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Multi-organ landscape of therapy-resistant 
melanoma

Sixue Liu1, Prashanthi Dharanipragada1,10, Shirley H. Lomeli    1,10, Yan Wang1,2,10, 
Xiao Zhang    1,10, Zhentao Yang1, Raymond J. Lim3, Camelia Dumitras3, 
Philip O. Scumpia    1,4,5, Steve M. Dubinett    2,3,4, Gatien Moriceau1, 
Douglas B. Johnson    6,7, Stergios J. Moschos8,9 & Roger S. Lo    1,2,4 

Metastasis and failure of present-day therapies represent the most common 
causes of mortality in patients with cutaneous melanoma. To identify the 
underlying genetic and transcriptomic landscapes, in this study we analyzed 
multi-organ metastases and tumor-adjacent tissues from 11 rapid autopsies 
after treatment with MAPK inhibitor (MAPKi) and/or immune checkpoint 
blockade (ICB) and death due to acquired resistance. Either treatment elicits 
shared genetic alterations that suggest immune-evasive, cross-therapy 
resistance mechanisms. Large, non-clustered deletions, inversions and 
inter-chromosomal translocations dominate rearrangements. Analyzing 
data from separate melanoma cohorts including 345 therapy-naive patients 
and 35 patients with patient-matched pre-treatment and post-acquired 
resistance tumor samples, we performed cross-cohort analyses to 
identify MAPKi and ICB as respective contributors to gene amplifications 
and deletions enriched in autopsy versus therapy-naive tumors. In the 
autopsy cohort, private/late mutations and structural variants display 
shifted mutational and rearrangement signatures, with MAPKi specifically 
selecting for signatures of defective homologous-recombination, mismatch 
and base-excision repair. Transcriptomic signatures and crosstalks with 
tumor-adjacent macroenvironments nominated organ-specific adaptive 
pathways. An immune-desert, CD8+-macrophage-biased archetype, T-cell 
exhaustion and type-2 immunity characterized the immune contexture. This 
multi-organ analysis of therapy-resistant melanoma presents preliminary 
insights with potential to improve therapeutic strategies.

Cutaneous melanoma (CM) exhibits a UV-related high mutational bur-
den1,2. Mutually exclusive BRAF and NRAS mutations drive MAPK addic-
tion in ~70% of metastatic CM3. CM genomes also harbor a high burden of 
structural variants (SVs)4 and chromothripsis5. Current knowledge of this 
mutational landscape is derived from tumors naive to highly active treat-
ments developed recently and inclusive of earlier-stage disease. How MAPK 
inhibitor (MAPKi)/immune checkpoint blockade (ICB) therapies alter the 
mutational landscape and, thereby, cause death remains largely unknown.

Metastases cause most cancer-related deaths6, and CM is among 
the most metastatic (>60% of autopsies with brain metastases)7,8. 
Despite experimental metastasis studies, the difficulty of accessing 
patient-derived metastatic tissues has limited understanding of clinical 
metastatic and organ-specific evolution. Although the concept of an 
organ-specific pre-metastatic niche has been demonstrated experi-
mentally9, little is known clinically regarding co-adaptations between 
metastases and their site-specific macroenvironments.
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mutations, a mean of 675 mutations per tumor (range, 24–2,669) cor-
responded to a TMB of 22.49 mutations per Mb (range, 0.8–88.97) 
(Supplementary Table 2). These TMBs are higher than or similar to 
previous estimates (Supplementary Table 7). We detected by Genomic 
Identification of Significant Targets In Cancer (GISTIC2.0) 48 signifi-
cantly amplified and 75 significantly deleted regions (Extended Data 
Fig. 2a and Supplementary Table 8). Amplified regions harbored BRAF 
(80% of tumors), ACTA1 (66%) and TERT (42%); deleted regions harbored 
IFN cluster genes and CDKN2A/B (51%), B2M and SPRED1 (45%), BRCA1 
(41%) and JAK2 and CD274 (35%) (Extended Data Fig. 2b). Tumors from 
six of six MAPKi-only and MAPKi+ICB cases harbored BRAF amplifica-
tion, whereas tumors from two of four ICB-only cases harbored BRAF 
amplification. Copy number loss of JAK2, previously associated with 
acquired ICB resistance21,22, was observed in MAPKi-only cases. The 
findings of mechanisms of acquired MAPKi resistance in tumors with 
acquired ICB resistance and vice versa suggest cross-resistant mecha-
nisms that converge on immune evasion.

To match RAM tumors, we selected TCGA–SKCM tumors driven 
by BRAF or NRAS mutations. By comparing RAM versus TCGA–SKCM 
copy number alteration (CNA) frequencies with Fisher’s exact test, 
we detected 571 significantly amplified and 132 significantly deleted 
genes in the RAM cohort (Supplementary Table 9). We observed 
significant overlaps of amplified (but not deleted) genes between 
findings from GISTIC and RAM-enriched (versus TCGA–SKCM) CNAs 
(P = 0.0482198, hypergeometric test) (Extended Data Fig. 2c). We 
tested the hypothesis that a subset of RAM-enriched (versus TCGA–
SKCM) CNAs is due to acquired resistance to MAPKi/ICB therapy. We 
identified significant CNAs in post-treatment (versus pre-treatment) 
melanoma from patients with either MAPKi-only or ICB-only treatment 
(between pre and post biopsies) histories. Notably, gene amplifica-
tions overlapped significantly between the RAM (versus TCGA–SKCM) 
and the MAPKi-only post (versus pre) frequency-enriched CNAs 
(P = 1.205907 × 10−18, hypergeometric test) (Fig. 1b). In contrast, gene 
deletions overlapped significantly between the RAM (versus TCGA–
SKCM) and the ICB-only post (versus pre) frequency-enriched CNAs 
(P = 6.52371 × 10−33, hypergeometric test) (Fig. 1b). Thus, acquired 
resistance to ICB versus MAPKi distinctly contributes to the RAM CNA 
landscape.

We also nominated significantly mutated genes (SMGs) (Fig. 1c 
and Supplementary Table 10). To circumvent a limited cohort size, we 
inflated type I error by not performing multiple testing but reduced 
false positives by enforcing an expression cutoff. MutSig2CV (at a 
raw P < 0.05 cutoff) called 110 SMGs. Among these, we nominated 62 
SMGs (Extended Data Fig. 2d) with RNA (Supplementary Table 10) 
or high RNA (Fig. 1c and Supplementary Table 10) expression, using 
cohort-matched transcriptomes. Among high-expression SMGs, we 
identified resistance driver mutations in BRAF and NRAS and predicted 
loss-of-function B2M mutations (Fig. 1c). Consistent with resistance 
causation, B2M was significantly mutated in ICB-only post (but not 
pre) tumors (Extended Data Fig. 2e). Moreover, the 62 nominated SMGs 
enriched for immune, cell death and senescence regulation (Extended 
Data Fig. 2f). We cross-referenced the 62 RAM-nominated SMGs to 
SMGs reported by large-scale, melanoma-specific or pan-cancer stud-
ies and observed highly significant overlaps (Extended Data Fig. 2g). 
As context, among these publications, the consensus SMGs comprised 
small fractions (1.49% and 11.5% among melanoma and pan-cancer 
cohorts, respectively) (Extended Data Fig. 2h). Seven high-expression 
RAM SMGs (BRAF, NRAS, B2M, PTPRC, RAC1, TP53 and CDKN2A) were 
previously reported as SMGs (Fig. 1c).

Among genes affected by overlapping CNAs (Fig. 1b and Extended 
Data Fig. 2c), eight amplified genes harbored mutations in at least one 
copy (Fig. 1d,e). BRAF displayed a mean ratio of variant-to-normal 
allelic frequency of 1.87 (Fig. 1f), indicating selective amplification of 
the mutant allele. Among affected tumors, deleted genes predomi-
nantly showed single-copy loss (Fig. 1e). Several genes (BRCA1, RSPO3 

Although MAPKi/ICB have become standard-of-care therapies for 
patients with metastatic CM in developed countries, clinical relapse 
occurs commonly, with multi-therapy resistance being highly lethal. 
Acquired MAPKi resistance in CM has been evaluated at an omics scale 
in a few cohorts, but knowledge of clinically acquired ICB resistance 
is limited10–18. Metastases to accessible anatomic sites overrepre-
sent current datasets on acquired resistance. Monitoring (for exam-
ple, liquid biopsy) and therapeutic strategies to counter resistance 
require insights into multi-organ mechanisms and heterogeneity. 
Whole-exome sequencing (WES) and whole-genome sequencing (WGS) 
can characterize patterns termed ‘mutational signatures’ that reflect 
imprints of DNA mutagenic processes and defective DNA damage repair 
processes19,20. It is unknown whether rare signatures of a particular 
malignancy, such as UV-related CM, are common with respect to late 
mutations, potentially due to the influence of a particular therapy. Such 
signatures that emerge later during tumor evolution might represent 
targetable pathway defects or synthetic lethalities.

Hence, we assembled a rapid autopsy melanoma (RAM) cohort 
from patients with BRAFMUT or NRASMUT CM who were treated with and 
responded initially to MAPKi/ICB therapies but later died because 
of disease progression. This cohort includes 71 distinct metastatic 
tumors, 41 tumor-adjacent ‘normal’ (AN) tissues representing 
organ-specific tumor macroenvironments and 38 tumor-non-adjacent 
normal (NAN) tissues. We generated and analyzed WES from tumors 
and patient-matched NANs as well as WGS from a subset. To dissect 
the contribution of distinct therapies, we comparatively analyzed 
WES data from longitudinal pre- and post- tumors from patients with 
CM who had progressed on either MAPKi-only or ICB-only therapy. 
Moreover, we developed organ-specific metastatic signatures based 
on tumorcell-enriched transcriptomes and analyzed ligand–recep-
tor signaling between tumor and AN tissues. Finally, we deconvolved 
tumor, AN and NAN transcriptomes to decipher organ-specific immune 
contextures.

Results
RAM cohort, omic data and comparative cohorts
From 11 RAM cases, we collected (2012–2019) tumor, AN (≤1 cm from 
tumor border) and NAN (>1 cm) tissues from deceased patients (five 
females and six males, all of European ancestry; seven BRAFMUT and 
four NRASMUT; five of 11 with radiation-treated brain metastasis) (Sup-
plementary Table 1 and Extended Data Fig. 1a). All patients before autop-
sies progressed on the last therapy with nearly all tumors acquiring 
resistance, went to hospice and died. Four patients had been treated 
with only MAPKi; four with only ICB; and three with MAPKi and ICB (in 
sequence) (Supplementary Table 1). We generated WES (Supplemen-
tary Table 2) from 74 tumors (three multi-regional samples) (brain, 
thyroid, heart or cardio, lung, liver/gallbladder, spleen, adrenal, lymph 
node (LN), soft tissues (ST) and pleural membrane or the omentum/
peritoneum) and 10 patient-matched normals (Extended Data Fig. 
1a). We also generated WGS (Supplementary Table 3) from 22 tumors 
(brain, lung, liver, adrenal, LN and ST) (Extended Data Fig. 1a). Finally, 
we generated RNA sequencing (RNA-seq) from 93 tumors, 68 ANs and 67 
NANs (inclusive of multi-regional samples) from all sites except thyroid 
(Extended Data Fig. 1a and Supplementary Table 4). We comparatively 
analyzed (Extended Data Fig. 1b) CM data from (1) TCGA–SKCM2, (2) 
patient-matched pre and post tumors with MAPKi-only or ICB-only 
treatments (Supplementary Table 5) and (3) matched vehicle-treated/
MAPKi-sensitive and acquired MAPKi-resistant patient-derived xeno-
grafts (PDXs) (Supplementary Table 6).

Somatic exomic alterations
At a median coverage of 217×, the mean number of somatic muta-
tions/tumor and tumor mutational burden (TMB) was 4,401 (range, 
167–17,872) and 68.8 mutations per megabase (Mb) (range, 2.6−279.3) 
(Fig. 1a and Supplementary Table 2). For non-synonymous somatic 
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Fig. 1 | Whole-exomic landscape of therapy-resistant cutaneous melanoma.  
a, Tumor somatic mutational burdens based on synonymous and non-synonymous 
IDs and SNVs across RAM cases (patients), organ sites and treatment histories.  
b, Venn diagrams showing overlaps of significantly amplified (left) or deleted 
(right) genes based on frequency-enriched CNAs observed in three comparative 
cohorts: (1) RAM tumors versus TCGA–SKCM tumors (BRAF mutant and NRAS 
mutant only); (2) MAPKi-only post versus pre tumors; and (3) ICB-only post versus 
pre tumors. c, Highly expressed SMGs in the RAM tumor cohort annotated by 
mutational types, cases, organ sites and treatment histories. Yellow highlights, 
SMGs identified by prior published studies (Extended Data Fig. 2g,h). Underlines, 
SMGs significantly (two-sided Fisher’s exact test, FDR-adjusted P < 0.05) enriched 
in the RAM tumor cohort (versus the TCGA–SKCM tumor cohort, BRAF mutant 

and NRAS mutant only). MYO9B, P = 7.97 × 10−5 and adjusted P = 0.004144; B2M, 
P = 1.75 × 10−3 and adjusted P = 0.044013; PRSS27, P = 2.12 × 10−3 and adjusted 
P = 0.044013. d,e, Copy number and mutational (missense, nonsense, splice-site, 
frame-shift IDs) status of overlapping amplified (d) or deleted (e) genes (b and 
Extended Data Fig. 2c). f, Ratios of variant versus normal allele frequencies in eight 
overlapping amplified genes (BRAF, n = 39; CREB3L2, n = 7; KEL, n = 15; MGAM, n = 9; 
RAD51B, n = 5; RELN, n = 26; SETD1B, n = 6; TERT, n = 5 tumors). Central line of each 
box, median; top and bottom edges of each box, first and third quartiles; whiskers 
extend 1.5× the interquartile range beyond box edges. g, Copy number and 
mutational status of the overlapping SMG B2M (Extended Data Fig. 2e) in the RAM 
cohort (left); ID signatures identified among B2M-mutated RAM tumors (right). 
del, deletion; ins, insertion; SNP, single-nucleotide polymorphism.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | May 2023 | 1123–1134 1126

Article https://doi.org/10.1038/s41591-023-02304-9

and LATS1) were affected by both deletions and mutations. Among 
B2M-mutated tumors, 100% harbored bi-allelic loss-of-function altera-
tions (deletion of one and mutation of another copy) (Fig. 1g). Because 
B2M mutations consisted of small insertions and deletions (IDs), we 
found enrichment of ID1 and ID7 signatures among B2M-mutated 
tumors (Fig. 1g), suggesting defective DNA mismatch repair (MMR) 
as a cause.

Phylogeny and heterogeneity
RAM tumors evolved via both linear and branched divergence without 
any organ-specific pattern (Fig. 2a). Regardless of treatment history, 
prominent truncal amplifications involved BRAF, MNX1, EZH2, XRCC2 
and ACTA, and truncal deletions involved JAK2 and CDKN2A (Fig. 2a and 
Supplementary Table 1). In contrast, B2M somatic mutations and dele-
tions were exclusive to ICB-only and MAPKi+ICB cases and occurred 
as truncal, semi-truncal or private events (Fig. 2a). Loss-of-function 
mutations affecting JAK2, CDKN2A (and other 9p21.3 genes—for 
example, IFN-induced genes; Extended Data Fig. 2a) and B2M indi-
cated immune evasion as mechanisms of acquired resistance3,10,23. In 
RAM19002, non-synonymous mutations of MMR genes (MSH6, PMS2 
and POLD1) preceded B2M IDs (Fig. 2a). We also observed convergent 
evolution due to MAPKi/ICB therapies (for example, in RAM14006, dis-
tinct, second-hit non-synonymous B2M mutations (Fig. 2a); in multiple 
cases, distinct BRAF amplicon boundaries (Extended Data Fig. 3a)).  
By analyzing tumor cell fractions of mutated genes, we failed to detect 
organ-specific enrichment for specific mutated genes (Extended Data 
Fig. 3b). Finally, intratumoral heterogeneity (ITH), estimated by the 
proportion of subclonal mutations, was significantly lower after 
MAPKi-only treatment (Extended Data Fig. 3c).

Altered mutational spectra and signatures
We previously identified altered mutational spectra associated with 
somatic mutations unique to acquired MAPKi resistance14. Here, we 
divided somatic mutations into early, intermediate and late muta-
tions and analyzed mutant allelic frequencies (Extended Data Fig. 3d), 
mutational spectra (Extended Data Fig. 3e) and single-base substi-
tution (SBS) signatures based on COSMIC version 3.3 (Fig. 2b). The 
mean mutant allelic frequencies of early, intermediate and late somatic 
single-nucleotide variants (SNVs) were, respectively, 0.39, 0.36 and 0.27. 
Early and intermediate mutational spectra displayed a case-specific but 
no site-specific or treatment-specific pattern. However, late muta-
tional spectra clustered independently of case, site or treatment history 
(Extended Data Fig. 3f), enriching for C>A, T>C and T>G (Extended Data 
Fig. 3e). Among 10 SBS signatures, UV signatures (SBS7a and SBS7b) 
dominated early and intermediate somatic mutations (Fig. 2b) in a 
case-specific pattern (Fig. 2c). Notably, non-UV-related signatures 
dominated late mutations (Fig. 2b) with extensive intra-patient and 
inter-patient heterogeneity but treatment-elicited convergence (for 
example, signatures of defective homologous recombination repair 
(HHR) and MMR clustering with MAPKi) (Fig. 2c). Notably, SBS3 (defec-
tive HRR) was detected among late mutations in nine of 10 patients  

(Fig. 2b). We also detected SBS5 (clock-like), SBS9 (polymerase eta 
somatic hypermutation), SBS26 (defective MMR), SBS30 (defective 
DNA base excision repair (BER) due to NTHL1 mutations), SBS31 (plati-
num treatment) and SBS87 (thiopurine treatment) among late muta-
tions in most patients. SBS11 (temozolomide) was detected among late 
somatic mutations in association with ICB treatment (Fig. 2b).

We sought to validate an association between non-UV-related 
signatures and MAPKi/ICB therapies. We assembled two MAPKi vali-
dation cohorts of patient-matched melanoma with WES data: (1) a 
clinical BRAFMUT cohort (88 tumors from 28 patients) consisting of 
pre-treatment and acquired-resistant tumors (along with normal 
genomic DNA (gDNA)) (Supplementary Table 5) and (2) a PDX BRAFMUT  
or NRASMUT cohort (29 tumors from eight models) consisting of 
model-matched vehicle-treated and acquired-resistant tumors derived 
in patient sex-matched NSG mice (information on gender of source 
patients in Supplementary Table 6) (along with normal gDNAs). All 
pre-treatment melanomas in both MAPKi cohorts were ICB naive and 
MAPKi sensitive (Supplementary Tables 5 and 6). We extracted somatic 
mutations unique to acquired MAPKi resistance and identified the 
frequencies of SBS signatures, including 12 non-UV signatures of defec-
tive HRR, MMR and BER (Fig. 2d,e). In contrast, UV signatures domi-
nated the SNVs in pre/sensitive tumors. We also assembled WES data 
from patient-matched pre/sensitive and post/acquired ICB-resistant 
melanoma (14 tumors from seven patients) and normal gDNAs. All pre/
sensitive melanoma in this ICB validation cohort, except one (V52), 
were MAPKi naive (Supplementary Table 5). After extracting SBS sig-
natures from somatic SNVs in pre-treatment tumors and unique to 
acquired resistance, we detected enrichment of UV signatures in four 
of seven acquired ICB-resistant tumors (Fig. 2f). Thus, MAPKi (versus 
ICB) therapy selects for non-UV-related mutational signatures.

Somatic whole-genomic alterations
We generated WGS data (median coverage of 23×; range, 10×–43×) from 
a subset of RAM tumors (one sensitive and 21 acquired- resistant; eight 
cases; six sites) (Supplementary Table 3). We observed no significant 
differences in the median SNVs or IDs based on treatment histories. The 
mean WGS-estimated TMB was 97 mutations per Mb (Fig. 3a), which 
is higher than WES-estimated TMB (Fig. 1a) and WGS-estimated TMB 
(39.6 mutations per Mb) in earlier-stage, MAPKi/ICB-naive CM (Sup-
plementary Table 7). We identified a mean of 493 SVs per tumor (range, 
254–1,708) (Fig. 3a), in contrast to a mean of 342 or 106 in mucosal or 
CM cohorts, respectively4. We first classified SV/rearrangements as 
clustered or non-clustered24,25 and found 67% as non-clustered trans-
locations, 17% as non-clustered deletions and 13% as non-clustered 
inversions. Rearrangement signature (RS) 2 (ref. 24), defined by large 
(>100 kb) non-clustered deletions, inversions and inter-chromosomal 
translocations, was most frequent, regardless of case, site or treatment 
(Fig. 3b). To dissect the temporality of RSs, we focused on two RAM 
cases with multiple tumors to reconstruct the phylogeny and deter-
mine early (Fig. 3c and Extended Data Fig. 4a), intermediate (Fig. 3c)  
and late SVs (Fig. 3c and Extended Data Fig. 4a). Analysis of RS1 to RS6 

Fig. 2 | Multi-organ temporal mutational patterns of RAM tumors.  
a, Phylogenetic relationship of multi-organ metastases in 10 RAM cases 
organized by treatment histories. Each tumorʼs somatic mutations (SNVs and 
IDs) were used to construct a maximally parsimonious phylogenetic tree. Some 
branches, as indicated, are not shown to scale owing to extensive lengths. Each 
evolutionary trajectory is annotated by selected cancer genes  
and their mutations. AMP, copy number amplification; DEL, copy number 
deletion; Gb, gallbladder; NRM (blue node), normal tissue; OM, omentum.  
b, Spectra of mutational signatures among early, intermediate and late 
mutations, based respectively on shared, semi-private and private SBSs in 
a across RAM cases, organ sites and treatment histories. With WES of two 
RAM14001 tumors available, we identified only early and late mutations 
for signature detection. c, Unsupervised clustering of treatment histories, 

RAM cases and organ sites based on the proportions or compositions of SBS 
mutational signatures present in early, intermediate and late mutations in b.  
d, Analysis of SBS mutational signatures in a clinical cohort of patient-matched 
MAPKi-sensitive (referred to as baseline) and MAPKi-acquired resistant (referred 
to as disease progression (DP)) cutaneous BRAFMUT melanoma tumors (n = 88 
tumors). MAPKi-sensitive tumors represent ICB-naive, pre-MAPKi-treatment 
clinical tumors (n = 28 patients). e, As in d, except all samples are PDX tumors 
from sex-matched NSG mice and consisting of patient-matched (n = 8 models), 
vehicle-treated and MAPKi-sensitive tumors (n = 8) and acquired MAPKi-resistant 
BRAF-mutant or NRAS-mutant tumors (n = 21). f, As in d, except all samples are 
clinical tumors (n = 14) consisting of patient-matched MAPKi-naive (except one), 
pre-ICB baseline tumors and acquired ICB-resistant tumors (n = 7 patients).
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revealed that (1) all six RSs occurred at ≥4% in every tumor among early 
SVs; (2) the frequencies of RS4 or RS5 (characterized by <100-kb dele-
tions and enriched in BRCA1/2-deficient breast tumors26) increased 

among intermediate (versus early) SVs; and (3) the frequencies of RS2 
increased among late SVs (Fig. 3c and Extended Data Fig. 4a). Moreover, 
analyzing WGS derived from clinical (pre and post) MAPKi tumors  
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(10 pre and 17 post from 10 patients), we observed that RS2 enrichment 
dominated late SVs in both pre and post tumors (Extended Data Fig. 4b).

To assess DNA double-strand break (DSB) repair mechanisms, we 
analyzed the breakpoint-junctional sequences of early (Fig. 3d and 
Extended Data Fig. 4c), intermediate (Fig. 3d) and late SVs (Fig. 3d and 
Extended Data Fig. 4c). Among early SVs, 76% of breakpoints displayed 
a homologous sequence (HS) size of 0–1 base pairs (bp), supporting 
non-homologous end joining (NHEJ) as a key DSB repair mechanism. 
Among intermediate and late SVs, we inferred either NHEJ or NHEJ + 
alternative NHEJ. We validated the importance of NHEJ across tempo-
ral SVs using WGS data from the clinical pre and post MAPKi cohort 
(Extended Data Fig. 4d). Thus, NHEJ and alternative NHEJ represent 
potential targets to blunt SV-driven melanoma progression.

Moreover, we identified pathway enrichments of genes overlap-
ping somatic SVs. First, SV-related deletions occurred in CDKN2A (52%), 
PTEN (38%) and BRCA1 (~29%) (Fig. 3e). Notably, SVs in chr6p spanning 
HLA class I and II genes were highly recurrent (62%) (Fig. 3e). Second, we 
identified recurrent translocations (≥4/21 tumors) involving oncogenes 
such as PDGFB and JAZF1 (Supplementary Table 11). Third, 491 somatic 
SV-related genes (Supplementary Table 12) recurrently (>50%) and sig-
nificantly enriched for immune pathways, such as antigen processing 
and presentation, IFN-γ, complement and IL-6-mediated JAK-STAT3 
signaling (Fig. 3f). Fourth, a higher number of recurrent translocations 
associated with MAPKi-only or MAPKi+ICB treatment histories (Fig. 3g). 
MAPKi-only tumors harbored recurrent (60%) duplications of HOXA 
family genes and ETV1. MAPKi+ICB tumors harbored frequent (43%) SVs 
involving SMAD4. Notably, MAPKi-only or MAPKi+ICB tumors harbored 
recurrent deletions in MMR genes (MSH2, MSH6 and MLH1). Finally, we 
identified BRAF amplification via intrachromosomal complex genomic 
rearrangements and extrachromosomal DNAs in association with 
MAPKi treatment (Fig. 3h and Extended Data Fig. 4e,f).

Among ID signatures, ID1 and ID2 were most frequent (Fig. 3i), 
which suggests mutagenesis via slippage of replicated DNA strands. 
SBS signatures of defective MMR (SBS6, SBS15, SBS20 and SBS26) were 
prevalent (Fig. 3i). Their proportions were significantly (Kruskal–Wal-
lis test, P = 0.0082) higher with MAPKi-only and MAPKi+ICB treat-
ments (Fig. 3j). We then temporally ordered WGS-based somatic SNVs. 
The average mutant allele frequencies of early, intermediate and late 
SNVs were, respectively, 0.47, 0.41 and 0.20 (Extended Data Fig. 4g). 
Consistent with WES-based findings (Fig. 2b), UV-related SBS signa-
tures dominated early SNVs (Fig. 3k). Intermediate SNVs enriched for 
SBS10b (mutations in the polymerase epsilon exonuclease domain, 
which are associated with hypermutations >100 per Mb) (Fig. 3k). Late 
mutations enriched for SBS20 and SBS26 (defective MMR) and SBS3 
(defective HRR) (Fig. 3k). Moreover, we identified somatic SNVs (3/21 
intermediate, 2/21 late) in the TERT promoter (−124C/T and −146C/T). 
Finally, we assessed the temporality of HRR and MMR alterations. Early 
nonsense BRCA2 mutations occurred in RAM19005 (ICB-only), and 
intermediate SV-associated BRCA1 deletions occurred in RAM14006 

(MAPKi+ICB), which may explain RS5 enrichment (Fig. 3c). MMR gene 
deletions occurred as early, intermediate and late somatic SVs, and 
somatic non-synonymous SNVs occurred late in MMR genes (MLH3, 
MSH6, MSH2 and PMS2), potentially contributing to MMR SBS signa-
tures (Fig. 3k).

Organ site-specific transcriptomic features
Consistent with ‘contamination’ of bulk tumors by organ-specific cell 
types, we observed an inverse correlation between WES-based tumor 
cell purities and enrichment of NAN gene expression (Extended Data 
Fig. 5a). However, bulk tumor transcriptomes did not segregate by 
cases, treatment histories or sites, possibly because of wide-ranging 
tumor purities (<25% to 90%) (Fig. 4a and Supplementary Table 2). 
We then devised a strategy to identify tumor-cell-enriched signa-
tures by detecting differential gene sets (DGSs) and differentially 
expressed genes (DEGs), where DGSs and DEGs of organ-specific 
metastasis are (1) depleted bioinformatically of NAN DGSs and DEGs 
across case-matched, cross-organ, pair-wise comparisons and (2) 
consistent across multiple such comparisons in ≥3 cases (Fig. 4b and 
Extended Data Fig. 5b). We observed upregulated and downregulated 
DGSs and DEGs specific to brain, cardiac, liver, splenic, lung and ST 
metastases (Fig. 4c and Extended Data Fig. 5c). We also performed 
Gene Ontology (GO) enrichment analysis of recurrent DEGs (Extended 
Data Fig. 5d). Brain metastases organ-specifically upregulated IFN 
response signatures and associated with oxidative phosphorylation 
and PI3K-AKT-mTOR signaling27,28. Cardiac metastases upregulated 
oxidative phosphorylation and response to reactive oxygen species 
and downregulated neurotransmitter and anabolic hypoxia genes. 
Liver and splenic metastases both upregulated neural genes/pathways. 
Liver metastases upregulated the complement pathway but down-
regulated IFN response genes. Lung metastases upregulated snoR-
NAs and pigment biosynthesis, whereas ST metastases upregulated 
epidermal differentiation genes. We confirmed that organ-specific, 
tumor-cell-enriched transcripts were not differentially expressed by 
corresponding NANs (Extended Data Fig. 5e). At the protein level, we 
validated the glutaminergic versus the GABAnergic phenotypes of 
splenic (Fig. 4d) versus liver (Fig. 4e) metastases.

Organ-specific tumor microenvironmental–
macroenvironmental interactions
Next, we searched for ligand–receptor signaling across metastases and 
AN tissues. In four tumor–AN pairs from ≥3 cases, we observed growth 
factor, inflammation and fibrosis ligand–receptor pairs in the brain, lung, 
liver and spleen, visualized as outgoing or incoming (Fig. 5a) and with 
directionality plus connectivity strength (Fig. 5b). Lungtumor-outgoing 
ligand CCL connected to the tumor and AN as incoming sig-
nals via the receptors CCR1 and ACKR2/4, respectively (Fig. 5b).  
In brain metastases, AN-outgoing type I IFN signaled into tumors 
via IFNAR1/2 (Fig. 5b), which is consistent with IFN upregulation by 

Fig. 3 | Whole-genomic landscape of therapy-resistant cutaneous melanoma. 
a, TMBs based on somatic IDs, SNVs and SVs across 22 tumors (eight cases), 
organs and treatment histories. b,c, Spectra of RSs among all SVs (b) or early, 
intermediate and late SVs (c). Tumors analyzed in c derived from phylogenetic 
analysis of two RAM cases with multiple tumors. d, Distribution of DNA DSB 
repair processes (NHEJ, alternative NHEJ and HRR) inferred by breakpoint 
junctional sequence analysis of early, intermediate and late SVs of RAM cases 
in c. Homologous sequence lengths at breakpoints of 0–1 bp, 2–6 bp or >6 bp 
infer NHEJ, alternative NHEJ and HRR, respectively. e, SVs across genomic 
locations and affected genes. Outer layer, chromosome locations; second 
layer, large (>1 Mb) duplications (red); third layer, large deletions (blue); inner 
layer, a combination of both duplications and deletions (yellow); frequencies 
of occurrence increase from inner to outer circles. Inside the circles, recurrent 
(≥4 of 21 resistant RAM tumors) intra-chromosomal or inter-chromosomal 
translocations. f, Pathways enriched in genes overlapping somatic SVs 

detected in ≥50% (11/21) of RAM tumors (one-sided Fisher’s exact test, adjusted 
by FDR). g, As in e, except sub-analyses based on treatment histories and 
recurrent translocation in ≥3 tumors in each treatment history category. h, SV 
plot indicating extrachromosomal DNA amplicon harboring BRAF in a brain 
metastasis. Horizontal black and red lines indicate, respectively, genomic 
segments with similar copy numbers and genes. Each line/arc representing 
discordant reads is colored based on differences from expected distance or 
orientation. i, Spectra of SBS and ID signatures based on WGS across 22 tumors 
(eight cases), organs and treatment histories. j, Proportions of SBS mutational 
signatures associated with defective MMR, per treatment history (n = 22 tumors). 
Central line of each box, median; top and bottom edges of each box, first and 
third quartiles; whiskers extend 1.5× the interquartile range beyond box edges. 
k, As in i, except for early, intermediate and late SBS mutations in two RAM cases 
with phylogenetic data.
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brain metastases (Fig. 4 and Extended Data Fig. 5). In lung metastases, 
AN-to-tumor signals consisted of RESISTIN, IL-7 and EDA; tumor-to-AN 
signals consisted of CCL, RLN and AVP. In liver metastases, AN-outgoing 

ligands included complement genes (C4A) (Fig. 4c), EPO and CHEMERIN, 
and tumor-outgoing ligands included only GH. Moreover, splenic 
metastases featured both AN-to-tumor (ANGPT2) and tumor-to-AN 
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across organ sites. a, Unsupervised clustering of 12 pan-cancer immune 
archetypes in the RAM tumor (n = 93), AN (n = 68) and NAN (n = 67) tissue 
compartments, across RAM cases/patients, organ sites and treatment histories. 
Each sample’s enrichment scores of immune archetypes were used to generate 
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NAN compartments across multiple organ sites. c, Absolute enrichment 
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pro-tumorigenic (M2) TAMs, eosinophils, resting mast cells and neutrophils 
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defined in c. e, As in c, except enrichment scores of T cell exhaustion and type 2 
immunity signatures in the tumor, AN and NAN compartments across organ sites.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | May 2023 | 1123–1134 1133

Article https://doi.org/10.1038/s41591-023-02304-9

(GH1 and AVP) axes. Lastly, immunofluorescence studies confirmed 
IFNκ expression preferentially in the AN of brain metastases, IFNAR2 
intratumorally and their overlap intratumorally (Fig. 5c).

Organ-specific tumor immune contextures
We next evaluated organ-specific (intra)tumor immune microen-
vironments (TIMEs) and immune macroenvironments (within AN 
and NAN tissues). Analysis of 12 pan-cancer immune archetypes29 
via unsupervised clustering revealed immune macroenvironments, 
more than TIMEs, as organ-specific or patient-specific (Fig. 6a). We 
then assigned each tissue sample to the highest enrichment-scoring 
immune archetype and calculated the distribution of archetypes for 
each organ (Fig. 6b and Extended Data Fig. 6a). AN and NAN immune 
archetypes were similar in each organ, and TIMEs uniformly (~100%) 
enriched for the immune-desert, CD8+-macrophage-biased archetype 
linked to T-cell exhaustion and the worst survival in patients from the 
TCGA–SKCM cohort29. This contrasted with a lower frequency (~60%) 
of the same archetype in TCGA–SKCM tumors29, 30% of which belong 
to two immune archetypes: T cell-centric macrophage biased and 
T cell-centric dendritic cell biased29. These and the immune-rich CD8+ 
or CD4+ archetypes were all but absent in our RAM cohort. Interest-
ingly, ~5% of liver TIMEs comprised the myeloid-centric, cDC2-biased 
archetype (associated with tumor fibrosis).

Using CIBERSORTx, we evaluated RAM versus TCGA–SKCM 
immune contextures (Fig. 6c and Extended Data Fig. 6b). Across 22 
immune cell types, we observed consistent patterns between AN and 
NAN tissues, except for plasma cells, regulatory T cells and naive/
memory B cells. Relative to RAM tumors, TCGA melanomas displayed 
a higher proportion of anti-tumorigenic macrophages (Fig. 6c). Across 
RAM organs, brain metastases enriched for pro-tumorigenic mac-
rophages, eosinophils and resting mast cells. Using multi-spectral 
immunofluorescence, we confirmed a higher pro- to anti-tumorigenic 
tumor-associated macrophage (TAM) ratio in brain metastases (Fig. 6d 
and Extended Data Fig. 6c). In addition, lung metastases preferentially 
comprised neutrophils, potentially related to tumor-derived CCL8  
(Fig. 5). Finally, RAM (versus TCGA–SKCM) enriched for T-cell exhaus-
tion and type-2 immunity (Fig. 6e).

Discussion
This RAM study begins to build foundational insights into highly 
evolved and lethal CMs that resist MAPKi and/or ICB therapies. By com-
parative analysis of acquired-resistant CM (preceded by only one of the 
two types of therapies) with patient-matched pre-treatment tumors, 
we resolved further how each therapy distinctly and convergently 
shapes the high mutational, CNA and SV burdens of acquired-resistant 
CM. SMGs and genes altered by CNAs and SVs enrich in immune-evasive 
processes (for example, BRAFMUT amplification and loss-of-function 
alterations in B2M, JAK2, CD274/PD-L1 and PTEN; Supplementary  
Table 13) that may confer cross-therapy resistance, accelerating lethal 
disease progression. Notably, evolution of MAPKi (versus ICB) resist-
ance shifts the mutational signatures, implicating therapy-elicited DNA 
damage and/or deficiency in repair pathways (for example, MMR, BER 
and HRR) as culprits. The evolution of late/private SVs, regardless of 
treatment history, enriches for RS2. Analysis of breakpoint-junctional 
sequences of SVs suggests NHEJ as a MAPKi or ICB co-target. Overall, 
multiple forms of genomic instability may cause and/or result from 
resistance evolution, with therapeutic implications that warrant 
mechanistic studies.

Acquired therapy resistance co-evolves with, and may also pro-
mote, metastatic progression. However, comparative analysis of RAM 
versus earlier-stage and MAPKi/ICB-naive CM cohorts is limited by 
cross-study technical variables (sequencing depth, read lengths, tumor 
purities and library preparation) and by RAM’s relatively small sam-
ple size, which may contribute to false-positive SMGs. We mitigated 
false positives by requiring SMGs to display gene expression and by 

analyzing validation cohorts. Future RAM studies should expand the 
current cohort size and increase representation of CM subtypes, ethnic 
and ancestral diversities and the treatment-naive landscape.

Our analysis, by computationally depleting bulk metastatic 
tumor transcriptomes of patient-matched and organ-matched normal 
tissue-derived transcriptomes, sheds light on organ-specific metastatic 
signatures. Liver and spleen metastases display neural differentia-
tion, suggesting therapeutic targets30,31. Melanoma brain metastasis 
(MBM) displays signatures of IFN signaling, oxidative phosphoryla-
tion and PI3K-AKT signaling27,28,32. The brain-specific macroenviron-
ment appears to be a predominant source of IFN ligands. Overall, 
RAM tumors, including MBM, strongly display an immune-desert but 
CD8+-macrophage-biased archetype with enrichment of T-cell exhaus-
tion. For MBM, loss of antigen presentation and enrichment of type-2 
immunity suggest TGFβ blockade and upregulation of cytotoxic natural 
killer (NK) cell-mediated or CD4+ T cell-mediated anti-tumor immu-
nity33 as potential therapeutic strategies. The pro-tumorigenic TAM 
phenotype of MBM also suggests therapeutic co-targets. Thus, we have 
uncovered a preliminary set of organ-specific metastatic signatures, 
tumor macroenvironment crosstalks and immune contextures that 
characterize therapy-resistant CM, justifying expanded RAM-based 
and functional analyses.
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Methods
Rapid autopsies and samples
We performed warm autopsies with informed consent at the University 
of North Carolina at Chapel Hill and the University of California, Los 
Angeles (UCLA). In brief, patients or persons holding the healthcare 
power of attorney signed the Autopsy Authorization Form and the 
institution-specific tumor tissue procurement and banking consent 
form. Research in this study involving autopsy specimens does not 
meet the regulatory definition of human subject research. The last 
tissue sample of each case was excised and stored no longer than 
6 hours from death. We collected metastatic tumor, AN (≤1 cm away 
from tumor border) and NAN (>1 cm) tissues from 11 RAM cases. We 
collected formalin-fixed, paraffin-embedded (FFPE) tissues from all 
available sites. If tissue was sufficient, we also collected snap-frozen 
tissues and stored them at −80 °C. An autopsy pathologist (Leigh B. 
Thorne) reviewed hematoxylin and eosin tissue sections. Histopatho-
logic analysis selected for high tumor content and against necrosis, 
AN with ≤10% tumor cell contamination and NAN without tumor cell 
contamination. We further selected for tumor purity >30% based on 
Sanger-sequencing-estimated BRAF or NRAS mutant allele frequencies 
(BRAF forward primer, 5′-GACTCTAAGAGGAAAGATGAAGTAC-3′; BRAF 
reverse primer, 5′-GTTGAGACCTTCAATGACTTTCTAG-3′; NRAS forward 
primer, 5′-GGCTTGAATAGTTAGATGCTTATTTAACCTTGGC-3′; and 
NRAS reverse primer, 5′-GCTCTATCTTCCCTAGTGTGGTAACCTC-3′).

Clinical samples
Tumor tissues from living patients with CM and patient-matched nor-
mal tissues were collected with the approval of institutional review 
boards at UCLA and Vanderbilt Ingram Cancer Center and with 
informed consent of each patient or the patient’s legal representa-
tive. We analyzed by WES 88 tumor samples from 28 patients at UCLA 
with BRAFMUT CM obtained before treatments with and responses to 
MAPKi and then at the time of disease progression (that is, acquired 
resistance), along with patient-matched normal tissues (Supplemen-
tary Table 5). From PDX models collected from patients at UCLA, we 
analyzed by WES 29 tumors and patient-matched normal tissues (from 
eight patients with BRAFMUT or NRASMUT CM) treated with vehicle or 
trametinib (at sufficient in vivo doses to induce tumor regression) in 
NSG mice (Supplementary Table 6). Also, we analyzed by WES 14 tumor 
samples from seven patients with CM at Vanderbilt obtained before 
treatments with and responses to ICB and then at the time of disease 
progression (Supplementary Table 5). Sex/gender was self-reported 
and not considered in the study design given that each cohort size was 
small. Participation in research was not compensated.

PDXs and treatments
To develop PDX models, tumor fragments derived from metastatic 
CM, with approval by UCLA institutional review boards and the UCLA 
Animal Research Committee, were transplanted subcutaneously in 
sex-matched NSG mice (4–6 weeks old) from the UCLA vivarium or 
Jackson Laboratory. We conducted all animal experiments in accord-
ance with approved protocol and regulations (ARC 2016-086). We 
adhered to the maximal tumor size for experimental endpoints, which 
was ~1,500–2,000 mm3 without mobility impairment and with body 
condition score >2. We implanted one tumor fragment in each mouse 
on the flank and measured tumors with a calliper every 2 days. Tumor 
volumes were calculated by (length × width2)/2, and we excluded data 
from occasional animals that died before final analysis. We assigned 
tumors with volumes ~500 mm3 randomly into experimental groups. 
A special mouse chow (Test Diet) incorporated trametinib (LC Labo-
ratories) to achieve daily dosing at 5 mg/kg/day.

WES and WGS
We extracted gDNAs from snap-frozen tumors, NANs and ANs using 
the QIAGEN AllPrep DNA/RNA Mini Kit; from FFPE tumors (clinical 

ICB cohort) using the QIAGEN QIAamp DNA FFPE Tissue Kit; and from 
frozen blood using the QIAGEN FlexiGene DNA Kit. Quantification of 
gDNAs was based on NanoDrop (Thermo Fisher Scientific) and/or Qubit 
fluorometer using the Qubit dsDNA Broad Range (BR) Assay Kit (Life 
Technologies). Size and quality of gDNAs were based on TapeStation 
(Agilent Technologies) and/or agarose gel electrophoresis to ensure 
gDNA library preparation from equal gDNA input and from intact 
high-molecular-weight gDNA. We prepared whole-exome libraries 
using the Roche NimbleGen Exon-Seq Kit, the Roche NimbleGen Seq-
Cap Kit or the Roche KAPA HyperPlus Library Preparation Kit with 
KAPA HyperCap Workflow version 3.0 for exome hybridization (Sup-
plementary Table 14) and whole-genome libraries using the Roche 
KAPA HyperPrep Kit. In brief, after enzymatic fragmentation of gDNAs, 
the libraries were constructed by end-repairing and A-tailing the frag-
mented DNAs, ligation of adapters and polymerase chain reaction 
(PCR) amplification. After library construction, we quantified indexed 
libraries for equal molar pooling and paired-end sequenced with a read 
length of 2 × 150 bp on the Illumina HiSeq 3000 or Illumina NovaSeq 
6000 S4 platform.

RNA-seq
We extracted total RNAs from snap-frozen tissues using the QIAGEN 
AllPrep DNA/RNA Mini Kit and the Ambion mirVana miRNA Isolation Kit. 
Total RNA quantification was based on the Qubit RNA High Sensitivity 
(HS) Assay Kit (Thermo Fisher Scientific) and/or a NanoDrop (Thermo 
Fisher Scientific). RNA quality was based on TapeStation (Agilent Tech-
nologies) and used to calculate the input for RNA library preparation. We 
prepared RNA libraries using KAPA RNA HyperPrep Kit with RiboErase 
(Roche) or TruSeq RNA Exome Kit (Illumina), TruSeq RNA Single Indexes 
Set A Kit (Illumina) and TruSeq RNA Single Indexes Set B Kit (Illumina) 
following the manufacturers’ protocols (Supplementary Table 15). In 
brief, RNA libraries, prepared by the KAPA RNA HyperPrep Kit with Ribo-
Erase, used 1 μg of total RNA captured by magnetic oligo-dT beads. RNAs 
were fragmented and cDNAs synthesized using random priming for the 
first strand. The second strand was synthesized (with dUTP) and marked 
to convert the cDNA:RNA hybrid to double-stranded cDNA (dscDNA). 
Then, dscDNA libraries were constructed by adding dAMP to the 3′ ends 
during A-tailing, and dsDNA adapters with 3′ dTMP overhangs were 
ligated to library insert fragments during adapter ligation. We carried 
out amplification of library fragments carrying appropriate adapter 
sequences at both ends using high-fidelity, low-bias PCR amplification, 
whereas the strand marked with dUTP was not amplified, to enable 
strand-specific sequencing. After library construction, we quantified 
indexed libraries for equal molar pooling and single-end sequenced 
with a read length of 1 × 50 bp on the Illumina HiSeq 3000 or Illumina 
NovaSeq 6000 S4 platform. RNA libraries prepared by the TruSeq RNA 
Exome Kit used 50 ng of RNA for high-quality RNA (DV200 > 70%) and 
100 ng of RNA for medium-quality and low-quality RNA (DV200 < 70%). 
After RNA fragmentation and cDNAs synthesis, we purified dscDNAs 
using AMPure XP beads (Beckman Coulter). After A-tailed enrichment, 
we quantified cDNA libraries by the Qubit dsDNA HS Assay Kits (Thermo 
Fisher Scientific); quality was assessed by TapeStation. We used 200 ng 
of each DNA library for exome enrichment. After amplification and 
purification, we removed free adapters by using Illumina Free Adapter 
Blocking Reagent (Illumina). All libraries were pooled at equal molar 
and sequenced with a 2 × 150-bp read length on the Illumina NovaSeq 
6000 S4 platform.

Somatic SNVs and CNAs
We used BWA for mapping and Picard for removal of duplications. We 
identified somatic SNVs and IDs of tumors34,35 by using patient-matched 
normal tissues for germline reference. We called SNVs using the Unified 
Genotyper tool of GATK, MuTect and VarScan2 and IDs using GATK-UGF, 
SomaticIndelDetector of GATK (IndelLocator) and VarScan2 (calls 
made by at least two of three algorithms). SNV/IDs were supported by 
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at least five reads in the tumor samples and none in the patient-matched 
normal tissues. Somatic SNV/IDs were then annotated by Oncotator36. 
Finally, we used Sequenza37 to detect tumor purity, ploidy, somatic 
CNAs and loss-of-heterozygosity regions.

Significant CNA genes in RAM tumors
We applied GISTIC2.0 (ref. 38) to identify the significantly deleted 
and amplified regions using each RAM tumor’s copy number seg-
mentation file as the input. We generated circos plots with both q 
values and G-scores representing the amplitude of the aberration. Only 
regions with q values less than 0.05 were defined as significantly altered 
regions. We performed Fisher’s exact test to identify differentially 
amplified or deleted genes in the RAM tumor cohort versus the BRAF 
or NRAS mutated TCGA–SKCM cohort (n = 345 tumors: seven stage 
0, 65 stage 1, 100 stage 2, 130 stage 3, 17 stage 4 and 26 unknown). We 
downloaded TCGA–SKCM CNA data from cBioPortal and compiled 
the frequencies of CNA genes (Supplementary Table 16). We applied 
Fisher’s exact test to individual-level amplified or deleted events, which 
were counted in a given RAM case if they were identified from at least 
one tumor of that case. We identified RAM frequency-enriched (versus 
TCGA–SKCM) CNA genes as amplified or deleted genes with a false 
discovery rate (FDR)-adjusted P < 0.05 and a higher frequency in RAM 
(versus TCGA–SKCM) cohort.

CNA genes enriched in post (versus pre) acquired MAPKi 
resistance
We compared the patient-level frequency of each amplified or deleted 
gene in post-treatment (acquired-resistant) versus pre-treatment 
melanoma by using Fisher’s exact test. When multiple post tumors 
were available from a given patient, they were considered as an entirety, 
and an amplified or deleted gene was counted in this patient if it was 
identified from at least one of the post tumors. Multiple pre-treatment 
tumors from one patient were also counted as an entirety. We nomi-
nated a post-enriched amplified or deleted gene if its frequency is 
higher in post (versus pre) tumors and the FDR-adjusted P value is less 
than 0.05.

CNA genes enriched in post (versus pre) acquired ICB 
resistance
An amplified or deleted gene enriched in acquired ICB resistance was 
defined by its amplification or deletion frequency in the post tumors 
being >2× that in the pre tumors and by its detection in ≥2 patients’ 
post tumors.

SMGs
We applied MutSig2CV to identify SMGs using each RAM case’s muta-
tional profile as the input and each RAM case (not each tumor sample) 
as an identifier. A mutation exists in a given RAM case if it was identified 
in ≥1 tumor. To circumvent the limitation of a small sample size, we 
inflated type I error by not performing multiple testing39 and identi-
fied by MutSig2CV genes at P < 0.05. To reduce false positives, we 
nominated SMGs by filtering for RNA expression. Based on the mean 
values of normalized expression levels (log2 counts per million (CPM)) 
of RAM tumors, we annotated MutSig2CV SMGs as no expression (mean 
log2CPM < 0), expressed (0 ≤ mean log2CPM < 4) or highly expressed 
(mean log2CPM > 4) and excluded those with no expression. We per-
formed Fisher’s exact test to compare the patient-level frequency of 
each SMG in the RAM versus TCGA–SKCM cohorts and used the FDR 
approach to adjust the P values. We then performed GO enrichment 
analysis with the clusterProfiler package to detect the significant bio-
logical processes for expressed SMGs. Moreover, we identified SMGs 
with MutSig2CV for post tumors from patients with MAPKi-only or 
ICB-only treatments by using each patient’s mutational profile of post 
tumor(s) as input and each patient (not each post tumor) as an identi-
fier. For patients with multiple post tumors, a mutation was considered 

to exist in this patient if it was detected in ≥1 tumor. We defined post/
acquired-resistant SMGs as genes identified by MutSig2CV at P < 0.05 in 
the post tumors and not identified in the patient-matched pre tumor(s).

Phylogeny and mutational signatures
We performed phylogenetic analysis using the PHYLIP program with 
the parsimony algorithm35 and annotated each tree with potential driv-
ers of tumorigenesis and/or resistance. All tumors in each case shared 
early somatic SNVs; a subset shared intermediate SNVs; and late SNVs 
were unique to one tumor. The contribution of each mutational type 
and mutational signature was then determined for early, intermedi-
ate and late mutations through the R package deconstructSigs40 with 
COSMIC SBS signatures version 3.3 as reference. For the pre and post 
MAPKi-only and ICB-only cohorts, we identified mutations unique 
to post tumors per patient, which were then subjected to mutational 
signature analysis. We used the R package MutationalPatterns with 
COSMIC ID signatures version 3.3 as reference to determine ID signa-
tures underlying all identified B2M IDs.

ITH and preferentially mutated genes
We conducted a subclonal analysis for each RAM case using PyClone-VI41 
and assessed each mutation’s cancer cell fraction (CCF). Mutations were 
clonal if the CCF approaches 1; otherwise, mutations were subclonal. 
The ratio of subclonal mutations to all mutations determined ITH. We 
determined preferentially mutated genes for each organ as follows: 
(1) selected for non-synonymous mutations; (2) calculated ΔCCF (see 
formula in Extended Data Fig. 3b) of each mutation in the tumor of 
one specific organ (that is, TA) versus tumors of other organs (that is, 
TB…TN); (3) identified organ-specific enriched mutations with a ΔCCF 
of >0.2 for each RAM case; and (4) defined a gene as ‘preferentially 
mutated genes’ of organ A when organ-A-enriched mutations in this 
gene occurred in ≥3 patients.

WGS-based SV analysis
We mapped WGS reads to GRCh38/hg38 human reference genome 
using BWA-MEM42. SAMtools43 sorted alignments and removed PCR 
duplicates. CNVkit44 with default parameters called CNVs. SVs were 
concordant by two or more of three methods: SvABA45, TIDDIT46 and 
DELLY47. For high-coverage data (>15×), we used default parameters. 
The parameter minimum number of points (-l) was set to 5 in TIDDIT 
for low-coverage data. SVs detected in matched-normal genomes were 
removed from the tumor samples to infer somatic SVs. We estimated 
rearrangement signatures based on a previous classification26. For 
RAM cases with ≥2 tumors, we computed early, intermediate (only 
feasible with RAM12.01 and RAM14006) and late somatic SVs. For each 
case, early and late somatic SVs consisted of SVs common to all tumors 
and unique to each tumor, respectively, and the rest were classified as 
intermediate. We carried out breakpoint junctional sequence analysis 
by examining the presence of homologous sequences. Homologous 
sequences with 0–1 bp, 2–6 bp and >6 bp were attributed to NHEJ, alter-
native NHEJ (microhomologous end joining) and HRR, respectively. 
Genes overlapping with somatic SVs were annotated using AnnotSV48. 
We performed pathway enrichment analysis using the Molecular Sig-
natures Database (MSigDB)49 with pathway datasets listed in KEGG, 
Reactome and Pathway Interaction databases.

Reconstruction of focal amplifications
Focal amplicon identification and elucidation of circular extrachromo-
somal DNAs (ecDNAs) and complex genomic rearrangements (CGRs) 
using WGS data were carried out by AmpliconArchitect50. In brief, we 
determined the list of potential intervals for each amplicon, for which 
copy numbers and SVs were estimated using read depth and discordant 
read signatures. It then constructed a breakpoint graph. Simple cycles 
were then decomposed from the breakpoint graphs and amplicons 
classified into ecDNAs, CGRs and linear amplicons. We used CNVKit 
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to infer the initial set of CNV seed regions. SV view of amplicons was 
generated using functions available in AmpliconArchitect.

WGS-based mutation analysis
Somatic SNVs and IDs were identified using Strelka2 (ref. 51) with 
default parameters and then subjected to mutational and ID signature 
analyses using the R package deconstructSigs40 and MutationalPat-
terns52, respectively, with COSMIC SBS/ID signatures version 3.3 as 
reference. Classification of early, intermediate and late somatic SNVs 
was in accordance with that for WES-based mutations.

RNA-seq analysis
We analyzed single-end and paired-end RNA-seq data3,35 by mapping 
transcriptome reads to the GRCh38/hg38 human reference genome 
using HISAT2. Gene-level counts were estimated by the htseqcount 
program. The normalized expression level of each gene, log2CPM, 
was calculated by the R package edgeR53 and batch corrected with the 
‘removeBatchEffect’ function in the limma R package54. We performed 
principal component analysis (PCA) using the prcomp function in R 
package stats to visualize the clustering of samples.

Organ tissue expression in RAM tumors
We first used the DESeq2 package to detect DEGs between NANs from 
one specific organ versus other organs. We defined organ-specific 
normal gene signatures as the top five significantly upregulated genes, 
all of which were confirmed to display organ-specific expression in the 
human protein atlas55. For RAM tumors, we performed single-sample 
gene set enrichment analysis (GSEA) to generate the enrichment scores 
of the organ-matched normal organ-specific gene signature. CPM 
values were input into the gene set variation analysis (GSVA) program 
using the default ‘kcdf=Gaussian’ option.

DGS analysis
GSEA via the fgsea package used the human hallmark (H) gene sets 
(MSigDB). Genes were pre-ordered by the log2-transformed expression 
fold change metrics (log2FC). We calculated the enrichment nominal P 
values by permutation test (100,000 permutations), with Benjamini–
Hochberg FDR correction for multiple testing. We then performed GSEA 
to identify the DGSs for both tumors and NANs of one organ versus other 
organs. We defined normal-corrected DGSs (NC-DGSs) in tumors of organ 
A as those DGSs detected in the tumors of organ A (versus other organs) 
but not in the NAN compartment of organ A (versus other organs).

DEG analysis
To filter out normal tissue-specific DEGs from bulk tumor transcrip-
tomes, we used RNA-seq derived from each tumor’s organ-matched 
NANs and public datasets of normal organ/tissue gene expressions from 
the Illumina Human Body Map and GTEx. DEGs between a tumor pair 
from two organs (for example, TA versus TB) were corrected for expres-
sion of the same genes between the normal tissue pair of the same two 
organs (for example, NA versus NB). We calculated normal-corrected 
fold change (NC-FC) of each gene between TA versus TB as the FC of this 
gene between TA versus TB divided by the FC of this gene between NA 
versus NB. We defined the genes with NC-FC > 2 or NC-FC < 0.5 as the 
upregulated or downregulated NC-DEGs between these two organs. 
We then computed the recurrence (≥30%) of NC-DEGs by collecting 
NC-DEGs of tumors from one specific organ against all other tumors 
from other organs of the same RAM case across all RAM cases. GO 
enrichment analysis via the ‘clusterProfiler’ package56 identified the top 
five significant GO biological processes for recurrently upregulated or 
downregulated NC-DEGs of each organ-specific metastasis.

Analysis of tumor–macroenvironment interactions
Only organ sites with ≥4 tumor–AN pairs and four tumor–NAN pairs 
available from ≥3 RAM cases were included for this analysis using the 

CellChat R package57. We culled significant ligand–receptor signaling 
that was detected from tumor–AN pairs of one specific organ site but 
not from tumor–NAN pairs of the same organ site. The netAnalysis_
signalingRole_heatmap function was used for visualization. The circle 
plots depicting tumor–AN interactions of each organ were generated 
by applying netVisual_aggregate with the options layout = ‘circle’.

Analysis of immune contextures
We performed single-sample GSEA to generate the absolute enrich-
ment scores of the 12 immune archetypes for each tissue, using 
CPM values of all expressed genes as input for GSVA58 in the default 
‘kcdf=Gaussian’ option. We then assigned each tissue to the highest 
enrichment scoring immune archetype. CIBERSORTx59 was used in 
the ‘absolute mode’ to estimate infiltration levels of 22 immune cell 
types with CPM values as input. We downloaded the gene-level normal-
ized read counts (RSEM, file name: Batch normalized from Illumina 
HiSeq_RNASeqV2) of TCGA–SKCM RNA-seq (inclusive of only BRAF 
or NRAS mutant tumors) from cBioPortal. CIBERSORTx estimated 
the absolute abundance of 22 immune cell types with the normalized 
expression level as an input. We calculated the enrichment scores of 
two signatures, ‘T cell exhaustion’ and ‘type 2 immunity’33, by GSVA 
using the default ‘kcdf=Gaussian’ option.

Immunofluorescence
FFPE RAM tissue sections were heated at 90 °C for 25 minutes and 
immersed in xylene and gradient ethanol to achieve deparaffiniza-
tion and re-hydration. Then, tissue sections were subjected to heat 
at 95 °C 10 mM citrate buffer (pH 6.0) for 15 minutes to retrieve anti-
gens. After permeabilization and blocking with 0.1% Triton X-100/10% 
normal goat serum in PBS for 1 hour, tissue sections were incubated 
with primary antibodies, including anti-GRIK4 (Invitrogen, MA5-
31745, 1:200), anti-GRIN1 (Abcam, ab109182, 1:50), anti-GABRG1 (Inv-
itrogen, PA5-99317, 1:100), anti-GABRA2 (Invitrogen, PA5-106894, 
1:100), anti-IFNκ (Novus, H00056832-M01, 1:50) and anti-IFNAR2 
(Invitrogen, PA5-119915, 1:200), at 4 °C overnight. Visualization was 
achieved with goat anti-mouse IgG highly cross-absorbed secondary 
antibody, Alexa Fluor Plus 488 (Invitrogen, A32723, 1:400) or goat 
anti-rabbit IgG highly cross-absorbed secondary antibody, Alexa Fluor 
555 (Invitrogen, A-21429, 1:500), and nuclei were counterstained by 
DAPI (Sigma-Aldrich, D9542). We captured images on a Leica confocal 
SP8-STED/FLIM/FCS microscope.

Multi-spectral immunofluorescence
Using Ventana Discovery Ultra (Roche) and Opal fluorophores (Akoya 
Biosciences), we deparaffinized 5-µm-thick tissue sections using 
EZ-Prep reagent (Roche) and retrieved antigens in CC1 buffer (pH 
9, 95 °C; Roche). Discovery Inhibitor (Roche) was applied to inhibit 
enzymatic activities, followed by six sequential rounds of staining. 
Each round included the addition of a primary antibody followed by 
secondary antibody detection using either OmniMap anti-Ms HRP 
(Roche, 760-4310, ready-to-use) for mouse or OmniMap anti-Rb-HRP 
(Roche, 760-4311, ready-to-use) for rabbit following the manufacturer’s 
specifications. We amplified signals by using Opal fluorophores at 
1:400. Between rounds of staining, the tissue sections underwent 
heat-induced epitope retrieval to remove the primary/secondary-HRP 
antibody complexes before staining with the subsequent antibody. The 
primary antibodies and corresponding fluorophores are anti-MRT-1 
(Abcam, ab210546, 1:200) in Opal 480; anti-iNOS (Abcam, ab115819, 
1:200) in Opal 520; anti-CD68 (Roche, 790-2931, ready-to-use) in Opal 
570; anti-CD163 (Abcam, ab182422, 1:200) in Opal 620; anti-CD206 
(Cell Signaling Technology, 91992S, 1:200) in Opal 690 and anti-SOX10 
(Abcam, ab227680, 1:200) in Opal 780. We counterstained nuclei with 
Spectral DAPI (Akoya Biosciences, FP1490) and mounted the stained 
tissues with ProLong Diamond Antifade mounting medium (Thermo 
Fisher Scientific). Subsequently, we imaged stained tissues (×20) using 
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the Vectra Polaris imaging system (Akoya Biosciences). After image 
capture, unmixing of the spectral libraries was performed with inForm 
software (Akoya Biosciences). Unmixed images were then imported 
into HALO (Indica Labs) for stitching, cell segmentation and cell phe-
notyping. We analyzed whole tumor regions from each slide. Data were 
exported and graphed with Prism (GraphPad). Representative images 
were exported from HALO after spectral unmixing.

Statistical methods
We conducted statistical analyses in R 4.02, Python 3.8.0, Python 2.7.17 
and Prism.

Reporting Summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The BAM files of WES, WGS and RNA-seq data are deposited in the 
European Genome-phenome Archive (https://www.ebi.ac.uk/ega/) with 
accession number EGAS00001006644. Access requires a data sharing 
agreement. Source data are provided with this paper.
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Extended Data Fig. 1 | Overview of the tissues sampled at rapid autopsies and 
the study design. (a) Numbers and types of tissues, sequencing strategies, and 
metastatic sites are shown for 11 rapid melanoma autopsy (RAM) cases consisting 
of five deceased female patients and six deceased male patients with BRAFMUT 
(n = 7) or NRASMUT (n = 4) cutaneous melanoma. Not represented are RNA-seq 
derived from triplicates and WES derived from non-adjacent normal tissues.  
(b) Inclusion of tissue sets and datasets (grey background) and flow chart 
of analyses performed. RAM is the core tissue or data set, supplemented by 
comparisons (transparent, adjoined arrows pointing in opposite directions) 

with two tissue/data sets. RAM cohort (tumor, n = 22 for WGS, n = 74 for WES, 
n = 93 for RNA-seq; adjacent ‘normal’, n = 68 for RNA-seq; non-adjacent normal, 
n = 67 for RNA-seq, n = 10 for WES). Pre-and-post cohort consists of patient-
matched cutaneous melanoma tumors biopsied pretreatment and post 
acquired resistance (ICB, n = 7 pairs; MAPKi, n = 59 pairs; both subgroups with 
patient-matched normal tissues for all patients; n = 102 tumor WES datasets). 
TCGA–SKCM cohort, only BRAFMUT (n = 233) or NRASMUT (n = 125) tumors included 
(13 tumors with both BRAF and NRAS mutations; total n = 345 tumors). Bolded 
arrows, analyses compared to derive insights into temporality or causality.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Significant copy-number alterations and mutated 
genes enriched in the RAM tumor cohort. (a) Somatic copy-number alterations 
of the RAM cohort (n = 74 tumors) (left). Outermost layer, chromosomal regions; 
second layer, heatmap of G scores (GISTIC 2.0); third layer, P values of amplified 
and deleted regions (red dots indicate significance); innermost layer, frequencies 
of amplified and deleted regions; arrows, locations of functionally important 
genes displaying significant amplification (red) or deletion (blue). (b) Top 50 
significantly altered exomic regions by GISTIC analysis, listed in decreasing order 
of recurrence and annotated with associated genes, across RAM cases/patients, 
organ sites, and treatment histories. AMP, amplification; DEL, deletion. (c) Venn 
diagrams showing overlaps between (i) significantly amplified (left) or deleted 
(right) genes based on GISTIC2.0 analysis of the RAM tumors and (ii) frequency-
enriched, copy number alterations observed in RAM tumors versus TCGA–SKCM 

tumors (BRAF- and NRAS-mutant only). (d) The numbers and proportions of 
significantly mutated genes (SMGs) with no expression (mean log2CPM < 0), 
expresssion (0 ≤ mean log2CPM < 4), or high expression (mean log2CPM > 4) 
among RAM tumors. (e) Venn diagram of overlapping SMGs identified in 
three tumor cohorts: (i) RAM, (ii) clinical post-MAPKi-only (pre-MAPKi SMGs 
subtracted) and, (iii) clinical post-ICB-only (pre-ICB SMGs subtracted). (f) Top 20 
significantly enriched biological processes of SMGs with expression (as defined 
in d). One-sided Fisher’s exact test without multiple comparisons. (g) Venn 
diagrams showing overlapping numbers of SMGs identified in the RAM tumor 
cohort versus SMGs identified in published (PMIDs shown) large-scale melanoma 
and pan-cancer cohorts. P values by one-sided hypergeometric test. (h) Venn 
diagrams showing overlapping numbers of SMGs identified in published pan-
cancer (top) or melanoma (bottom) cohorts.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cancer cell fractions and mutational spectra 
analysis. (a) Circos representation of copy number gains harboring BRAF in 
multiple metastases from eight RAM cases. For each Circos plot (RAM case), 
the outermost layer represents chromosome 7 regions, and the inner heatmaps 
indicate copy number status (spanning region and depth ratio) of tumors with 
BRAF amplification. Arrow indicates the location of BRAF. (b) Schema of sub-
clonal analysis of multi-organ metastases to identify organ-specific enrichment 
of mutations. Each mutation’s cancer cell fraction (CCF) is estimated using 
PyClone-VI. The ∆CCF of each mutation was calculated between tumors of 
organ A versus tumors of other organs in each RAM case. Enriched mutations 

in organ A are defined as those with a ∆CCF difference > 0.2. The recurrence of 
genes harboring organ A-enriched mutations is computed by combining the 
enriched mutations of tumors from organ A across all applicable RAM cases. 
(c) Intratumoral heterogeneity (ITH) levels (fraction of sub-clonal mutations 
per tumor) of RAM tumors by treatment histories. P values, Kruskal–Wallis test. 
ICB, n = 33; MAPKi, n = 14; ICB + MAPKi, n = 27. (d) Distribution of mutant allele 
frequencies (MAF) of early, intermediate, and late mutations. (e) Mutational 
spectra of early, intermediate, and late mutations. (f) Unsupervised clustering 
of mutational spectra among early, intermediate, and late mutations across 
treatment histories, RAM cases/patients, and organ sites.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Structural variations, complex genomic rearrangements 
(CGRs) and extrachromosomal DNAs (ecDNAs) amplicons, and mutations. 
(a) Spectra of rearrangement signatures (RSs) among early or late structural 
variations (SVs) in RAM cases (n = 5 cases; n = 5 sites). (b) Spectra of RSs among 
early, intermediate, or late SVs in a clinical MAPKi-treated, patient-matched 
pre-and-post melanoma cohort (n = 10 patients; n = 10 baseline tumors; n = 17 
disease progression or DP tumors). (c) Distribution of double-stranded DNA break 
(DSB) repair processes (non-homologous end-joining or NHEJ, alternative NHEJ 
or alt-NHEJ, homologous recombination repair or HRR) inferred by breakpoint-
junctional sequence analysis of early or late SVs of RAM cases in (a). (d) Distribution 
of DSB repair processes inferred by breakpoint-junctional sequence analysis of 
early, intermediate, or late SVs of the cohort in (b). For cases with multiple DPs, 
average values are presented. (e) SV plot indicating CGR harboring BRAF in a lung 

metastasis. Horizontal black and red lines indicate respectively genomic segments 
with similar copy numbers and genes. Short vertical lines and arcs indicate 
discordant read pairs linking two amplicons via a structural variant junction. Long 
vertical lines indicate break ends that map from amplicon into low-complexity 
regions which cannot be traced further. Each line/arc representing discordant  
reads is colored based on differences from expected distance or orientation.  
(f) Chromosomal distribution of ecDNAs and CGRs in RAMs (n = 22; one remained 
sensitive to treatment; 21 with acquired MAPKi-resistance) across organs, deceased 
patients, and treatment histories. Circles and Xs represent ecDNAs and CGRs, 
respectively. The size of circles or Xs indicates the number of copy number variant 
segments (reference sizes shown). (g) Distribution of mutant (variant) allele 
frequencies in early, intermediate, or late mutations for RAM12.01 and RAM14006.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Organ-specific, normal tissue-depleted expression 
profiles of metastatic tumors. (a) Correlation between tumor purity and 
enrichment of normal organ-tissue expression in tumor samples (n = 36) across 
the brain, cardio, liver, lung and splenic metastases. Only tumor samples with 
both WES and RNA-seq data available were included in this analysis. P value, 
two-sided Pearson correlation. (b) Differentially expressed gene (DEG) analyses 
of multi-organ metastases. DEGs between tumors from two organs are corrected 
by removing DEGs between non-adjacent normal tissues from the two respective 
organs. In the example of the brain, normal corrected-DEGs (NC-DEGs) are 
identified between brain metastases with respect to (w.r.t.) tumors from all  
other available organ sites in the same RAM case (patient). Recurrence of  

organ-specific, NC-DEGs is computed by combining the NC-DEGs of brain 
metastases across all available cases or deceased patients. (c) Top 25 upregulated 
(red) and downregulated (blue) genes in tumors metastatic to one specific 
organ (brain, cardio, liver, lung, soft tissue, or spleen; displayed horizontally) 
versus other organs (displayed vertically). (d) Top 5 significantly enriched gene 
ontology (GO) terms (biological processes) for the recurrently upregulated or 
downregulated genes in tumors metastatic to one specific organ versus other 
organs. Recurrently upregulated or downregulated genes, ≥ 30% of comparisons 
(in c). (e) Recurrence of tumor enriched, OXPHOS, IFN-induced (in brain) 
and neural-related genes (in liver and spleen) in case-matched, cross-organ 
comparisons for both tumor and non-adjacent normal tissue compartments.
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Extended Data Fig. 6 | Tumor immune microenvironments and 
macroenvironments across multiple organs. (a) Summary of characteristics 
and immune cell features of immune archetypes identified in the RAM tissue 
cohort. (b) Absolute enrichment scores of 14 immune cell types in the tumor, 
adjacent normal (AN), and non-adjacent normal (NAN) tissue compartments. 
Comparisons among organ sites by the Kruskal-Wallis test. Central line of 
each box, median; top and bottom edges of each box, first and third quartiles; 
whiskers extend 1.5x the inter-quartile range beyond box edges. TCGA–SKCM 
labeled as ‘skin’ in the tumor compartment category (n = 344 BRAFMUT or NRASMUT 

melanoma). Tumor compartment (brain, n = 6; cardio, n = 4; liver, n = 18; lung, 
n = 17; lymph node, n = 13; spleen, n = 5; soft tissue, n = 10, skin, n = 344). AN 
(brain, n = 21; cardio, n = 5; liver, n = 17; lung, n = 6; lymph node, n = 6; spleen, n = 5; 
soft tissue, n = 7). NAN (brain, n = 20; cardio, n = 5; liver, n = 15; lung, n = 5; lymph 
node, n = 6; spleen, n = 5; soft tissue, n = 10). (c) Quantifications by multiplex 
immunofluorescence of the ratios of pro-tumorigenic (CD68+CD163+CD206+/−) 
to anti-tumorigenic (CD68+iNOS+/−CD206−CD163−) TAMs in metastatic tumors to 
the brain and to indicated visceral organs in two RAM cases.
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