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Recurrence is the major death cause of differentiated thyroid carcinoma (DTC), and a better understanding of recurrence risk at
early stage may lead to make the optimal medical decision to improve patients’ prognosis. The 2015 American Thyroid
Association (ATA) risk stratification system primary based on clinic-pathologic features is the most commonly used to
describe the initial risk of persistent/recurrent disease. Besides, multiple prognostics models based on multigenes expression
profiles have been developed to predict the recurrence risk of DTC patients. Recent evidences indicated that aberrant DNA
methylation is involved in the initiation and progression of DTC and can be useful biomarkers for clinical diagnosis and
prognosis prediction of DTC. Therefore, there is a need for integrating gene methylation feature to assess the recurrence risk
of DTC. Gene methylation profile from The Cancer Genome Atlas (TCGA) was used to construct a recurrence risk model of
DTC by successively performed univariate Cox regression, LASSO regression, and multivariate Cox regression. Two Gene
Expression Omnibus (GEO) methylation cohorts of DTC were utilized to validate the predictive value of the methylation
profiles model as external cohort by receiver operating characteristic (ROC) curve and survival analysis. Besides, CCK-8,
colony-formation assay, transwell, and scratch-wound assay were used to investigate the biological significance of critical gene
in the model. In our study, we constructed and validated a prognostic signature based on methylation profiles of SPTA1,
APCS, and DAB2 and constructed a nomogram based on the methylation-related model, age, and AJCC_T stage that could
provide evidence for the long-term treatment and management of DTC patients. Besides, in vitro experiments showed that
DAB2 inhibited proliferation, colony-formation, and migration of BCPAP cells and the gene set enrichment analysis and
immune infiltration analysis showed that DAB2 may promote antitumor immunity in DTC. In conclusion, promoter
hypermethylation and loss expression of DAB2 in DTC may be a biomarker of unfavorable prognosis and poor response to
immune therapy.
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1. Introduction

Thyroid cancer has been the fifth most common cancer
expected to be diagnosed in female and is the most common
endocrine cancer according to the global cancer statistics
2020 [1]. Differentiated thyroid carcinoma (DTC) is the
most common thyroid cancer, accounting for more than
90% of cases [1]. Although the long-term prognosis is favor-
able in the majority of patients with DTC, especially in the
most popular subtype of papillary thyroid cancer (PTC),
up to 30% patients experience recurrent disease after initial
therapy [2, 3]. Accurate assessment of the recurrence risk
would be conducive to the clinical decision making, so as
to reduce the recurrence rate and improve the quality of life
for DTC patients [4]. The 2015 American Thyroid Associa-
tion (ATA) risk stratification system, mainly based on the
pathological characteristics such as tumor size, lymph node
metastasis, and genetic feature such as BRAFV600E muta-
tion, is the most commonly used to describe the initial risk
of persistent/recurrent disease [5]. The response to therapy
further integrates the real-time biochemical and imaging
results, which is helpful for the dynamic monitoring of
recurrence. Of note, over the recent decades, the transcrip-
tional profiles and clinical prognosis information of tumor
samples integrated by The Cancer Genome Atlas (TCGA)
are beneficial for researchers to construct gene signatures
for diagnosis and predicting the prognosis of patients with
cancer [6–11]. However, these currently used gene signa-
tures that solely dependent on data from TCGA cohort are
not integrated to the risk stratification system and still lim-
ited to predict the recurrence risk early and accurately of
patients with PTC.

DNA methylation is involved in transcriptional regula-
tion and genome stability [12], and aberrant DNA methyl-
ation can lead to the development of many types of cancer
[13, 14], also including PTC [15]. Moreover, DNA methyl-
ation signatures can be used as biomarkers for clinical
diagnosis and prognosis prediction of cancer [16]. For
instance, Langdon et al. identified a panel of DNA methyl-
ation biomarkers for early diagnosis of renal cell carci-
noma. Besides, DNA methylation of SPEG located at
Chr2:220325443-220326041 could potentially regulate oro-
pharyngeal cancer survival [17]. Shen et al. reported that
hypermethylation of SSTR2 promoter could be used to
predict prognosis of laryngeal squamous cell carcinoma
in males [18]. The methylation profiles of GSTP1, HIC1,
and RASSF1A were associated with the recurrence of blad-
der cancer [19]. Accumulating studies have reported that
aberrant DNA methylation can be useful biomarkers for
clinical diagnosis of DTC. For example, Wei et al. reported
that hypermethylation of both PTEN and DAPK is capa-
ble of discriminating malignant thyroid tissues from
benign lesions [20]. Besides, a panel of 3 DNA methyla-
tion biomarkers discriminated thyroid cancers from
benign thyroid lesions was identified by Park et al. [21].
Several studies have reported aberrant DNA methylation
of tumor suppressor genes was associated with tumor
aggressiveness in PTC [22, 23]. However, a panel of gene
methylation profiles for predicting the recurrence of DTC

is still lacking. Hence, developing and validating a signa-
ture based on methylation profiles is of important clinical
significance.

In our study, we established and validated a panel of
methylation profiles of SPTA1, APCS, and DAB2 for predict-
ing the recurrence risk of DTC patients with data from
TCGA. The significant effectiveness of our methylation-
related panel in predicting recurrence of DTC patients was
validated by GSE51090 and GSE97466 cohorts. According
to previous literatures [24], promoter hypermethylation of
DAB2 associated with the loss expression of DAB2 in many
types of human cancers, such as nasopharyngeal carcinoma
[25], breast cancer [26], and esophageal squamous cell carci-
nomas [27].

Our study first reported that DAB2 was hypermethyla-
tion and low expressed in DTC samples and associated with
proliferation, survival, and migration of DTC cells.

2. Materials and Methods

2.1. Data Acquisition. The methylation profiles, transcrip-
tional profiles, and clinical information of TCGA-THCA
were downloaded from TCGA website (https://portal.gdc
.cancer.gov/). The data of 58 normal thyroid tissues and
497 PTC patients with survival information were extracted
for our study (Table S1). Two external methylation cohorts
of DTC were downloaded from Gene Expression Omnibus
(GEO) website (https://www.ncbi.nlm.nih.gov/geo/). The
survival information of the 2 GEO cohorts (GSE51090,
GSE 97466) was extracted from previous articles (Tables S2
and S3) [28, 29]. For methylation profiles of genes, mean
values were taken for multiple probes with an identical
gene symbol. DTC patients with local recurrence or distant
metastasis or biochemical evidence of disease were
considered as recurrence DTC patients. Besides, GSE51090
cohorts and GSE97466 cohorts were integrated as an
independent GEO cohort for validating the results.
ComBat function was utilized to remove the batch effect
between GSE51090 cohorts and GSE97466 cohorts
(Figure S1).

2.2. Identified Differential Methylation Genes (DMGs)
Between DTC and Normal Thyroid Tissues. According to
the previous studies [30, 31], the R package “limma” [32]
was used to identify DMGs with jlog 2 fold changej > = 0:2,
jβtumor − βnormalj > 0:1, and false discovery rate ðFDRÞ
< 0:05.

2.3. Constructed and Validated a Model Based on
Methylation Profiles of 3 DMGs. The TCGA cohort was uti-
lized to construct a DMGs methylation profiles-related
recurrence risk model of DTC patients. Univariate Cox
regression, lasso regression, and stepwise multivariate Cox
regression were successively performed to identify DMGs
closely related to the recurrence of PTC with “survminer,”
“survival,” and “glmnet” package [33]. To validate the prog-
nostic prediction value of the model, receiver operating
characteristic (ROC) curve analysis and survival analysis
were performed by R software with “survivalROC” package
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[34], and data form both TCGA and GEO cohorts. The risk-
Score_me of 497 PTC patients were calculated as follows:

riskScoreme = 〠
n

i=1
coef ið Þbeta value ið Þ: ð1Þ

X-Title software was utilized to find the best cutoff risk-
Score_me which discriminate PTC patients with High Score
and Low Score.

2.4. Tumor Infiltrating Cells Analysis. ESTIMATE [35] and
xCell [36] (https://xcell.ucsf.edu/) analysis were performed
by R software according to the instruction in the website.

2.5. Public Online Database Analysis. The Gene Expression
Profiling Interactive Analysis (GEPIA) [37] database
(http://gepia.cancer-pku.cn/) was used to plot the mRNA
expression of DAB2, SPTA1, and APCS between PTC sam-
ples and normal thyroid tissues with data from TCGA and
GTEx. Metascape [38] database (https://metascape.org) was
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Figure 1: Constructed a recurrence risk model based on methylation profiles of 3 genes. (a) Venn diagrams of intersection genes. (b) The
heat map of DMGs’ methylation profiles between DTC and normal thyroid samples. (c) DMGs which had significant value for predicting
prognosis of DTC patients identified by the univariate Cox regression analysis. (d) LASSO coefficient-Log (λ) curve of 12 DMGs. (e)
Selecting the optimal log ðλÞ in LASSO model. (f) A recurrence risk model based on methylation profiles of 3 genes. ∗P < 0:05. DMGs:
differentially methylation genes.
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used to perform Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis.

2.6. Constructed and Validated a Nomogram Based on
Methylation Profiles and Clinical Parameters. RiskScore_
me and clinical parameters (AJCC_T, AJCC_N, AJCC_M,
stage, age, histological_type, and sex) of 497 PTC patients
were enrolled for further analysis. Univariate and stepwise
multivariate Cox regression analysis were performed to con-
struct a recurrence risk model combined riskScore_me, age,
and AJCC_T. To validate the prognostic prediction value of
the model, ROC curve analysis, predict function, calibration
curve, and survival analysis were performed by R software.
Finally, a nomogram based on methylation profiles, age,
and AJCC_T was established for predicting recurrence
probability of DTC patients by R software with “rms” [39]
and “foreign” package. Decision curve analysis (DCA) was
performed to compare the predicting value of our model
with other 2 previous models by R software with “ggDCA”
package [40].

2.7. GSEA Analysis. GSEA (Gene Set Enrichment Analysis)
[41, 42] was performed by R software with “clusterProfiler”
package. The KEGG pathways with P < 0:05 and FDR <
0:05 were considered as pathways that are significantly cor-
related with expression of DAB2 in PTC samples.

2.8. Human Thyroid Carcinoma Specimens. 34 thyroid carci-
noma specimens along with paired adjacent normal thyroid

specimens collected from Affiliated Hospital of Jining
Medical University was approved by the Ethics Committee
of Affiliated Hospital of Jining Medical University. The
approval number was 2021-08-C015. All participants pro-
vided written informed consent.

2.9. Immunohistochemistry. Immunohistochemistry (IHC)
staining for DAB2 (Proteintech, 10109-2-AP, 1 : 500) was
performed by standard protocol as described before [43].
IHC score of DAB2 was determined by multiplying the score
of staining intensity with the score of frequency of positive
staining cells. Staining intensity was defined as negative
(0), weak (1), moderate (2), and strong (3). Frequency of
positive cells was defined as less than 5% (0), 5%-25% (1),
26%-50% (2), 51%-75% (3), and more than 75% (4).

2.10. Cell Lines and Culture Conditions. Human thyroid can-
cer cell line BCPAP was acquired from ATCC and cultivated
in DMEM medium (Gibco) with 10% fetal bovine serum
(FBS) (Gibco) and 1% penicillin-streptomycin (Gibco), at
37°C with 5% CO2.

2.11. Plasmids and Lentivirus Production. DAB2 coding
sequence was cloned into the viral skeleton plasmid
PCDH-3 flag-tagged vector for stable expression in BCPAP
cells.

2.12. Western Blotting. Cell proteins were extracted by dena-
tured buffer and then quantified by pierce BCA protein assay
(Thermo Scientific). The protein lysate was separated on
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Figure 2: Validated the recurrence risk model based on methylation profiles of 3 genes in the internal cohort. (a) Time-dependent receiver
operating characteristic curves for predicting 1-year, 3-year, and 5-year recurrence free survival in the internal cohort. (b) Risk score
distribution of DTC patients in the Train cohort. (c) Survival status of DTC patients in the internal cohort. (d) Methylation profiles of 3
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SDS-PAGE, transferred to NC membranes (Millipore),
blocked, and then detected by primary antibody DAB2 (Pro-
teintech, 10109-2-AP, 1 : 2000) or β-Actin (Proteintech
20536-1-AP,1 : 2000) and HRP-conjugated secondary anti-
body (Sigma), followed by being exposed with enhanced
chemiluminescence (ECL).

2.13. Cell Growth Assay. Lentivirus infected stable BCPAP
cells were seeded into 96-well plates and cultured in 10%
FBS DMEM (2000 cells per well, five parallel wells). Then,
the cells were collected at different points in time, and cell
number in each well was counted by CCK-8 reagent. The
absorbance at 450nm of each well was measured to calculate
the cell proliferation.

2.14. Colony-Forming Assay. Lentivirus infected stable
BCPAP cells were seeded into 6-well plate at a density of
200 cells per well and cultured in DMEM with 10% FBS
for 3 weeks. Then, colonies per well were stained by 0.1%
crystal violet and counted by ImageJ software.

2.15. Transwell Assay. Lentivirus infected stable cells were
seeded in the upper chamber of transwell chamber (24-well,
8 μm pore, Corning) in 200μL of serum-free DMEM
(1 × 105 cells per well, 3 parallel wells) and 800μL of 10%
FBS DMEM was added to the lower chamber and incubated
for 36h at 37°C. After removing the cells at the upper surface

of the membrane, the cells passed through the filter were
successively fixed with 4% paraformaldehyde, stained with
0.1% crystal violet solution, and photographed by inverted
fluorescence microscope.

2.16. Scratch-Wound Assay. BAPCP cells were seeded in 6-
well plates and then incubated for 24 h to reach approxi-
mately 80% confluence. The cell monolayer was scratched
using a sterile 100μL pipette tip. Then, the cells were treated
with serum-free medium. The wounds were photographed
at 0 and 36 h, and migration distance of the cell was calcu-
lated by ImageJ (migratory ratio: 0-36 h width of wound/
0 h width of wound).

2.17. Statistical Analysis. Two-tailed t test was utilized to
analyze the difference between two groups. Log-rank test
was utilized for survival analysis.

3. Results

3.1. Constructed and Validated a Recurrence Risk Model of
DTC Based on Methylation Profiles of 3 DMGs. The methyl-
ation profiles of 10362 genes in the intersection of TCGA
and 2 GEO cohorts were extracted for our research
(Figure 1(a)). 61 DMGs were identified between DTC and
normal thyroid samples (Figure 1(b)). By performing uni-
variate Cox regression with data from TCGA cohort, DMGs
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Figure 3: Validated the recurrence risk model based on methylation profiles of 3 genes in the external cohort. (a) Time-dependent receiver
operating characteristic curves for predicting 1-year, 3-year, and 5-year recurrence free survival in the GSE51090 cohort. (b) Kaplan-Meier
survival curves for recurrence free survival in the GSE51090 cohort. (c) Time-dependent receiver operating characteristic curves for
predicting 1-year and 3-year recurrence free survival in the GSE97466 cohort. (d) Kaplan-Meier survival curves for recurrence free
survival in the GSE97466 cohort. (e) Time-dependent receiver operating characteristic curves for predicting 1-year, 3-year, and 5-year
recurrence free survival in the GEO cohort (GSE51090 combined with GSE97466). (f) Kaplan-Meier survival curves for recurrence free
survival in the GEO cohort. AUC: area under the curve.
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with P < 0:01 were selected for further analysis (Figure 1(c)).
Then by successively performing lasso regression
(Figures 1(d) and 1(e)) and stepwise multivariate regression
analysis, methylation profiles of SPTA1, APCS, and DAB2
were utilized to construct a recurrence risk mode of PTC
patients (Figure 1(f)). In the TCGA cohort, the area under
the ROC curve (AUC) of 1-year, 3-year, and 5-year recur-
rence free survival were 0.758, 0.618, and 0.691, respectively
(Figure 2(a)). The riskScore distribution, survival status of
PTC patients, and the methylation profiles heat map of 3
genes between Low Score and High Score PTC samples are
shown in Figures 2(b)–2(d). Kaplan-Meier result indicated

that PTC patients in Low Score group had longer recurrence
free survival (RFS) than those in High Score group
(Figure 2(e)). As external validated cohorts, the AUC of 1-
year, 3-year, and 5-year recurrence free survival were
0.575, 0.659, and 0.703 in the GES51090 cohort, respectively
(Figure 3(a)) and PTC patients in High Score group had
worse RFS than those in Low Score group (Figure 3(b)).
Similarity, the AUC of 1-year and 3-year recurrence free
survival were 0.596 and 0.714 (Figure 3(c)) and High Score
PTC patients had worse RFS (Figure 3(d)) in the
GES97466 cohort. Finally, the data of 2 GEO cohorts were
integrated as a single external validated GEO cohort for
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further analysis. The batch effects between GSE51090 and
GSE97466 were removed by “combat” function of R “sva”
package (Figure S1). The result showed that the AUC of 1-
year, 3-year, and 5-year recurrence free survival were
0.656, 0.724, and 0.762 (Figure 3(e)) and High Score PTC
patients had shorter RFS (Figure 3(f)) in the single GEO
cohort. Obviously, the results of validation were consistent
between internal and external cohorts.

3.2. Constructed a Nomogram of DTC Based on Methylation
Profiles of 3 Genes, Age, and AJCC_T. By performing univar-
iate Cox (Figure 4(a)), 3 clinical factors (age, AJCC_T, and
stage) (P < 0:05) were selected to experience stepwise multi-
variate Cox regression analysis with riskScore_me and a
recurrence risk model of DTC combing age, AJCC_T, and
risk_me was constructed (Figure 4(b)). The calibration curve
for 3-year and 5-year recurrence free survival shown a con-
sistency between predicted value of model and actual
observed value (Figures 4(c) and 4(d)). The AUC of 1-year,
3-year, and 5-year RFS were remarkably increased to 0.838,
0.734, and 0.775, respectively (Figure 4(e)). The Kaplan-
Meier analysis indicated that the DTC patients in Low Score
group had significantly longer RFS than those in High Score
group (Figure 4(f)). Finally, we constructed a nomogram
based on methylation-related recurrence risk model, age,
and AJCC_T for predicting RFS probability of DTC patients
(Figure 5).

3.3. Compared the Prognosis-Predicting and Clinical Value of
Our Model with 2 Previous Recurrence Risk Models. Two
previous recurrence risk models were reconstructed and
revalidated with our data from TCGA-THCA according to
the riskScore-calculating equations from the 2 previous arti-
cles. By ROC and survival analysis, we found that both He
et al.’s [44] and Zhang et al.’s [8] recurrence risk model

had good performance in predicting RFS of DTC patients
(Figures 6(a)–6(d)). However, by performing DCA, we
found that the model based on methylation profiles had out-
standing performance in predicting 5-year RFS of patients
with DTC. Of note, the nomogram which combined risk_
me, age, and AJCC_T would dramatically improve the
long-term treatment and management of DTC patients
(Figure 6(e)).

3.4. DAB2 Was Abnormally Expressed Between DTC Samples
and Normal Thyroid Tissues. For better understanding the
biological significance of genes in the model, GEPIA was uti-
lized to investigate the differences in mRNA expression
between DTC and normal thyroid tissues. Boxplot showed
that the mRNA expression of DAB2 was downregulated in
DTC samples compare to normal thyroid tissue (P < 0:05)
(Figure 7(a)) while the mRNA expressions of SPTA1 and
APCS (Figures 7(b) and 7(c)) were no significant difference
between cancer and para-cancer tissues. Then, we found that
DAB2 expression was lower in DTC tissues than that in nor-
mal thyroid tissues at the protein level by IHC staining for
DAB2 in our specimens (Figure 7(d)) and found that DTC
patients with high expression of DAB2 had a longer RFS
compare to that with low expression DAB2 (Figure 7(e)).

Overall, DAB2 associated with pathological feature and
prognosis of DTC patients.

3.5. DAB2 Overexpression Inhibited Proliferation, Colony-
Formation and Migration of BCPAP Cells. To explore
whether does DAB2 impacts DTC cells, we constructed
and validated a DAB2 stable expressed BCPAP cells in our
study (Figure 8(a) and Figure S2). In the results from
CCK8 assay, colony-formation assay demonstrated that
overexpression of DAB2 inhibited BCPAP cells proliferation
(Figure 8(b)) and colony-formation (Figure 8(c)). Besides,
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transwell assay (Figure 8(d)) and scratch-wound assay
(Figure 8(e)) showed that DAB2 inhibited the migratory
ability of BCPAP cells. For better understanding the
potential biological significance of DAB2 in the progress of
DTC, all 497 PTC patients were assigned into High DAB2
and Low DAB2 group based on the median mRNA
expression of DAB2 using data from TCGA. The differential
expression genes (DEGs) with FDR < 0:05 and jlog 2 fold
changej > = 1 between High DAB2 and Low DAB2 group
were identified with “limma” package (Figure S3A), and the
result of KEGG analysis using these DEGs as input showed
that DAB2 regulated the migration and proliferation of DTC
may through regulating signaling pathways such as Cell
adhesion molecules, NF-kappa B signaling pathway, ECM-
receptor interaction, and PI3K-Akt signaling pathway
(Figure S3B).

3.6. DAB2 may Promote Antitumor Immunity in PTC.
According to the result of KEGG analysis, DAB2may partic-
ipate in the T cell receptor signaling pathway (Figure S3B).
To further investigate the association between DAB2
expression and immune microenvironment in DTC, the
GSEA, ESTIMATE, and xCell analysis were performed. We
found that some antitumor immunity related pathways
were enriched in High DAB2 group, such as T cell receptor
signaling pathway, natural killer cell mediated cytotoxicity,
antigen processing and presentation, and B cell receptor
signaling pathway. (Figure 9(a)). Both the xCell and
ESTIMATE analysis showed that High DAB2 group had

higher abundance of immune infiltration score than Low
DAB2 group (Figures 9(b) and 9(c)). The cell type
infiltration abundance analysis showed that High DAB2
group had higher infiltration abundance of CD4+memory/
naïve T cells, CD8+T cells, B cells, and DC cells than Low
DAB2 group (Figure 9(d)). Moreover, we found that the
expression of DAB2 was positively correlated with the
expression of classical biomarker of immune cells in PTC
samples, such as CD3G (for T cells), MS4A1 (for B cells),
KLRD1 (for NK cells), and immune checkpoint PDL1
(Figures 9(e)–9(h)). Based on the above results, we inferred
that PTC patients with high expression of DAB2 would be
benefit from immune-based therapy.

4. Discussion

Although there have been some studies on the relationship
between abnormal DNA methylation and prognosis of
DTC patients [21]. No reliable model considering the
DNA methylation-driven gene signature to predict recur-
rence and metastasis risk accurately was reported before.
In our study, we constructed a recurrence risk model with
methylation profiles of SPTA1, APCS, and DAB2 by stepwise
multivariable Cox regression with data from TCGA. SPTA1,
which have been linked to hereditary elliptocytosis and
hereditary spherocytosis [45], were reported as a possible
tumor driver gene in prostate cancer [46] and papillary thy-
roid carcinoma [47]. APCS is a gene that codes serum amy-
loid P-component, which is one of the main acute-phase
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Figure 9: DAB2 expression associated with immune infiltration in DTC. (a) GSEA plot. (b) DTC patients with high DAB2 expression had
higher level of immune score by xCell than that with low DAB2 expression. (c) DTC patients with high DAB2 expression had higher level of
immune score by ESTIMATE than that with low DAB2 expression. (d) Immune cell types infiltration rates between DTC samples with high
DAB2 expression and DTC samples with low DAB2 expression. (e) DAB2 expression was positively correlated with CD3G expression in
DTC samples. (f) DAB2 expression was positively correlated with MS4A1 expression in DTC samples. (g) DAB2 expression was
positively correlated with KLRD1 expression in DTC samples. (h) DAB2 expression was positively correlated with PDL1 expression in
DTC samples. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001, ∗∗∗∗P < 0:0001.
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reactants and has reported to a biomarker for survival in
nonsmall cell lung cancer after thoracic radiotherapy [48].
Infrequent promoter hypermethylation of DAB2 have been
found to play a critical role in tumorigenesis and progression
according to previous studies [24, 26]. Of note, we developed
and validated a nomogram combined the methylation-
related model, age, and AJCC_T for predicting the recur-
rence probability of DTC, which has not been published
before to the best of our knowledge. DCA indicated that
our model showed more net benefit for 5-year RFS than
age, AJCC_T, He et al.’s, and Zhang et al.’s model, and when
we combined our model with clinical parameters, DTC
patients would gain the greatest benefit for 1-year, 3-year,
and 5-year RFS.

Analysis of the 3 genes in the model at the transcrip-
tional level showed that DAB2 is a methylation-driven gene
in DTC. The mRNA expression of DAB2 was downregulated
significantly in DTC compared to normal thyroid tissue.
However, SPTA1 and APCS both in DTC and normal thy-
roid tissues were in a state of hypermethylation and low
expressed. Therefore, the function of DAB2 was selected to
be further explored in the DTC progression. Numerous liter-
atures reported that DAB2 involved in the migration, inva-
sion, and proliferation of tumors [49–52]. However, the
roles of DAB2 in DTC have rarely been explored. In our
study, we found that DAB2 expression was lower in DTC tis-
sues than that in normal thyroid tissues at the protein level,
which was validated by tissue microarray staining for DAB2
in specimens collected from Affiliated Hospital of Jining
Medical University. Moreover, we found that overexpression
of DAB2 could inhibit proliferation and migration of
BAPCP cells in vitro experiments. Enrichment of pathways
using data from TCGA suggested that DAB2 was relevant
to some pathways that played various essential roles in the
tumor growth and aggressive phenotypes such as NF-
kappa B signaling pathway and PI3K-Akt signaling pathway.
Activation of NF-kappa B is reported in DTC and correlates
with tumor growth, drug-induced apoptosis [53, 54], and
aggressiveness of DTC [55]. The activation of PI3K-Akt sig-
naling pathway 395 also involves in the initiation and progres-
sion of thyroid cancer [56, 57]. Interestingly, we firstly focused
on the relationship between DAB2 expression and immune
microenvironment in DTC. Pervious study reported that, loss
ofDAB2 expression induced immune tolerance via accumula-
tion of TGF-β in breast cancer [58]. In our study, we found
that expression of DAB2 was correlated with immunoscore
in DTC samples and may be a biomarker for predicting the
response to immune therapy in patients with DTC.

Although we successfully developed and validated a
nomogram that may predict the recurrence of DTC patients,
there were still some limitations in this study. Firstly, our
external validating cohorts only included 115 DTC patients
that were not completely sufficient, moreover, due to the
insufficient clinical characteristics in the current study
cohorts, there is a need to build a better prognostic nomo-
gram from more centers with complete clinical information
and sequencing data. Secondly, further experimental verifi-
cation on molecular mechanism of DAB2 in DTC is required
to consolidate our results.

5. Conclusions

We successfully constructed and validated a nomogram
based on methylation profiles of 3 genes, age, and AJCC_T
for predicting recurrence probability of DTC patients.
Besides, we found that promoter hypermethylation and loss
expression of DAB2 may be a biomarker of unfavorable
prognosis and poor response to immune therapy in DTC.
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