technique
According to the results from Sec. 4.1, where the models trained on synthetic and virtual DBT
datasets reached the best results, we proposed a visual exploration to understand the noise from
these datasets. In this way, consider the noise points extracted as explained in Sec. 3.4.3. Then,

Table 9 SSIM and PSNR mean and standard deviation for the DnCNN, DnCNN10, CNN, and
autoencoder trained on the samples of 50% of the protocol radiation dose in physical DBT dataset.
The values are ordered in descending order by SSIM.

Ranking Cost function SSIM PSNR (dB)

1 SSIM+MSE 0.724 ± 0.04 26.23 ± 3.50

2 MSSSIM+MAE 0.722 ± 0.05 27.68 ± 3.65

3 SSIM+MAE 0.721 ± 0.05 26.87 ± 3.27

4 MSSSIM+SSIM 0.720 ± 0.05 24.05 ± 4.13

5 MSE 0.717 ± 0.06 26.31 ± 3.14

6 MSSSIM+MSE 0.717 ± 0.06 27.17 ± 3.91

7 MSSSIM 0.714 ± 0.06 24.97 ± 6.58

8 MAE 0.713 ± 0.05 26.51 ± 3.11

9 MAE+MSE 0.709 ± 0.06 24.98 ± 3.28

10 SSIM 0.669 ± 0.09 20.56 ± 7.62
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with the noise points of all patches of different datasets, we applied the t-SNE method
(also described in Sec. 3.4.3) to generate the visualization shown in Fig. 7. So, each point in
the Figure represents the extracted 2-D noise point of each patch of a specific dataset.

The datasets shown in Fig. 7 were selected because they achieved the best result in experi-
ments from Sec. 4.1. Analyzing Fig. 7, it is possible to note that the points for partitions con-
taining 50% and 85% (yellow and green points, respectively) of the protocol radiation dose in
the physical DBT dataset are far from each other, whereas the points for Poisson (pink points),
Gaussian (blue points), and the 100% (light-green points) of the protocol radiation dose in physi-
cal DBT dataset are partially mixed. This can explain why the models presented poor results
when trained in the 50% of the protocol radiation dose in physical DBT dataset in Sec. 4.1
(Fig. 6), because the sample space of the training dataset is very different from the test dataset.
Furthermore, the datasets Poisson-Gaussian, Poisson, and Alvarado are very mixed with the
100% (target sample space) of the protocol radiation dose dataset and may explain the good
results in Fig. 6.

4.4 Analysis of Regions of Interest
This section describes and discusses qualitatively the denoising methods’ performance over an
ROI extracted from the examples in the physical DBT dataset. These regions were manually
selected since they are low-contrast regions with microcalcifications, one kind of lesion looked
for by radiologists in breast cancer diagnosis, being a good test to evaluate the denoising algo-
rithms under real conditions.

Please note that the purpose of this work is to improve the noise of real medical images using
images with simulated noise as a training set. The focus is not on enhancing lesion detectability.
However, in the examples presented in this section, we use ROIs with lesions to compare the
noise in the original image with the denoised image. It should be noted that no conclusions can be
made regarding the improvement of the lesion detectability rate using denoising methods. This
may be a topic for future research using a dedicated experimental configuration tailored for this
aim, in which images or patches are exhibited to a medical specialist who is unaware of the
denoising approach. The specialist would be directed to identify any anomalies, and the iden-
tification performance could be assessed and compared among the different methods. Another
approach that could be employed is to utilize a pretrained method for lesion detection to identify
lesions in both the noisy and denoised images, and subsequently evaluate if there is any improve-
ment in detection performance when using the denoised images.

Figure 8 shows the denoising results for the methods DnCNN, DnCNN10, CNN,
Autoencoder, K-SVD, BM3D, PWF, CNN, CGAN, NLM, and DIP applied over the ROI 1,
using the same region of the same projection in one example with 85% of the protocol radiation
dose in physical DBT dataset. The denoising methods DnCNN, DnCNN10, CNN, and autoen-
coder were trained using the best cost functions in terms of SSIM. In Fig. 8, it can be perceived
that the trainable methods DnCNN and DnCNN10 better preserved the breast structure and the
smaller microcalcification at the right, whereas K-SVD and PWF keep too much noise. The CNN

Fig. 7 Noise visualization of the datasets using t-SNE.
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and CGAN showed an image with better contrast, whereas the methods NLM, autoencoder, and
DIP do not provide good images. In turn, Fig. 9 shows the ROI 2 over the same projection in one
example with 85% of the protocol radiation dose in the physical DBT dataset. Using the denois-
ing method BM3D, the microcalcification is not clear, but using the methods CNN, DnCNN, and
DnCNN10 it is possible to distinguish it. Using the methods CGAN, autoencoder, NLM, and
DIP, the resulting image was not good and using the methods K-SVD and PWF the resulting
image remained noisy.

Figures 10 and 11 show the results for the same two ROIs over the same region but now on
the example with 50% of the protocol radiation dose in physical DBT dataset, in which has
more noise. In these figures, no methods were able to maintain the contrast in the smaller
microcalcification at the right to be sufficiently visible in Fig. 11. This shows that if a real

Fig. 8 The results from ROI 1 in one example with 85% of the protocol radiation dose in physical
DBT dataset.

Fig. 9 The results from ROI 2 in one example with 85% of the protocol radiation dose in physical
DBT dataset.

Fig. 10 Results for ROI 1 at one example with 50% of the protocol radiation dose in physical DBT
dataset.
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exam was made using these denoising methods, using half of the protocol radiation dose, it may
exist some microcalcification that the professional can not observe. Therefore, this case is not
recommended.

Thus, taking into account the performance of DnCNN and DnCNN10 in the qualitative
analysis, these denoising methods displayed better results than the non-trainable methods for
preserving breast structure and enhancing the microcalcifications, especially compared with
BM3D in the ROIs presented before, even performing better quantitatively, as one can see in
Table 10 in row 2. This table shows the mean results of SSIM and PSNR taking into account
only the ROI 1 and ROI 2 in examples with 100% and 85% of the protocol radiation dose in
physical DBT dataset, where the methods BM3D and K-SVD achieved the best results. The first
achieved a mean value of SSIM of 0.038 and PSNR of 1.80 dB greater than DnCNN.

5 Discussion and Conclusions
In this work, we evaluated five traditional methods and six DNN-based methods for denoising
DBT projections. Through the results, we concluded that neural networks trained on synthetic
data could beat the others trained in real physical DBT data.

Table 10 Quantitative results of each denoising method over ROIs, using the
metrics SSIM and PSNR (ordered descending by SSIM). Results consider
examples with 100% and 85% of the protocol radiation dose in the physical
DBT dataset. Bold PSNR values indicate the highest values in each column.

Ranking Method SSIM PSNR

1 BM3D 0.439 19.90

2 KSVD 0.406 19.12

3 DnCNN 0.401 18.10

4 CNN 0.396 17.78

5 PWF 0.392 18.36

6 DnCNN10 0.392 18.41

7 CGAN 0.387 16.63

8 Entry 0.294 16.66

9 NLM 0.270 12.90

10 Autoencoder 0.252 12.27

11 DIP 0.115 10.34

Fig. 11 Results for ROI 2 at one example with 50% of the protocolar radiation dose in physical
DBT dataset.
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As well, the results from the models trained on synthetic datasets and virtual DBT datasets
were similar, highlighting the capability of blind denoising neural networks to learn the noise
distribution from the training data.

By visualizing the sample spaces of noise points of training and target datasets, we can
conclude that the essential condition to perform well using a synthetic data as training dataset
for denoising DBT projections is that the training dataset must be generated by using a noise
model from the same sample space of the target noisy image. This finding is especially important
because the medical images lack real data acquired in different conditions to be able to train
DNN-based denoising models because it is inappropriate to perform multiple exams with differ-
ent radiation doses from real patients, due to excessive radiation exposure.

Regarding the comparison between traditional methods and DNN-based methods, BM3D
achieved the highest values of SSIM in test data, whereas DnCNN with a combination of cost
functions performed better qualitatively, keeping the breast structure and improving the contrast
in microcalcification regions, making the microcalcification more visible, reducing the chance of
misleading and consequently a bad diagnosis (false negatives).

Finally, future works include: (a) a study of the distribution of the noise extracted in each
epoch of training in trainable methods; (b) a simulation of different noise levels in OpenVCT data
by improving the noise model embedded in this software; (c) investigation of noise spaces in
synthetic training and test sets varying the noise level; (d) evaluation of DnCNN method using
synthetic data for training in other contexts, noise distributions, and imaging systems (e.g.,
remote sensing data, ultrasound, magnetic resonance); (e) depth investigation if the DNN pro-
posed methods would generate artifacts that can affect the diagnosis.

6 Appendix A
This section presents the equations of the cost functions used in the experiments. Consider the
following variables for these cost funcions: the ground truth image y, the predicted (filtered)
image ŷ obtained by a trainable DNN-based denoising technique, and M × N image size.

6.1 Absolute Squared Error (MAE)

EQ-TARGET;temp:intralink-;e001;117;381MAEðy; ŷÞ ¼ 1

MN

XM

i¼1

XN

j¼1

jyi;j − ŷi;jÞj: (1)

6.2 Mean Squared Error (MAE)

EQ-TARGET;temp:intralink-;e002;117;316MSEðy; ŷÞ ¼ 1

MN

XM

i¼1

XN

j¼1

ðyi;j − ŷi;jÞ2: (2)

6.3 SSIM

EQ-TARGET;temp:intralink-;e003;117;252CSSIMðy; ŷÞ ¼ 1

MN

XM

i¼1

XN

j¼1

ð1 − SSIMðyi;j; ŷi;jÞÞ: (3)

The SSIM(.) in the equation is the Structural Similarity Index Measure.19 This entire equa-
tion is used only when the DNN is trained.

6.4 Multi-Scale SSIM (MS-SSIM)

EQ-TARGET;temp:intralink-;e004;117;160MS‐SSIMðy; ŷÞ ¼ 1 −MS‐SSIMðy; ŷÞ; (4)

being MS-SSIM

EQ-TARGET;temp:intralink-;e005;117;123MS‐SSIMðy; ŷÞ ¼ ½lðyM; ŷMÞ�:
YM

i¼1

½cðyi; ŷiÞ�½sðyi; ŷiÞ�; (5)

where ½lðyM; ŷMÞ� is a sub-sampling operator, ½cðyi; ŷiÞ� is the contrast operator, and ½sðyi; ŷiÞ� is
the structure operator. More details can be found in Ref. 47.
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7 Appendix B
This section shows all individual quantitative results obtained for each denoising method evalu-
ated in this work.

In Tables 11–13, we can found the individual denoising results for the first experiment (com-
parision of trainable and non-trainable denoising methods) tested on physical DBT dataset with
100%, 85%, and 50% of the protocol radiation dose, respectively, which was summarized for
each training dataset in Sec. 4.1.

In turn, Table 14 shows individual denoising results for the second experiment (comparison
of cost functions of DnCNN) evaluated on the physical DBT dataset, which was summarized for
each cost function in Sec. 4.2.

Table 11 Results from DNN-based denoising methods training in different datasets and tested on
the physical DBT dataset with 100% of the protocol radiation dose using the 300 × 300 px region
(on projection domain). Bold PSNR values indicate the highest values in each column.

Position Method Training dataset SSIM PSNR (dB)

1 DnCNN10 Alvarado 0.772 30.84

2 CNN Poisson–Gaussian 0.768 28.33

3 CNN Gaussian 0.766 27.60

4 CNN Poisson 0.766 27.90

5 DnCNN10 Poisson–Gaussian 0.754 29.35

6 DnCNN10 Poisson 0.753 28.94

7 DnCNN10 Gaussian 0.749 28.56

8 CGAN Virtual 0.734 25.30

9 DnCNN Poisson–Gaussian 0.730 29.77

10 DnCNN Poisson 0.728 29.38

11 DnCNN Alvarado 0.725 29.81

12 CGAN Mixed-dataset 0.724 21.31

13 DnCNN Gaussian 0.722 29.13

14 CNN Alvarado 0.709 24.07

15 CGAN Gaussian 0.707 18.16

16 CGAN Poisson–Gaussian 0.705 18.13

17 CGAN 50% 0.688 21.51

18 CGAN Poisson 0.671 17.33

19 DnCNN10 Virtual 0.657 25.84

20 CNN Virtual 0.635 22.79

21 Autoencoder Poisson–Gaussian 0.631 19.87

22 Autoencoder Gaussian 0.63 19.03

23 Autoencoder Poisson 0.629 18.73

24 Autoencoder Alvarado 0.627 22.57

25 Autoencoder Virtual 0.624 22.85

26 CNN 50% 0.571 20.43

27 DnCNN10 50% 0.565 25.55

28 DnCNN Virtual 0.557 24.58

29 CNN Mixed-dataset 0.548 18.04

30 CNN Mixed-physical 0.518 14.13
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Table 11 (Continued).

Position Method Training dataset SSIM PSNR (dB)

31 DnCNN 50% 0.516 24.04

32 Autoencoder 50% 0.503 16.44

33 Autoencoder Mixed-dataset 0.486 11.48

34 Autoencoder Mixed-physical 0.472 10.59

35 DnCNN Mixed-physical 0.467 16.98

36 DnCNN Mixed-dataset 0.466 17.89

37 DnCNN10 Mixed-dataset 0.414 16.75

38 DnCNN10 Mixed-physical 0.403 17.14

39 MLP 50% 0.346 17.18

40 MLP Poisson–Gaussian 0.299 15.23

41 MLP Virtual 0.299 15.56

42 MLP Gaussian 0.295 13.76

43 MLP Mixed-dataset 0.212 13.47

44 MLP Alvarado 0.195 12.58

45 MLP Mixed-physical 0.187 13.07

46 CGAN Mixed-physical 0.151 10.45

47 MLP Poisson 0.101 8.19

48 CGAN Alvarado 0.078 9.42

Table 12 Results from DNN-based denoising methods training in different datasets and tested on
the physical DBT dataset with 85% of the protocol radiation dose using the 300 × 300 px region
(on projection domain). Bold PSNR values indicate the highest values in each column.

Position Method Training dataset SSIM PSNR (dB)

1 DnCNN10 Alvarado 0.766 30.55

2 CNN Poisson–Gaussian 0.763 27.73

3 CNN Poisson 0.761 27.4

4 CNN Gaussian 0.761 27.15

5 DnCNN10 Poisson–Gaussian 0.74 28.12

6 DnCNN10 Poisson 0.736 27.74

7 DnCNN10 Gaussian 0.732 27.34

8 CGAN Mixed-dataset 0.718 21.36

9 CNN Alvarado 0.71 24.37

10 DnCNN Poisson–Gaussian 0.709 28.66

11 DnCNN Alvarado 0.708 29.27

12 DnCNN Poisson 0.707 28.77

13 DnCNN Gaussian 0.701 28.39

14 CGAN Poisson–Gaussian 0.695 18.04

15 CGAN Gaussian 0.693 18.04

16 CGAN 50% 0.68 21.47

17 CGAN Poisson 0.658 17.19
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Table 12 (Continued).

Position Method Training dataset SSIM PSNR (dB)

18 CNN Virtual 0.637 22.98

19 Autoencoder Poisson–Gaussian 0.632 20.11

20 Autoencoder Gaussian 0.632 19.22

21 DnCNN10 Virtual 0.631 25.53

22 Autoencoder Poisson 0.631 18.9

23 Autoencoder Alvarado 0.628 22.54

24 Autoencoder Virtual 0.626 22.98

25 CNN 50% 0.577 20.86

26 CNN Mixed-dataset 0.548 17.91

27 DnCNN10 50% 0.543 24.61

28 DnCNN Virtual 0.528 24.12

29 CNN Mixed-physical 0.516 14.0

30 Autoencoder 50% 0.512 17.12

31 DnCNN 50% 0.491 23.32

32 Autoencoder Mixed-dataset 0.486 11.39

33 Autoencoder Mixed-physical 0.472 10.54

34 DnCNN Mixed-physical 0.45 16.95

35 DnCNN Mixed-dataset 0.446 17.69

36 DnCNN10 Mixed-dataset 0.395 16.7

37 DnCNN10 Mixed-physical 0.386 17.04

38 MLP 50% 0.295 15.65

39 MLP Virtual 0.283 15.41

40 MLP Poisson–Gaussian 0.281 14.95

41 MLP Gaussian 0.277 13.54

42 MLP Mixed-dataset 0.198 13.34

43 MLP Alvarado 0.182 12.48

44 MLP Mixed-physical 0.172 12.95

45 MLP Poisson 0.095 8.09

Table 13 Results from DNN-based denoising methods training in different datasets and tested on
the physical DBT dataset with 50% of the protocol radiation dose using the 300 × 300 px region
(on projection domain). Bold PSNR values indicate the highest values in each column.

Position Method Training dataset SSIM PSNR (dB)

1 DnCNN10 Alvarado 0.734 29.79

2 CNN Gaussian 0.727 27.69

3 CNN Poisson 0.726 27.97

4 CNN Poisson–Gaussian 0.726 28.23

5 CGAN Alvarado 0.713 26.12

6 CNN Alvarado 0.705 24.67

7 CGAN Mixed-dataset 0.69 21.69
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Table 13 (Continued).

Position Method Training dataset SSIM PSNR (dB)

8 CGAN Mixed-dataset 0.685 26.07

9 CGAN Mixed-physical 0.674 21.53

10 CGAN Virtual 0.673 25.72

11 DnCNN10 Poisson–Gaussian 0.648 26.71

12 DnCNN10 Poisson 0.639 26.38

13 CNN Virtual 0.637 23.11

14 CGAN Gaussian 0.637 19.04

15 Autoencoder Gaussian 0.635 20.82

16 Autoencoder Poisson 0.635 20.42

17 Autoencoder Poisson–Gaussian 0.634 21.66

18 DnCNN10 Gaussian 0.633 26.24

19 DnCNN Alvarado 0.63 26.83

20 Autoencoder Alvarado 0.626 22.33

21 Autoencoder Virtual 0.625 23.24

22 CGAN Poisson 0.611 18.31

23 DnCNN Poisson 0.605 26.06

24 DnCNN Poisson–Gaussian 0.605 26.03

25 DnCNN Gaussian 0.598 26.0

26 CNN 50% 0.576 20.81

27 CNN Mixed-dataset 0.547 17.95

28 DnCNN10 Virtual 0.534 23.19

29 CNN Mixed-physical 0.512 13.88

30 Autoencoder 50% 0.51 17.28

31 Autoencoder Mixed-dataset 0.488 11.49

32 Autoencoder Mixed-physical 0.473 10.62

33 DnCNN10 50% 0.449 22.61

34 DnCNN Virtual 0.426 21.88

35 DnCNN 50% 0.395 21.21

36 DnCNN Mixed-physical 0.389 17.03

37 DnCNN Mixed-dataset 0.378 18.18

38 DnCNN10 Mixed-dataset 0.341 16.87

39 DnCNN10 Mixed-physical 0.328 17.09

40 MLP 50% 0.239 14.36

41 MLP Virtual 0.227 14.2

42 MLP Poisson–Gaussian 0.219 14.83

43 MLP Gaussian 0.215 13.71

44 MLP Mixed-dataset 0.154 12.87

45 MLP Alvarado 0.141 11.96

46 MLP Mixed-physical 0.126 12.6

47 MLP Poisson 0.075 8.02
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Table 14 DnCNN trained with different cost functions and compared with the methods: BM3D,
K-SVD, PWF, NLM, DIP, and CGAN. Bold PSNR values indicate the highest values in each column.

Dataset Method Cost function SSIM PSNR (dB)

— Noisy image — 0.402 21.6

100 BM3D — 0.785 29.61

100 DnCNN MS-SSIM 0.781 30.68

100 DnCNN SSIM+MSE 0.779 28.41

100 DnCNN SSIM 0.779 29.64

100 DnCNN MS-SSIM+MAE 0.778 30.33

100 DnCNN MS-SSIM+SSIM 0.777 28.18

100 DnCNN SSIM+MAE 0.776 29.2

100 DnCNN MS-SSIM+MSE 0.776 30.92

100 DnCNN MAE 0.776 29.47

100 DnCNN MSE 0.768 27.09

100 CGAN — 0.727 21.57

100 K-SVD — 0.727 27.67

100 PWF — 0.72 26.42

100 DnCNN MAE+MSE 0.666 14.85

100 NLM — 0.665 23.76

100 DIP — 0.531 19.52

85 BM3D — 0.782 29.89

85 DnCNN MS-SSIM 0.776 30.86

85 DnCNN SSIM+MSE 0.775 29.28

85 DnCNN MS-SSIM+SSIM 0.772 28.24

85 DnCNN MS-SSIM+MAE 0.772 29.61

85 DnCNN SSIM 0.771 28.46

85 DnCNN SSIM+MAE 0.771 29.36

85 DnCNN MS-SSIM+MSE 0.77 30.03

85 DnCNN MAE 0.769 29.19

85 DnCNN MSE 0.765 26.94

85 CGAN — 0.737 22.58

85 K-SVD — 0.71 26.97

85 PWF — 0.704 25.57

85 DnCNN MAE+MSE 0.683 15.75

85 NLM — 0.665 23.9

85 DIP — 0.533 19.62

50 BM3D — 0.763 29.3

50 DnCNN SSIM+MSE 0.747 28.96

50 DnCNN MSE 0.747 28.35

50 DnCNN MS-SSIM+MAE 0.747 30.14

50 DnCNN MS-SSIM 0.746 29.56

50 DnCNN SSIM+MAE 0.745 29.16

50 DnCNN MS-SSIM+SSIM 0.744 27.28
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