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Background. Human immunodeficiency virus (HIV) pre-exposure prophylaxis (PrEP) is underutilized in the southern United 
States. Rapid identification of individuals vulnerable to diagnosis of HIV using electronic health record (EHR)-based tools may 
augment PrEP uptake in the region.

Methods. Using machine learning, we developed EHR-based models to predict incident HIV diagnosis as a surrogate for PrEP 
candidacy. We included patients from a southern medical system with encounters between October 2014 and August 2016, training 
the model to predict incident HIV diagnosis between September 2016 and August 2018. We obtained 74 EHR variables as potential 
predictors. We compared Extreme Gradient Boosting (XGBoost) versus least absolute shrinkage selection operator (LASSO) logistic 
regression models, and assessed performance, overall and among women, using area under the receiver operating characteristic 
curve (AUROC) and area under precision recall curve (AUPRC).

Results. Of 998 787 eligible patients, 162 had an incident HIV diagnosis, of whom 49 were women. The XGBoost model 
outperformed the LASSO model for the total cohort, achieving an AUROC of 0.89 and AUPRC of 0.01. The female-only cohort 
XGBoost model resulted in an AUROC of 0.78 and AUPRC of 0.00025. The most predictive variables for the overall cohort 
were race, sex, and male partner. The strongest positive predictors for the female-only cohort were history of pelvic 
inflammatory disease, drug use, and tobacco use.

Conclusions. Our machine-learning models were able to effectively predict incident HIV diagnoses including among women. 
This study establishes feasibility of using these models to identify persons most suitable for PrEP in the South.
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Human immunodeficiency virus (HIV) pre-exposure prophy-
laxis (PrEP) is highly effective at preventing HIV infections 
[1–4] yet is poorly utilized across the United States, where 
only approximately 1 in 4 eligible candidates are receiving 
PrEP [5]. Uptake is lowest in the South; despite accounting 
for 52% of new HIV infections annually, the region represented 
only 39% of PrEP users in 2021 and has the lowest rates of PrEP 
use by region [6]. In 2019, North Carolina had one of the high-
est rates of incident HIV with 1365 new infections [6], but only 

an estimated 17.5% of eligible adults were prescribed PrEP in 
the same year [7].

Among many factors associated with poor PrEP uptake in 
the South, an important barrier is the identification of individ-
uals most in need of PrEP. Updated Centers for Disease 
Control and Prevention (CDC) PrEP guidelines recommend 
discussing PrEP with all sexually active patients, which is an 
important first step in destigmatizing PrEP use. However, pro-
viders indicate challenges in identifying patients more likely to 
receive a diagnosis of HIV [8–10] with whom they could take a 
more intentional approach to offering PrEP. Additionally, pro-
viders may mistakenly believe they have few patients likely to 
benefit from PrEP [11, 12]. HIV risk prediction tools are avail-
able to facilitate identification of patients likely to benefit from 
PrEP, but these tools rely on behavioral data that are not con-
sistently documented during medical encounters and do not 
capture risk driven by structural factors [13–15]. Although 
data from medical encounters are limited by provider practices 
and systemic biases that may influence healthcare engagement, 
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automated electronic health record (EHR)-based models may 
mitigate some barriers to identification of patients likely to ben-
efit from PrEP. Furthermore, by removing the onus of risk fac-
tor identification and synthesis from the provider, EHR-based 
models have the potential to reduce prescriber biases in provid-
ing PrEP [16–18].

In recent years, predictive models using EHR data have been 
developed to detect persons who are likely to benefit from 
PrEP. Marcus et al and Krakower et al used logistic regression 
to develop models to predict incident HIV in 2 large healthcare 
systems in California and Massachusetts; such models outper-
formed earlier, simpler models [19, 20]. Although these newer 
models have improved predictive performance, the authors 
note limitations in predicting incident HIV in women, in 
part because of low HIV rates among women in the populations 
used for model derivation. It is critically important to improve 
systems for enhancing PrEP uptake in cisgender women, as re-
cent estimates show that only 7% of eligible women are pre-
scribed PrEP [21]. Additionally, recent models were 
developed outside of the South and may lack generalizability 
to this region with a significant unmet need for prevention ser-
vices. We present a predictive model for identifying persons 
likely to benefit from PrEP, developed from population-level 
data within a southern healthcare system that has higher HIV 
incidence among women relative to other regions.

METHODS

Study Setting

Model development and validation were conducted using ar-
chived clinical data at Duke University Health System 
(DUHS), an academic healthcare network in North Carolina. 
DUHS is the largest health system in the Raleigh-Durham met-
ropolitan area (population: 2.1 million) [22]. Data from the 
EHR were extracted using the Duke Institute for Health 
Innovation pipeline and subsequently verified via complete-
ness, conformance, and plausibility quality checks [23, 24]. 
This study was approved by the Duke University Institutional 
Review Board.

Data Set Development

We extracted EHR data from a cohort of DUHS patients who 
had at least 1 clinical encounter in any setting within DUHS 
during the “data gathering window” of October 2014 through 
August 2016 and another visit during the “prediction window” 
of September 2016 through August 2018. We also created a sep-
arate female-only data set using sex assigned at birth as recorded 
in the EHR. Persons using PrEP were included in the data set.

The outcome of interest was an incident positive HIV diag-
nosis, defined as an initial positive HIV antigen/antibody test or 
HIV RNA test during the prediction window. Individuals with-
out an HIV test or with only negative HIV tests during the 

prediction window were classified as not having HIV. We ex-
cluded patients with prior HIV diagnosis, including those 
with incident diagnosis during the 2014–2016 data gathering 
window. After the initial data extraction, 2 physicians 
independently adjudicated all incident HIV diagnoses through 
manual chart review. Individuals who were deemed to have 
false-positive HIV testing (eg, indeterminate Ag/Ab result 
with negative reflex testing) or those who had documentation 
of HIV diagnosis prior to 2016 by chart adjudication were 
classified as not having incident HIV during the prediction 
window. Discrepancies between reviewing physicians were 
discussed and resolved by study team consensus.

Candidate predictors were adapted from the 81 candidate 
covariates included in the Marcus model [19]; however, some 
of these covariates were not included due to missingness in 
the Duke clinical data archive. We additionally included diag-
nostic codes and laboratory results for conditions associated 
with HIV in women (eg, pelvic inflammatory disease, tricho-
moniasis, sexual abuse, and domestic abuse) to potentially im-
prove predictive performance for women [25–27]. Variables 
were chosen that were readily accessible within the DUHS 
EHR and likely standard within other EHR systems. 
Prevalence of HIV by zip code was provided by the North 
Carolina Department of Health and Human Services [28]. 
Neighborhood deprivation index was based on publicly avail-
able data [29, 30]. In sum, a total of 74 model features (all dis-
crete) were built using EHR data elements (Supplementary 
Table 1).

Missing values for diagnoses and medications were assumed 
absent and assigned a value of “0,” which is the equivalent of a 
“negative” result for the model. Missing values for laboratory 
test results, demographic and social variables were assigned a 
default value of “NA” (not available) rather than “0” because 
numerical grading would be inappropriate. The “NA” notation 
served as an indicator for missingness and thus allowed the al-
gorithm to gain signal from missingness itself.

Model Development

The model was developed on a random sample of 70% of en-
counters included in the cohort. The remaining 30% was with-
held for model validation. As above, all model features were 
based on data from the data gathering window, and the model 
generated predictions for incident HIV diagnosis during the 
prediction window. Modelling was performed using both least 
absolute shrinkage and selection operator (LASSO) logistic 
regression and gradient boosting (XGBoost Model) [31]. 
Gradient boosting is a well-established machine learning 
technique that combines many models based on a series of de-
cision trees together to create a final model, in what is known 
as ensemble learning [32]. XGBoost modeling has been shown 
to gain signal from missingness (or nonmissingness) without 
resorting to imputation techniques [33]. Gradient-boosting 
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models for the HIV PrEP dataset were developed using 
the Python programming language (Python Software 
Foundation).

Model Evaluation

Features from the data gathering window were used to predict 
incident HIV during the prediction window in the withheld 
30% sample. Model performance was assessed in the entire 
30% hold-out set. We evaluated outcome metrics by calculating 
the AUROC and the area under the precision recall curve 

(AUPRC) for a total patient and a female-only cohort and in-
cluded stratification of model performance by race. AUROC 
demonstrates the tradeoff between true positive and false pos-
itive rate at each probability, thus representing the probability 
that a randomly drawn HIV case was ranked as higher risk than 
a randomly drawn control case. AUPRC compares recall and 
positive predictive value (precision) and therefore correlates 
with increased sensitivity and decreased false negatives. 
AUPRC for a completely random test is equivalent to the inci-
dence of the outcome [34].

Individual variables were visually interpreted using Shapley 
Additive exPlanations (SHAP) [35]. The SHAP interpretations 
approximate the original complex model with a simpler linear 
explanation model using classic equations derived from coop-
erative game theory. Thus, a weighted average of all possible 
marginal differences of the model output can be derived by 
adding the presence of the examined feature to subsets of fea-
tures and the effect of each feature for each prediction can be 
calculated.

RESULTS

Of the 1 000 819 unique DUHS patients during the study peri-
od, 1826 were excluded because of an HIV diagnosis or positive 
HIV test prior to 2014, with an additional 206 patients excluded 
due to incident HIV diagnosis during the data gathering win-
dow (Supplementary Figure 1). The final cohort included 998 
787 unique patients. Characteristics are shown in Table 1.

From the initial data extraction, 162 patients had a first-time 
positive HIV antigen/antibody test or HIV RNA test during the 
2016–2018 prediction window, after exclusion of 700 patients 
for previous diagnosis and 46 for false positive testing. The 
model development (“training”) dataset included 117 individ-
uals with incident HIV diagnosis, of whom 37 were female, 
whereas the model evaluation (“testing”) data set included 45 
incident HIV diagnoses, of whom 12 were female. LASSO logis-
tic regression demonstrated an AUROC of 0.84 while XGBoost 
demonstrated an AUROC of 0.89. For a completely random 
test, baseline AUPRC is expected to be 0.00016 (incidence of 
HIV in this population). AUPRC was 0.024 for the LASSO lo-
gistic regression model and 0.013 for the XGBoost Model 
(Figure 1).

Model performance metrics for the XGBoost model devel-
oped on the total cohort were calculated for a range of risk 
threshold values (Table 2). Risk threshold is the probability 
of future HIV diagnosis for an individual above which the 
model flags as a positive result. As an example, a risk threshold 
of 0.5% flagged 794 patients in the validation data set who were 
likely to develop incident HIV and identified 14 of the 45 inci-
dent HIV cases (31.1% sensitivity). At the 0.5% threshold, the 
model had a positive predictive value (PPV) of 0.0176, negative 
predictive value (NPV) of 0.999, and number needed to 

Table 1. Model Development Data Set Characteristics (2014–2016)

Total Patients

Patients With 
Incident HIV 

Diagnosis

Time Frame 2014–2016 2016–2018

No. of patients 998 787 162

Sex

Female 557 233 55.79% 37 23%

Male 440 090 44.06% 125 77%

Average age in years (SD)

48 (23) 40.5 (14)

Race

Data available 938 240 93.94% 151 93.2%

White 589 649 62.85% 50 31%

Black 250 100 26.66% 94 58%

Asian 30 734 3.28% 0 0%

American Indian or Alaskan Native 5160 0.55% 0 0%

Hispanic 250 0.03% 0 0%

Native Hawaiian or other Pacific 
Islander

1219 0.13% 0 0%

2 or more races 39 868 4.25% 2 0.013%

Other 21 260 2.27% 5 0.033%

Ethnicity

Data available 918 780 91.99% 146 90%

Hispanic/Latino 50 991 5.11% 8 5%

Not Hispanic/Latino 867 789 86.88% 146 90%

Neighborhood area deprivation index quintile

Data available 884 393 88.55% 139 86%

0%–20% 70 533 7.06% 8 5%

20%–40% 197 462 19.77% 26 16%

40%–60% 304 180 30.45% 45 28%

60%–80% 132 665 13.28% 13 8%

80%–100% 179 553 17.98% 47 29%

Residency in county ranked by HIV prevalence

Data available 884 393 88.55% 150 93%

0%–60% 129 984 13.01% 14 9%

60%–80% 258 873 25.92% 15 9%

80%–100% 517 917 51.85% 121 75%

Area deprivation index by percentile

Data available 884 393 88.55% 150 93%

0%–20% 70 533 8% 14 9%

20%–40% 197 462 22% 15 10%

40%–60% 304 180 34% 121 81%

60%–80% 132 665 15% 0 0%

80%–100% 179 553 20% 0 0%

Abbreviations: HIV, human immunodeficiency virus; SD, standard deviation.
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evaluate (NNE) of 57. That is, if the model were used to prompt 
PrEP prescribing among patients above the 0.5% threshold, 57 
patients would need to be prescribed PrEP to prevent a single 
case of incident HIV.

For the female-only cohort, LASSO logistic regression dem-
onstrated an AUROC of 0.86 and XGBoost demonstrated an 
AUROC of 0.78. For a completely random model, AUPRC is 
expected to be 0.00007 (incidence of HIV among women in 
this population). AUPRC for our model was 0.00048 for the lo-
gistic regression model and 0.00025 for the XGBoost Model, re-
spectively. For the LASSO logistic regression model, at a 
threshold of 0.01%, flagging 19 594 women as likely to benefit 
from PrEP, 6 incident HIV diagnoses (50%) were identified 
out of 12 total. Similarly, model performance metrics for the 
XGBoost model developed on the female-only cohort were cal-
culated for a range of risk threshold values. At a threshold of 

0.01% the model had a PPV of 0.0003, NPV of 1.00, and an 
NNE of 3266. Among women, if the model were used indepen-
dently to identify PrEP candidates, 3266 women would need to 
be prescribed PrEP to prevent a single case of incident HIV.

When stratified by race, Black individuals in the total cohort 
had a LASSO logistic regression AUROC of 0.78 and AUPRC 
of 0.031, whereas White individuals had values of 0.91 and 
0.015, respectively. Using the XGBoost Model, the AUROC 
and AUPRC were 0.82 and 0.016 for Black individuals and 0.89 
and 0.011 for White individuals. When separated into a 
female-only cohort, a LASSO logistic regression demonstrated 
an AUROC of 0.79 and AUPRC of 0.00057 for Black women 
and 0.91 and 0.001 for White women, respectively. The XGBoost 
model for the female-only cohort resulted in an AUROC and 
AUPRC of 0.74 and 0.00038 for Black women and 0.84 and 
0.0002 for White women respectively (Supplementary Table 2).

Figure 1. Model characteristics total cohort. No skill indicates how an untrained model making random choices would appear. A, AUROC—total cohort. B, AUPRC—total 
cohort. C, AUROC—female only cohort. Abbreviations: AUC, area under the curve; AUPRC, area under precision recall characteristic curve; AUROC, area under the receiver 
operating characteristic curve; ROC, receiver operating characteristic.
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We determined the variables most predictive of HIV acqui-
sition based on coefficients for the LASSO logistic regression 
model and the individual SHAP values for the XGBoost model. 
For the logistic regression model (Supplementary Figure 2), the 
most positive predictors for the total cohort were sex, male sex-
ual partner, history of domestic or sexual abuse, and history of 
drug use. The most negative predictors were female partner, 
number of positive tests for urine toxicology, and older age. 
The most positive predictors for the female-only cohort were 
history of pelvic inflammatory disease, history of drug use, 
and history of tobacco use, and the most negative predictors 
were number of positive urine toxicology tests, older age, and 
number of positive hepatitis C tests.

Using the XGBoost model for the total cohort, race, sex, and 
having a male sexual partner were the most important variables 
(ie, removing these variables resulted in the largest decrease in 
model performance). For the total cohort, sex, having a male 
sexual partner and history of drug use were the most impactful 
variables (ie, coefficient magnitude was highest). For the 
female-only cohort, the most important variables were race, to-
bacco use and zip code. These variables were also the most im-
pactful (Figure 2).

DISCUSSION

Our machine-learning model was able to effectively identify in-
dividuals with incident HIV diagnoses in a large southern aca-
demic health system. Our models had similar AUROCs as 
previously reported models, and we expanded on them by re-
porting values for female-only populations and by race. We 
used similar variables to the Marcus model [19, 20] and devel-
oped both a LASSO logistic regression algorithm and a gradient 
boosting model (XGBoost), which is extensively utilized in 
clinical decision support software and can outperform logistic 

regression [36, 37]. Indeed, we found improved model perfor-
mance for gradient boosting compared with LASSO logistic re-
gression for the total cohort, as expected given its additional 
computational robustness. Conversely, the LASSO model out-
performed the XGBoost model for the female-only cohort. 
When identifying rare outcomes, as seen when identifying in-
cident HIV in women, there is concern for overfitting when 
more complex models are used to assess the data [38, 39]; 
thus, use of simpler models may have better predictive value. 
The differences in our model results were small, however, sug-
gesting that ease of curation and use might be the most impor-
tant factors to consider for population impact.

The XGBoost model also notably performed well in Black 
patients, a population with disproportionate burden of infec-
tion whose vulnerability to HIV has previously been underesti-
mated by HIV risk prediction tools [40–43]. Still, model 
performance for Black patients was slightly lower than that of 
White patients. This may be partially due to bias such as sys-
tematic differences in care delivery patterns or data availability 
[44]. As gradient boosted models learn more complicated deci-
sion rules than LASSO, model performance may be impacted 
by elements of the majority group that are more informative 
for the overall learning task. Further efforts are needed to en-
sure predictive models are efficacious for all patient groups to 
further address the disparities that already exist in PrEP pre-
scribing, especially among Black women and Black and 
Latino MSM [45]. The improvement in the predictive ability 
of some of our models highlights the importance of iterative 
model building and shows promise for our ability to create 
more accurate and useful risk prediction models in the future.

Our analysis provided insight on differences between general 
population and female-only models. The most predictive vari-
ables for HIV risk were similar between these cohorts, although 
the female-only cohort depended more heavily on tobacco use 

Table 2. Risk Thresholds of XGBoost Model

Risk 
Threshold

Positive 
Predictive Value Sensitivity Specificity

Negative 
Predictive Value

True 
Negatives

False 
Positives

False 
Negatives

True 
Positives

Number Needed 
to Evaluate

Total patient cohort

10% 0.0000 0.0000 1.0000 0.9998 299 583 9 45 0 NA

5% 0.0339 0.0444 0.9998 0.9999 299 535 57 43 2 30

1% 0.0277 0.2667 0.9986 0.9999 299 171 421 33 12 36

0.5% 0.0176 0.3111 0.9974 0.9999 298 812 780 31 14 57

0.1% 0.0038 0.4889 0.9807 0.9999 293 797 5795 23 22 264

0.05% 0.0022 0.6222 0.9575 0.9999 286 853 12 739 17 28 456

0.01% 0.0005 0.8000 0.7726 1.0000 231 466 68 126 9 36 1893

0.005% 0.0003 0.9333 0.5395 1.0000 161 623 137 969 3 42 3286

Female cohort

0.05% NA 0.0000 1.0000 0.9999 167 518 0 12 0 NA

0.01% 0.0003 0.5000 0.8828 1.0000 147 570 19 588 6 6 3266

0.005% 0.0001 0.7500 0.6058 1.0000 101 264 65 894 3 9 7323

0.004% 0.0001 0.9167 0.4530 1.0000 75 728 91 430 1 11 8313

Abbreviation: NA, not available.
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and zip code of residence for the XGBoost Model and history of 
pelvic inflammatory disease in the LASSO model. Using our 
augmented feature set, we improved predictive accuracy 
among women. Women have had disproportionately low up-
take of PrEP [21], and further efforts are needed to prompt dis-
cussions with women most likely to benefit. We believe that 
with further study—particularly in larger cohorts and with nov-
el EHR data, such as social determinants of health—we can fur-
ther improve predictive models for women.

One potential concern about using computer modeling to 
assess HIV risk is perception of models by patients and provid-
ers, including possible sensitivities about the use of EHR-based 
sexual health data [46]. Potential patients have mixed opinions, 
acknowledging that receipt of a “high” risk score may be useful 
and prompt risk-reduction strategies, but also citing possible 
feelings of fear, anxiety, and mistrust [47]. In focus group dis-
cussions, primary care providers felt that a predictive model 
could facilitate discussions between patients and providers; 
however, there were also concerns about confidentiality [48]. 
Offering providers a “fact sheet” about prediction models has 
the potential to aid in acceptability and clinical utility [49] 
(Supplementary Table 3). Furthermore, pre-implementation 
work is critical to ensure that algorithm use is acceptable and 
useful to providers and patients [50]. If such models are to be 
successful, they must be implemented in a culturally sensitive 
manner and with stakeholder engagement.

A strength of our model is the refined sample of incident 
HIV diagnoses used as outcomes, carefully adjudicated by chart 
review by 2 experienced physicians to obtain the most optimal 
surrogate for PrEP candidacy. However, it is possible that pa-
tients were missed. Similarly, rates of incident HIV were low 

both among our total cohort and in women, limiting the num-
ber of patients available for model training. Our study time-
frame may limit model performance for individuals seen for 
shorter durations within our health system. Additionally, sex 
was based on sex at birth as we did not have information on 
gender. It is also unclear why the number of positive tests for 
urine toxicology and positive hepatitis C tests were negative 
predictors for HIV risk; the association is likely confounded 
and merits further study, but we hypothesize that these may 
be markers for contact with the healthcare system or, in the 
case of positive toxicology, indicate use of chronic prescribed 
narcotics rather than illicit drugs. Finally, we did not externally 
validate our models, instead focusing on validation locally to fa-
cilitate future use within local population health programs.

Our EHR-based risk prediction model successfully identified 
people with incident HIV diagnoses within a large southern 
healthcare system and has improved accuracy in predicting 
HIV vulnerability among women compared to prior models. 
Future studies will aim to expand this work to larger popula-
tions in the South and further improve model performance, 
particularly among women. Additionally, further pre- 
implementation studies are needed to identify strategies to in-
tegrate such EHR-based models into clinical workflows. With a 
better understanding of how to optimally implement these 
models in real-world settings, these interventions are likely to 
be scalable, particularly in high-incidence jurisdictions as de-
lineated by the federal Ending the HIV Epidemic initiative [51].

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 

Figure 2. Shapley additive exPlanations from XGBoost Model. The SHAP interpretations approximate the original complex model with a simpler linear explanation model 
using classic equations derived from cooperative game theory. Variables in gray represent missing values which are still utilized in model development. A, Total cohort. B, 
Female-only cohort. Abbreviations: HIV, human immunodeficiency virus; PID, pelvic inflammatory disease; PTSD, post-traumatic stress disorder.
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materials are not copyedited and are the sole responsibility of the authors, 
so questions or comments should be addressed to the corresponding 
author.
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