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An integrated tumor, immune and 
microbiome atlas of colon cancer

The lack of multi-omics cancer datasets with extensive follow-up 
information hinders the identification of accurate biomarkers of clinical 
outcome. In this cohort study, we performed comprehensive genomic 
analyses on fresh-frozen samples from 348 patients affected by primary 
colon cancer, encompassing RNA, whole-exome, deep T cell receptor 
and 16S bacterial rRNA gene sequencing on tumor and matched healthy 
colon tissue, complemented with tumor whole-genome sequencing for 
further microbiome characterization. A type 1 helper T cell, cytotoxic, 
gene expression signature, called Immunologic Constant of Rejection, 
captured the presence of clonally expanded, tumor-enriched T cell clones 
and outperformed conventional prognostic molecular biomarkers, such 
as the consensus molecular subtype and the microsatellite instability 
classifications. Quantification of genetic immunoediting, defined as a lower 
number of neoantigens than expected, further refined its prognostic value. 
We identified a microbiome signature, driven by Ruminococcus bromii, 
associated with a favorable outcome. By combining microbiome signature 
and Immunologic Constant of Rejection, we developed and validated a 
composite score (mICRoScore), which identifies a group of patients with 
excellent survival probability. The publicly available multi-omics dataset 
provides a resource for better understanding colon cancer biology that 
could facilitate the discovery of personalized therapeutic approaches.
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Although there has been a substantial amount of research conducted 
on biomarkers for primary colon cancer, the current clinical guidelines 
in the USA and Europe (including the National Comprehensive Cancer 
Network and European Society for Medical Oncology guidelines) only 

rely on the tumor-node-metastasis staging and the detection of DNA 
mismatch repair (MMR) deficiency or microsatellite instability (MSI), 
in addition to standard clinicopathological variables, to determine 
treatment recommendations1,2. MSI is caused by somatic or germline 
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The ICR outperforms conventional molecular classifications
A modular immune gene signature capturing the continuum of cancer 
immune surveillance, termed as the Immunologic Constant of Rejection 
(ICR)18, had been proposed19. We subsequently optimized and con-
densed it into a fixed 20-gene panel, showing prognostic significance 
in different cancer types (for example, melanoma10, bladder cancer10, 
breast cancer20,21, neuroblastoma22 and soft-tissue sarcoma23). The ICR 
also correlates with response to immunotherapy across multiple cancer 
types, including breast24, melanoma10 and non-small-cell lung cancer25. 
The ICR signature includes gene modules that reflect the activation 
of type 1 T (TH1) cell signaling, expression of CXCR3/CCR5 chemokine 
ligands, cytotoxicity and counter-activation of immunoregulatory 
mechanisms21 (Fig. 1b).

As a first objective, we conducted a validation of the ICR signature 
on the AC-ICAM cohort. This objective was predefined before data were 
generated (prospective validation of retrospectively collected samples; 
Methods provides detail). A consensus-clustering approach based on 
the ICR genes (Extended Data Fig. 2a,b) segregated the cohort in three 
clusters/immune subtypes: ICR high (hot tumors), ICR medium and ICR 
low (cold tumors) (Fig. 1b). Systematic transcriptomic analysis using 
103 previously defined immune traits (Methods) revealed co-clustering 
of these traits into seven different modules (M1–M7) (Extended Data 
Fig. 3), with ICR belonging to M2 (lymphocyte infiltration signature), 
together with other immune signatures, including the tumor inflam-
mation signature9. We then characterized the immune disposition 
in relation to Consensus Molecular Subtypes (CMS)16, a well-defined 
transcriptomic-based classification of colon cancers. CMS categories 
include CMS1/immune, CMS2/canonical, CMS3/metabolic and CMS4/
mesenchymal. Overall, t-distributed stochastic neighbor embedding 
(t-SNE) plotting of the whole expression data segregated CMS1–CMS3 
samples, but a high heterogeneity was observed for CMS4 (Extended 
Data Fig. 2c, left). Within CMS subtypes, ICR varied considerably 
(Extended Data Fig. 2c, right). While most of the CMS1 samples were ICR 
high, implying immune activation26, CMS4 samples were spread across 
the three ICR immune subtypes. According to the anatomic location, a 
progressive right-to-left colon enrichment (for CMS2) and depletion 
(for CMS1) (Extended Data Fig. 2d), was evident16. ICR score (average 
of the 20 ICR genes) and leukocyte subsets enrichment scores, showed 
only a modest decrease from right-to-left colon, with ICR high being 
more prevalent in cecum versus rectosigmoid tumors (Supplementary 
Fig. 1). The enrichment scores of cancer-cell-related pathways10 were 
clearly distinct across CMS subtypes (Extended Data Fig. 2e). ICR score 
correlated negatively with certain cancer-cell pathways in all CMS 
subtypes (for example, WNT-β catenin and NOTCH signaling), whereas 
a positive correlation with immunosuppressive and stromal-related 
pathways (for example, transforming growth factor (TGF)-β, epithelial 
to mesenchymal transition and vascular endothelial growth factor 
signaling) was only observed in CMS4 tumors (Extended Data Fig. 2f).

The abundance of natural killer (NK) cell and T cell subsets was the 
highest in the ICR-high immune subtype across all CMS, whereas other 
leukocyte subsets were more variable (Fig. 1c, heat map). Conversely, 

defective of MMR genes and leads to the accumulation of somatic muta-
tions, neoantigens resulting in immune recognition and high density 
of tumor infiltrating lymphocytes3.

The strength of the in situ adaptive immune reaction, as captured 
for instance by the evaluation of the density and spatial distribution  
of T cells (Immunoscore), is associated with a reduced risk of relapse 
and death independently of other clinicopathological variables, includ-
ing MSI status4,5.

However, despite the overwhelming evidence of the prognostic 
effect of the Immunoscore and other immune-related parameters in colon 
cancer6,7, a lack of association between gene-expression-based estimates 
of immune response and patient survival in The Cancer Genome Atlas 
(TCGA) colon adenocarcinoma (COAD) cohort has been noted by the 
research community8–10. TCGA, for its genomic data richness and cura-
tion, represents the preeminent dataset for omics analyses; however, the 
collecting of comprehensive clinical data, including survival outcomes 
was neither a primary objective of TCGA nor a practical possibility in view 
of its worldwide scope and time constraints11. As such, the limited patient 
follow-up data associated with TCGA-COAD and other TCGA datasets 
has hindered statistically rigorous survival analyses11. In addition, TCGA 
did not include dedicated assays for T cell receptor (TCR) repertoire 
analysis or microbiome characterization, which was later performed 
using bulk DNA and RNA sequencing (RNA-seq) data and includes only 
few healthy solid tissue (for example healthy colon) samples12,13. Further-
more, as TCGA focused initially on cataloging genomic and molecular 
changes that occur in cancer cells, sample inclusion criteria based on 
stringent tumor purity cutoffs were imposed14, potentially biasing the  
population toward less-immune- or stroma-rich tumor specimens.

In recent years, while quantitative features of primary colon  
cancer, including those that are cancer cell intrinsic, immunological, 
stromal or microbial in nature, have been reported to be significantly 
associated with clinical outcomes, individually15–17, knowledge of how 
their interactions impact patient outcome is fragmentary.

To dissect this phenotypic complexity with respect to outcomes, 
we used orthogonal genomic platforms to rigorously profile a large col-
lection of primary colon cancer specimens (unselected for tumor cell 
purity) and matched healthy colon tissue, complemented with curated 
clinical and pathological data annotation and appropriate follow-up.

Results
AC-ICAM overview
Fresh-frozen tumor samples and matched neighboring healthy colon 
tissues (tumor–normal pairs) from systemic treatment-naive, patients 
with histological diagnosis of colon carcinoma were profiled with 
orthogonal genomic platforms. After cross-platform quality control 
(based on whole-exome sequencing (WES) and RNA-seq data) and inclu-
sion criteria checking, genomic data from 348 patients were retained 
and used for downstream analyses (Fig. 1a and Extended Data Fig. 1a,b; 
Methods provides further details). The median follow-up time was 4.6 
years. We refer to this resource as the Sidra-LUMC AC-ICAM: an Atlas 
and Compass of Immune–Cancer–Microbiome interactions.

Fig. 1 | AC-ICAM study design, immune-related gene signatures, immune 
and molecular subtypes and survival. a, Samples from a total of 348 patients 
with colon cancer were included in AC-ICAM. Number of profiled samples 
and resulting analytes are indicated for each platform, including RNA-seq, 
WES, TCR sequencing (immunoSEQ TCRβ assay), 16S rRNA gene sequencing 
and metagenomic analysis from whole-genome sequencing (WGS) to profile 
microbiome composition. An additional 42 tumor samples were profiled with 
16S rRNA gene sequencing that did not have any matched normal tissue available 
(ICAM42). b, Heat map of 20 ICR genes (normalized, log2-transformed expression 
values, z scored by row). Columns represent samples (n = 348) annotated with 
ICR cluster, CMS and MSI status. NA, not available. c, Deconvoluted abundancies 
of distinct infiltrating cell populations by ConsensusTME and their association 
with OS and PFS. Median enrichment scores (z scored by row) within each CMS, 

stratified by ICR cluster are indicated in the dotted heat map (left). HR (center) 
and corresponding 95% confidence intervals (error bars) as calculated by Cox 
proportional hazard regression are displayed as a forest plot (middle) (n = 346 
independent samples from 346 patients). P values for the associated HRs are 
indicated in the bar chart (−log10 P value, right). d, Kaplan–Meier survival curves 
of ICR clusters for OS (left) and PFS (right). e, Kaplan–Meier survival curves of 
CMS for OS (left) and PFS (right). f, Circos plot of the relations between ICR and 
CMS classification. Size of each element is proportional to number of samples 
in each respective category. g, OS Kaplan–Meier curve of ICR clusters within the 
CMS4 subtype. (d,e,g) HRs and 95% confidence intervals are calculated by Cox 
proportional hazard regression. *Overall P value is calculated by log-rank test. 
Vertical lines indicate censor points. P values are two-sided.
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the abundance of fibroblast and endothelial cells was increased in 
CMS4, irrespective of ICR assignment, confirming the increased stro-
mal content in these tumors. Based on statistical significance, the 
association between ICR score and progression-free survival (PFS) was 
stronger than what observed for any stromal cell or leukocyte subsets; 
similar results were obtained for the association with overall survival 
(OS) (Fig. 1c, forest plot).

ICR immune subtypes had distinct OS and PFS, which gradually 
increased from ICR low to high (Fig. 1d). As expected, CMS4 was associated 
with poor survival16; however, ICR reverted this negative trend in survival, 
with ICR high being associated with longer OS even within the CMS4 group 
(Fig. 1e–g). Conversely, CMS did not stratify the ICR-high cluster (Extended 
Data Fig. 2g). ICR remained significantly associated with improved OS in 
the Cox multivariate analysis (together with pathological stage and age), 
whereas microsatellite instability (MSI) status and CMS did not (Sup-
plementary Table 2). The relationships between ICR and CMS depicted 
in Fig. 1 were confirmed in the TCGA colon cancer cohort (TCGA-COAD; 
Supplementary Fig. 2). Overall, in TCGA, the survival differences were 
attenuated (in the PFS analysis) or absent (in the OS analysis) for ICR, 
immune infiltrates and CMS. Nevertheless, ICR still stratified survival in 
patients with CMS4 cancers (Supplementary Fig. 2; PFS analysis). Overall, 
we validated the prognostic role of ICR in colon cancer.

ICR captures tumor-enriched, clonally expanded T cells
It has been reported that only a minority of T cells infiltrating a tumor 
tissue is specific for tumor antigens (less than 10%)27–29. Most intratu-
moral T cells are therefore referred to as bystander T cells. We then 
sought to address why ICR, which measures T cell infiltration and func-
tional orientation without considering antitumor specificity, bears 
such a strong prognostic connotation.

A dedicated deep sequencing of the TRB gene by immunoSEQ 
was performed on all samples (114 tumors and 9 healthy colon tis-
sues) with sufficient DNA for this assay. TRB gene sequence informa-
tion was also extracted from bulk RNA-seq using MiXCR (n = 341)30. 
Among stromal cell and leukocyte subsets (measured by RNA-seq), 
the strongest correlation with the number of conventional (αβ) T cells 
with a productive TCR (immunoSEQ TCR productive DNA templates), 
was observed for estimates of T cell subsets (Fig. 2a), implying robust-
ness of DNA and RNA-based measurements; however, the strongest 
correlation with immunoSEQ TCR productive clonality was observed 
for ICR score (r = 0.61), substantiating the ability of ICR to capture 
additional features beyond T cell abundance (Fig. 2a,b). Despite 
the inherent limitation in terms of sensitivity and specificity of TCR 
repertoire analysis using bulk RNA-seq, MiXCR TCR clonality cor-
related well with immunoSEQ TCR clonality (r = 0.64) as well as with 
ICR (r = 0.40) (Fig. 2b). Consistently, among ICR clusters (overall and 
within CMS categories), the immunoSEQ TCR clonality was the high-
est in the ICR-high group and in the CMS1/immune group among CMS 
subtypes (Fig. 2c and Extended Data Fig. 4a), which has the highest 

proportion of ICR-high tumors (Fig. 1f). Using the whole transcrip-
tome (18,270 genes), six out of the top ten genes positively correlat-
ing with TCR immunoSEQ clonality were represented by ICR genes 
(IFNG, STAT1, IRF1, CCL5, GZMA and CXCL10) (Fig. 2d). Furthermore, 
the network of the top 50 genes correlating with immunoSEQ TCR 
clonality were centered on the ICR master regulators IRF1 and STAT1 
(Fig. 2e). The correlation of immunoSEQ TCR clonality with most of 
the ICR genes was stronger compared to the one observed with mark-
ers of tumor-reactive CD8+ T cells defined by single-cell sequencing 
approaches31 (Fig. 2f,g).

For nine patients, immunoSEQ TCR profiles were available on 
both the tumor and matched healthy colon tissue. This allowed the 
definition of overlap between T cell clones observed in the tumor 
and healthy colon sample for each of these patients (Extended Data 
Fig. 4b,c). The proportion of tumor-enriched T cell clones correlated 
with ICR score (r = 0.75, P = 0.019; Fig. 2h,i). This implies that the T cell 
clones infiltrating ICR-high tumors are highly divergent from those 
infiltrating healthy tissue, whereas T cells in ICR-low tumors are also 
present in healthy tissue.

In conclusion, our analyses demonstrated that the ICR signature 
captures the presence of tumor-enriched, clonally expanded T cells, 
possibly explaining its prognostic connotation.

Somatic alterations associated with weak immune response
We sought to identify potential drivers of immune responsiveness 
related to cancer cell somatic alterations, such as mutations and 
copy-number variations by performing WES (Extended Data Fig. 5a,b) 
on 281 tumor samples and corresponding healthy tissue.

In terms of somatic mutations, the tumor mutational burden (TMB) 
of the AC-ICAM dataset was highly comparable to the TCGA-COAD 
cohort (Fig. 3a), as were the clinicopathological parameters (Supple-
mentary Fig. 3). Unlike the TCGA-COAD cohort, however, inclusion of 
samples in our study did not depend on tumor purity. In fact, stromal 
and immune content (ESTIMATE score) and the infiltration of individual 
lymphocyte subpopulations (Fig. 3b and Supplementary Fig. 4) was 
significantly increased in the AC-ICAM compared to the TCGA-COAD 
datasets, whereas the opposite was observed for cancer-cell-intrinsic 
signatures (Supplementary Fig. 5). This was paralleled by a lower pro-
portion of CMS1 and a higher proportion of ICR low in the TCGA-COAD 
compared to AC-ICAM (Supplementary Fig. 6). While the same pro-
portion of MSI-high (MSI-H) cases was observed in the two cohorts 
(Supplementary Fig. 3), MSI-H TCGA-COAD samples displayed lower 
levels of CD8+ T cells (Supplementary Fig. 6), which is consistent with 
a positive selection of less-immune-infiltrated specimens. We then 
subsampled the cohort 100 times using two methodologies: one was 
random and the other was on a subgroup of samples with an ESTIMATE 
distribution that approximates that of the TCGA-COAD. The random 
subsampling resulted in tripling the number of subsets in which the 
Cox proportional regression showed a statistically significant survival 

Fig. 2 | TCR metrics and correlation with immune-related genes, immune 
and molecular subtypes. a, Correlation between immune gene signatures and 
TCR metrics from immunoSEQ DNA sequencing. b, Scatter-plots visualizing 
correlation between ICR score, productive TCR clonality by immunoSEQ DNA 
sequencing and TCR clonality as determined by MiXCR using RNA-seq data. 
Pearson’s r and P value of the correlations are indicated. The gray area reflects 
the 95% confidence level interval for predictions of the linear regression 
model. c, Visualization of a T cell repertoire with a high clonality (top) and low 
clonality (bottom). Each color represents a unique T cell clone, proportions are 
represented as illustrative circle diagrams. Violin plots show the relationship 
between productive TCR clonality and ICR classification and CMS subtypes, 
center line, box limits and whiskers represent the median, interquartile range 
and 1.5× interquartile range. P values were calculated using a two-sided, unpaired 
Student’s t-test. d, Pearson correlation between all genes (n = 18,270) and TCR 
clonality (colored, FDR < 0.05). Top ten genes with highest positive correlation 

and top ten genes with highest inverse correlation are labeled. FDR calculated 
by Benjamini–Hochberg correction. e, Core network of genes with the highest 
association with productive TCR clonality (top 50 genes) using Ingenuity 
Pathway Analysis. f,g, Pearson’s correlation between immunoSEQ-based TCR 
productive clonality and the expression of ICR genes (f) and genes that express 
markers of tumor-reactive CD8+ T cells (g). The magnitude of significance for 
each correlation is represented by the number in the green square indicating the 
exponent (x) in the scientific notation of the FDR (x10-x). h, Example scatter-plots 
for an ICR-high sample and an ICR-low sample showing overlap between clones 
from the primary tumor and its matching healthy colon tissue sample. Tumor-
enriched T cell clones (>0.1% in the tumor, which are at least 32 times higher in 
the tumor compared to normal) are highlighted. i, Correlation of proportion of 
tumor-enriched T cell clones in the tumor (in percent) with ICR score. Pearson’s r 
and P value of the correlation are indicated in the plot. All P values are two-sided.
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benefit of the ICR score compared to the sampling method approximat-
ing the TCGA-COAD ESTIMATE distribution (P < 0.0001, chi-squared 
test) (Supplementary Figs. 7 and 8). These findings suggest that a lower 

immune-stroma infiltration could have an impact on survival analysis, 
contributing to the lack of correlation between immune traits and OS 
observed in TCGA-COAD (Supplementary Fig. 2).
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An overview of the somatic alterations landscape of the AC-ICAM 
cohort is represented in Fig. 3c. We identified eight cancer-related 
genes32–35 with a mutation frequency of <5% in TCGA-COAD36 and 
Nurses’ Health Study (NHS)-Health Professionals Follow-up Study 
(HPFS) cohorts37 that were enriched in AC-ICAM and that had not been 
previously reported as colon cancer oncogenic mediators38 or cancer 
driver genes for colorectal cancer32 (highlighted in pink in Fig. 3c).

Overall, we observed somatic mutations in 42 genes associ-
ated positively (P < 0.05) with ICR score, whereas no mutations were 
enriched in samples with a lower ICR score (Extended Data Fig. 5c). 
When we stratified the analysis according to the hypermutation status, 
we identified gene mutation frequencies that were associated with both 
a higher (Extended Data Fig. 5d) or lower ICR score (Fig. 3d, orange and 
green squares). Mutations of MAP3K1, which were previously associ-
ated with low ICR in breast and pan-cancer TCGA analysis10,21, were the 
only ones with a negative correlation with ICR score in both hypermu-
tated and non-hypermutated cancers in AC-ICAM. In hypermutated 
tumors, mutations in the homologous recombination repair genes 
BRCA1, BRCA2 and FANCA and the mucinous histology were associated 
with a lower ICR score, consistently with the previously reported enrich-
ment of BRCA1 and BRCA2 somatic mutations in mucinous colorectal 
tumors39 (Fig. 3d, box-plot and Extended Data Fig. 5e).

With respect to somatic copy-number genomic aberrations 
(SCNAs), no clear association was observed with ICR immune classifi-
cation as they were dependent primarily on the mutational load/MSI 
status and secondarily on the CMS status16,40 (Fig. 3e).

Altogether, this analysis identified a relationship between specific 
cancer-related genes and/or histological characteristics and a lower 
level of intratumoral immune activation.

Genetic immune editing refines the prognostic value of ICR
We then proceeded by integrating ICR and TMB data. While hypermu-
tated samples frequently displayed an ICR-high phenotype, a consid-
erable proportion of ICR-high samples (46%) had a low TMB (Fig. 4a), 
which did not impact the OS within or across ICR classes (Fig. 4b and 
Extended Data Fig. 6a,b), coherently with what previously observed 
for the Immunoscore4,5.

While we observed no difference in OS between high versus low 
TMB (Extended Data Fig. 6a) tumors, the presence of genetic immu-
noediting (GIE; calculated as the ratio of the observed versus the 
expected number of neoantigens) was nevertheless associated with 
improved OS (Extended Data Fig. 6c). We then explored a composite 
score, called the immunoediting score (IES), based on both ICR clus-
ter assignment and presence or absence of GIE (IES1 = ICR low and no 
GIE; IES2 = ICR low and GIE; IES3 = ICR high and no GIE; IES4 = ICR high 
and GIE) (Fig. 4c), similar to what was proposed in metastatic colon 
cancer by combining the Immunoscore and GIE41. We propose that 
the combination of the two parameters may more accurately reflect 

the presence of an active, antitumor immune response. Consistently 
with this hypothesis, a progressive increase of OS was observed from 
IES1 to IES4 (Fig. 4d). The additive value of combining ICR with GIE 
was confirmed in ICR-medium samples (Extended Data Fig. 6d), which 
served here as an internal validation. While the TMB was higher in GIE 
versus non-GIE samples, GIE was observed in a significant proportion of 
both hypermutated and non-hypermutated tumors (55.1 versus 38.7%) 
(Supplementary Fig. 9). Patients with IES4 tumors, of which ∼50% were 
hypermutated or MSI-H (Extended Data Fig. 6e), indeed demonstrated 
improved survival, with similar survival across stage I–III (Extended 
Data Fig. 6f). No conclusion could be made in the IES4 stage IV subgroup 
as it only included two patients. No statistically significant difference 
was observed in terms of stage distributions and IES (chi-squared test, 
P = 0.46; Extended Data Fig. 6g). IES remained significantly associated 
with OS in a multivariable Cox model corrected by stage (P = 0.045; 
Extended Data Fig. 6h). IES categories also differed in term of TCR 
clonality, with increasing clonality from IES1 to IES4 (Fig. 4e). The same 
trend was observed within the ICR-medium subgroup, in which the TCR 
clonality was increased (although not significantly) in the GIE samples 
compared to the non-GIE samples (Extended Data Fig. 6i). The positive 
correlation between IES and TCR clonality was statistically significant 
when corrected for ICR score using multiple regression analysis and 
was confirmed by local polynomial regression analysis (Extended Data 
Fig. 6j,k). Overall, these results suggest that the level of immune editing 
(IES) accurately reflects the level of a protective antitumor immune 
response driven by clonally expanded T cells.

Microbiome composition in healthy and colon cancer tissue
We sequenced the 16S rRNA gene using DNA extracted from matched 
tumor and healthy colon tissues from 246 patients (Fig. 5a; AC-ICAM246 
cohort). This dataset was used for the microbiome landmark analy-
sis. Whole-genome sequencing (WGS, median coverage 76×) was per-
formed in a subgroup of these samples (n = 167; Fig. 5b) for technical 
validation. For validation purposes, once the landmark analysis was 
completed, we analyzed 16S rRNA gene-sequencing data from 42 addi-
tional tumor samples for which no matched normal DNA was available 
for this assay (referred here as ICAM42 cohort, see also Fig.1a).

After applying the same abundance filter to AC-ICAM246 and 
TCGA-COAD datasets, AC-ICAM captured all the genera detected in 
TCGA-COAD13, which displayed almost identical co-correlation pat-
terns in the two cohorts, in additional to several other genera (Sup-
plementary Fig. 10).

First, we compared the relative abundance of taxa between 
matched tumor and healthy colon tissues. At the phylum level, we 
observed a significant increase of Fusobacteria in tumor compared 
to healthy samples (Fig. 5a) with a high concordance between the 
two methods (Fig. 5b). At the genus level, as expected42, the strongest 
changes were observed for Fusobacterium (Fig. 5c and Extended Data 

Fig. 3 | Detection of somatic alterations and association with tumor immune 
subtypes. a, TMB in the AC-ICAM cohort and all TCGA cohorts. b, ESTIMATE 
scores in AC-ICAM and TCGA-COAD cohorts. Unpaired two-sided Student’s 
t-test. c, Oncoprint of cancer-related genes that are most frequently somatically 
altered. Samples are ordered by nonsynonymous mutational load. Frequency 
of mutated samples as percentage of the total number of samples is shown on 
the left side of the plot, including the percentage of all somatic alterations, 
including deep deletions, amplifications and single-nucleotide variants (SNVs) 
and for only SNVs. Genes are ordered by frequency of SNVs. Genes with an SNV 
frequency ≥15% are included in the oncoprint, whereas genes with a frequency 
between 5–15% are included in the bar chart below. POLE is included below the 
dotted gray line in the oncoprint to visualize the POLE mutation in relation to 
MSI status. d, Oncoprint of genes with somatic mutations that are associated 
with low ICR score as determined by fitting of binomial linear regression 
models. Binomial linear models were generated for non-hypermutated and 
hypermutated subgroups separately. All genes with P value < 0.05 as predictor 

variable in the regression model are displayed. Orange triangle marks genes that 
were associated with lower ICR score in non-hypermutated samples, whereas the 
blue triangle highlights genes associated with low ICR in hypermutated samples. 
Significance of the association is indicated on the left of the plot. Box-plot of ICR 
score by tumor histology (mucinous versus all other histological classifications) 
in hypermutated samples, mutated in either of the homologous recombination 
(HR) repair genes (BRCA1, BRCA2 and FANCA) are indicated by the color of 
the dots. P value is calculated using unpaired, two-sided Student’s t-test. AC, 
adenocarcinoma; NOS, not otherwise specified; MUT, mutant; WT, wild-type. 
e, Heat map of copy-number changes of the 22 autosomes, with red indicating 
gains and blue indicating losses. Samples are sorted by mutational load category, 
POLE mutation status, ICR, CMS and MSI, consecutively. All P values are two-
sided; n reflects the independent number of samples. For all box-plots, center 
line, box limits and whiskers represent the median, interquartile range and 1.5× 
interquartile range, respectively.
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Fig. 7a), which was mostly represented by F. nucleatum (Fig. 5d). Our 
analysis captured several additional taxa highly enriched in either 
tumor or healthy tissues (false discovery rate (FDR) < 0.05 and fold 

change > 2) (Fig. 5c and annotated in Supplementary Table 5). No major 
difference in α diversity (the variety and abundance of species within an 
individual sample) was observed between tumor and healthy samples 
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(Extended Data Fig. 7b) and only a modestly reduced microbial diver-
sity was observed in ICR-high versus ICR-low tumors (Extended Data  
Fig. 7b). Selenomonas and Selenomonas 3 were the taxa most signifi-
cantly increased in ICR-high versus -low tumors (Fig. 5e, Extended Data 
Fig. 7c and Supplementary Table 6). In terms of survival analysis, the 
highest number of nominally significant associations was obtained 
using tumor data (rather than healthy colon data) and OS as the end 
point (Extended Data Fig. 7d and Supplementary Table 7).

Fusobacterium and F. nucleatum abundances were associated with 
advanced stage17, presence of BRAF mutations43, MSI-H status17,44 and a 
trend toward worse PFS survival (Extended Data Fig. 8)17, as previously 
observed. Instead of a negative correlation with T cells44, Fusobacterium 
or F. nucleatum abundances were associated with cytotoxic T cells and 
NK cells paralleled by an increase of myeloid markers and signaling  
(for example, CD68, TREM1 and IL8 signature). The lack of associa-
tion with a favorable outcome might be explained by the ability of 
F. nucleatum to inhibit T and NK cell killing of tumor cells by binding 
and activating the inhibitory receptors TIGIT45 and CEACAM1 (ref. 46) 

or by induction of IL-8-mediated myeloid activation47 (Extended Data 
Fig. 8 and Supplementary Fig. 11).

A microbiome signature (MBR score) predictive of survival
To detect clinically relevant associations between the microbial 
repertoire and clinical outcome, we aimed at identifying a microbi-
ome signature predictive of survival using genus-level data from 16S 
rRNA gene sequencing, as part of our landmark microbiome analy-
sis (AC-ICAM246, n = 246, testing set). On the AC-ICAM246, we ran a 
multivariable elastic-net OS Cox regression model that selected 41 
features (taxa) with a coefficient different to zero (associated with 
differential risk of death; Methods). We termed this list of taxa and 
associated coefficients MBR classifier (Fig. 5f). A score was assigned 
to each sample (MBR score) by applying the MBR classifier. The MBR 
score displayed stability across different anatomic locations (in both 
tumor and healthy samples (Supplementary Fig. 12), despite the vari-
able abundances of some taxa with respect to anatomic location; Sup-
plementary Fig. 12d).
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Fig. 4 | Tumor mutational burden, immunoediting score, TCR clonality and 
survival. a, Nonsynonymous mutation frequency per mega base (Mb) by ICR 
cluster. P value was calculated using unpaired, two-sided Student’s t-test. Center 
line, box limits and whiskers represent the median, interquartile range and 1.5× 
interquartile range, respectively. b, Kaplan–Meier OS curve for the combination 
of ICR cluster and mutational load category. Mutational load high is defined as 
nonsynonymous mutation frequency of >12 per Mb. Overall P value is calculated 
by log-rank test. c, Scatter-plot of ICR score by genetic immunoediting (GIE) 
value for ICR-high and ICR-low samples. Number of samples in each quadrant is 

indicated in the graph. Gray area delineates ICR scores from 5–9. d, Kaplan–Meier 
for OS by IES. Censor points are indicated by vertical lines and corresponding table 
of number of patients at risk in each group is included below the Kaplan–Meier plot. 
Overall P value is calculated by log-rank test. e, Violin plot of IES by productive TCR 
clonality (immunoSEQ) (left) and MiXCR-derived TCR clonality (right). Spearman 
correlation statistics are indicated above each plot. Significance within ICR low 
and high is indicated. Center line, box limits and whiskers represent the median, 
interquartile range and 1.5× interquartile range, respectively. P values are two-
sided, n reflects the independent number of samples.
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Co-abundance network inference using SparCC48 correlation 
coefficients revealed five distinct clusters of taxa (Extended Data  
Fig. 9a). Taxa enriched in ICR-high versus ICR-low samples or in tumor 
versus healthy colon samples displayed high co-abundance (enriched 
in C3) and the same was observed for taxa enriched in healthy colon 
or in ICR-low samples (enriched in C1; Extended Data Fig. 9b). Low and 
high-risk taxa (according to MBR classifier) were spread across the dif-
ferent clusters (Extended Data Fig. 9b). Only marginal differences in 
survival were observed using estimates based on the cumulative abun-
dance of genera belonging to each cluster identified by the network 
analysis (Extended Data Fig. 9c). The only survival association with an 
FDR <0.1 was detected for C5 (OS analysis, P = 0.017, hazard ratio (HR) 
1.6, high versus low abundance, FDR = 0.085). C5 was constituted by 
three taxa, including one MBR-high-risk genera and no MBR-low-risk 
genera. Overall, these results suggest that clinical outcome is influ-
enced by microbiome diversity, which is captured by the MBR classi-
fier. Consistently, a high α diversity was associated with a prolonged 
OS FDR < 0.05 for all the α diversity estimates (Extended Data Fig. 9d).

Because of the strong contribution of Ruminococcus 2 to the MBR 
classifier, we sought to identify the actual Ruminococcus species. In 
WGS data, the Ruminococcus genus mostly consisted of Ruminococcus  
bromii, which also had the strongest correlation with Ruminococcus 2 
(Fig. 5g and Extended Data Fig. 10a). R. bromii presence was confirmed 
by PCR, which had strong correlation with sequencing data (for exam-
ple, 91% concordance between WGS and PCR; Extended Data Fig. 10b,c).

Validation of the MBR score
A low MBR score (MBR < 0, MBR low), in our training cohort (ICAM246, 
training set) was associated with a considerable (85%) reduction of risk 
of death (Fig. 5h). We confirmed the association between MBR low 
(risk) and prolonged OS in two independent testing sets (ICAM42 and 
TCGA-COAD cohorts), individually and combined (Fig. 5h,i, testing 
sets). The performance of the final MBR model was lower on the test 
sets than on the training set, which is typical for machine-learning 
models (Extended Data Fig. 10d); however, the concordance index 
of the final MBR model in both the test sets were superimposable to 
the ones obtained via cross-validation of the best MBR model on the 
training set (Extended Data Fig. 10d), substantiating that the model 
can generalize well to new (unseen) data.

A similar, but less-pronounced trend in terms of reduction of the 
risk of death was detected by simply using intratumoral Ruminococcus 
2 (based on 16S data) or R. bromii presence (based on either PCR or WGS 
data) (Extended Data Fig. 10e). Intratumoral Ruminococcus 2 and MBR 
score, which strongly correlated with each other, were similar in tumor 
and healthy colon tissues (Fig. 5j).

The relationship between the microbiome and clinical outcome 
pointed to an interaction between the microbiome and biological 
processes occurring in the tumor. When correlating immune trait 
values with the MBR score, the strongest (inverse) correlation with 

the MBR score was observed for signatures capturing the prevalence 
of CD103+ dendritic cells (DCs) with unique antigen processing and 
presentation capabilities for efficient antigen cross-presentation 
to CD8+ T cells (CD103+, mean signature (P = 0.003) and CD103+ 
signature to CD103− signature ratio (P = 0.001)) (Fig. 6a and Sup-
plementary Table 8)49. Consistently, correlation analyses between 
individual taxa included in the MBR classifier and immune traits dem-
onstrated, with few exceptions, a positive correlation with myeloid 
signatures and a negative correlation with the CD103+/− ratio for taxa 
with positive MBR coefficient (higher risk of death), while the reverse 
was observed for taxa with a negative MBR coefficient (Extended 
Data Fig. 10f).

Development and validation of the mICRoScore
We then sought to develop a multi-omics parameter that could capture 
a subgroup of patients with exceptional survival.

Among single-omics parameters that were significant in the uni-
variate Cox regression OS analysis (ICR, MBR and GIE categories), only 
ICR and MBR were retained by the multivariable Cox models (P < 0.05; 
Supplementary Table 9) adjusted for age, CMS subtypes, stage and 
MSI status. MBR and ICR were therefore combined into an integrated 
score (mICRoScore).

Indeed, in the training cohort (AC-ICAM246), the co-presence 
of ICR high and MBR low (mICRoScore high) identified a subgroup of 
patients with a 97% 5-year OS, with only three deaths detected at a later 
follow-up (Fig. 6b) that were not related to colon cancer (Extended 
Data Fig. 10g). No deaths were observed during the entire follow-up 
in patients with mICRoScore high in the TCGA-COAD cohort (n = 107, 
testing set; Fig. 6c). In both the training (AC-ICAM) and the testing 
(TCGA-COAD) sets, the mICRoScore-high group consisted of patients 
at different stages (Extended Data Fig. 10h). The additive effect of the 
two parameters was due to the ability of MBR to segregate ICR high 
into two distinct risk categories (Fig. 6d,e and Extended Data Fig. 10i).

Discussion
Our multi-omics approach allowed us to thoroughly examine the 
molecular characteristics of immune responsiveness in colon cancer 
and uncover interactions between the microbiome and the immune sys-
tem. We found that a TH1 cell/cytotoxic immune activation, as captured 
by the ICR, immunoediting, concurrent expansion of TCR clonotypes 
and specific intratumoral microbiome composition, were associated 
with a favorable clinical outcome. ICR was associated with OS indepen-
dently of MSI and CMS, which both lost statistical significance in the 
multivariate analysis. Its prognostic impact increased when combined 
with a metric capturing the genetic immunoediting (IES).

Using deep TCR sequencing in tumor and healthy tissues, we 
showed that the prognostic effect of ICR could be due to its ability to 
capture the presence of tumor-enriched and possibly tumor-antigen 
specific, T cell clones.

Fig. 5 | Microbiome in tumor and healthy tissue and relationship with ICR 
and survival. a, Microbiome composition at phylum level using 16S rRNA 
gene-sequencing estimates in tumor and matched healthy colon tissue; samples 
are ordered by difference in Fusobacteria between tumor and healthy tissue. 
b, Side-by-side microbiome composition at the phylum level using 16S rRNA 
gene sequencing and WGS estimates in colon cancer tissue. Bar plot shows 
mean of Spearman correlation between the two techniques for each phylum, 
error bar represents s.d. c, Differences between tumor and matched healthy 
colon genera (paired Mann–Whitney U-test). *Previously described associations 
(Supplementary Table 5). d, Pie chart reflects the contribution of each individual 
species to the total Fusobacterium sp. as determined by WGS data; color gradient 
reflects the Spearman correlation between the relative abundance of individual 
species derived from WGS and the relative abundance of Fusobacterium 
determined by 16S rRNA gene sequencing. e, Differences of microbiome genera 
between ICR high and ICR low tumor samples (unpaired Mann–Whitney U-test). 

f, The coefficients of the 41 taxa in the MBR classifier as selected by the OS 
elastic-net Cox regression model. Family is indicated between parentheses. 
*The taxonomical order is indicated between brackets, as family was unassigned 
(uncultured). g, Pie chart as in d but for Ruminococcus sp. h, Forest plot showing 
the HR (center), 95% confidence intervals (error bars) and corresponding P value 
calculated by Cox proportional hazard regression analysis for OS of the 16S MBR 
classifier scores in training and test sets. i, Kaplan–Meier curves corresponding 
to h. j, Correlation between MBR score in the tumor versus relative abundance 
of Ruminococcus 2 (top), relative abundance of Ruminococcus 2 in healthy 
tissue versus tumor (middle) and MBR score in tumor versus healthy colon 
(bottom). The gray band reflects the 95% confidence interval for predictions of 
the linear regression model between the plotted variables. P value for Spearman 
correlation for relative abundance and P value for Pearson correlation for MBR 
scores are indicated. OS. All P values are two-sided; n reflects the independent 
number of samples.
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The AC-ICAM addressed the limitations of the TCGA colon can-
cer cohort noted by the scientific community8–10 and corroborated 
by our comparative analyses. While several studies have described 

associations between response to immunotherapy and the gut micro-
biome50 and identified cancer-specific microbiome compositions12,13,51, 
comprehensive microbiome analyses focused on patients with primary 

−1
0
1

R. bromii

R. sp 5 1 39BFAA

R. lactaris

R. champanellensis

R. callidus

Correlation (ρ) with
Ruminococcus 2, n = 167
(16S)

b

g

a

Percent

0 25 50 75 1000255075100

Percent
0 25 50 75 100

16S - Tumor
(n = 246)

WGS
(n = 167)

16S rRNA seq
(n = 167)

16S - Normal
(n = 246)

0255075100

Phylum

c

log2 ratio 

Enriched in normal

–l
og

10
 F

D
R

Enriched in tumor

d

Ruminococcus 2 (Ruminococcaceae)
Treponema 2 (Spirochaetaceae)

Streptococcus (Streptococcaceae)
Phascolarctobacterium (Acidaminococcaceae)

Moryella (Lachnospiraceae)
Coprococcus 2 (Lachnospiraceae)

Ruminococcus 1 (Ruminococcaceae)
[Eubacterium] ventriosum group (Lachnospiraceae)

Actinomyces (Actinomycetaceae)
CAG−56 (Lachnospiraceae)

Ruminiclostridium 6 (Ruminococcaceae)
Barnesiella (Barnesiellaceae)
Prevotella 9 (Prevotellaceae)

Family XIII AD3011 group (Family XIII)
Uncultured (Prevotellaceae)

Peptostreptococcus (Peptostreptococcaceae)
Candidatus Soleaferrea (Ruminococcaceae)

Uncultured (Rhodospirillales*)
Leptotrichia (Leptotrichiaceae)

Veillonella (Veillonellaceae)
UBA1819 (Ruminococcaceae)

Lachnospiraceae NK4A136 group (Lachnospiraceae)
Erysipelotrichaceae UCG−003 (Erysipelotrichaceae)

Sellimonas (Lachnospiraceae)
Coprococcus 1 (Lachnospiraceae)

Terrisporobacter (Peptostreptococcaceae)
Olsenella (Atopobiaceae)

Oscillibacter (Ruminococcaceae)
Dialister (Veillonellaceae)

Parabacteroides (Tannerellaceae)
Parvimonas (Family XI)

[Eubacterium] eligens group (Lachnospiraceae)
Bifidobacterium (Bifidobacteriaceae)

Hungatella (Lachnospiraceae)
Mogibacterium (Family XIII)

Caproiciproducens (Ruminococcaceae)
Erysipelatoclostridium (Erysipelotrichaceae)

Halomonas (Halomonadaceae)
Odoribacter (Marinifilaceae)

Solobacterium (Erysipelotrichaceae)
Ruminococcaceae NK4A214 group (Ruminococcaceae)

−0.04 −0.02 0 0.02
Coe¢icient

Low risk High risk

 Enriched in ICR low Enriched in ICR high

f

Correlation (ρ) with
Fusobacterium, n = 167
(16S)

e

F. necrophorum

F. nucleatum 

F. periodonticum
F. ulcerans

−1
0
1

0.60.40.20 0.8

Tumor

i

h

Training set 
AC-ICAM246 (n = 246)

Test set 1
ICAM42 (n = 42)

Test set 2
TCGA-COAD (n = 117)

Full test set
Test set 1 + 2 (n = 159)

1.8 × 10–13

0.15

0.095

0.032

0.05 0.20 1.00

HR- 95% CI HR OS

16S/WGS - MBR score
(low risk versus high risk)

WGS - MBR score
(low risk versus high risk)

16S - MBR score
(low risk versus high risk)

16S - MBR score
(low risk versus high risk)

Platform - Metric CohortP valueHR

0.15

0.54

0.49

0.53

r = 0.64, P = 8.3 × 10–30

(n = 246)

−0.25

0

0.25

0.50

−0.25 0 0.25 0.50

MBR score - normal

M
BR

 s
co

re
 - 

tu
m

or

ρ = –0.44, P = 5 × 10–13

(n = 246)

−0.25

0

0.25

0.50

0 0.03 0.06 0.09

Relative abundance
Ruminococcus 2 - tumor

M
BR

 s
co

re
 - 

tu
m

or

0

0.03

0.06

0.09

0 0.03 0.06 0.09

ρ = 0.8, P = 9.4 × 10–57

(n = 246)

Relative abundance
Ruminococcus 2 - tumor

Re
la

tiv
e 

ab
un

da
nc

e
Ru

m
in

oc
oc

cu
s 

2 
- n

or
m

al

j

Campylobacter*
Streptococcus*

Leptotrichia*
Gemella* Selenomonas 3*

Selenomonas*

Hungatella Selenomonas 4*
Treponema 2*

Eikenella*
Lachnoanaerobaculum

Lachnospiraceae
NK4A136 group

Anaerosporobacter Alcanivorax

Parabacteroides*

Alistipes*

Prevotellaceae 
NK3B31 group

0

5

10

15

20

−2.5 0.0 2.5

log2 ratio 

–l
og

10
 F

D
R

Fusicatenibacter
SelenomonasSubdoligranulumBlautia

[Eubacterium] halli group
Anaerostipes Selenomonas 3

0

0.5

1.0

−5 0 5

FDR = 0.05

FDR = 0.1

0

0.50

1.00

0 30 60 90
Time in months

O
S 

pr
ob

ab
ili

ty

125 85 34 13
121 113 66 40

Number at risk

0 30 60 90
Time in months

26 16 7 6
16 12 9 6

Number at risk

0 30 60 90
Time in months

98 45 11 6
58 35 14 9

Number at risk

Training set AC-ICAM246 
(n = 246)

Full test set- test set 1 + 2 
(n = 159)

Test set 1- ICAM42 (n = 42) Test set 2- TCGA-COAD (n = 117)

0 30 60 90
Time in months

72 29 4 0
42 23 5 3

Number at risk

High risk (MBR > 0, MBR high)

MBR model training and testing (tumor samples)  

Low risk (MBR < 0, MBR low)

Epsilonbacteraeota

Actinobacteria
Bacteroidetes
Cyanobacteria

Euryarchaeota
Firmicutes
Fusobacteria

Proteobacteria
Spirochaetes
Synergistetes
Tenericutes
Verrucomicrobia
Other

Correlation (ρ) 16S versus WGS, n = 167

Fusobacterium*

Halomonas F. varium
F. gonidiaformans
F. mortiferum

0

0.50

1.00

O
S 

pr
ob

ab
ili

ty

0

0.50

1.00

O
S 

pr
ob

ab
ili

ty

0

0.50

1.00

O
S 

pr
ob

ab
ili

ty

Normal (n = 246) Tumor (n = 246)

n = 246

ICR low (n = 59) ICR high (n = 59)

http://www.nature.com/naturemedicine


Nature Medicine | Volume 29 | May 2023 | 1273–1286 1283

Resource https://doi.org/10.1038/s41591-023-02324-5

colon cancer are lacking. By analyzing the tumor microbiome composi-
tion using 16S rRNA gene sequencing in AC-ICAM samples, we identi-
fied a microbiome signature (MBR risk score) with strong prognostic 
value. This signature was derived from tumor samples, but there was 
a strong correlation between the healthy colon and tumor MBR risk 
scores, suggesting that this signature may capture the patient’s gut 
microbiome composition.

Additional analysis and technical validation using orthogonal 
platforms such as WGS and PCR indicated that the detected signal 
was driven by R. bromii. Correlation analyses between the MBR risk 
score and immune traits suggest a specific positive modulation of 
CD103+ dendritic cells, which are critical for antitumor immune 
responses. We speculate that the identified consortium of bacteria 
favors optimal T cell priming mediated by CD103+ dendritic cell acti-
vation and suppression of the myeloid compartment, leading to the 
induction of a partially protective antitumor immunity.

By combining the ICR and MBR scores, we were able to identify 
and validate a multi-omics biomarker (mICRoScore) that could predict 
exceptionally long survival in patients with colon cancer.

Studies on the gut microbiome compositions of patients receiv-
ing immunotherapy, including anti-CD19 CAR T cell treatment52, have 
shown favorable associations with Ruminococcus and or R. bromii 
and response53–55. Here, we propose the R. bromii as the possible link 
between prognostic and predictive microbiome-based signatures. Our 
findings support the testing of adjuvant microbiota-targeted/dietary 
interventions56,57 aimed at decreasing the risk of recurrence and death 
in patients with colon cancer through the induction of an antitumor 
response against minimal residual disease. These approaches might 
also be investigated in the context of neoadjuvant immunotherapy58.

For example, data from breast and sarcoma mouse models suggest 
that the gut microbiome can be enriched with R. bromii through the 
administration of castalagin (an ellagitannin found in certain aliments 
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Fig. 6 | Correlation between MBR score and immune traits and development 
and validation of the mICRoScore. a, Visual representation of the associations 
between immune modules, immune categories, OS, PFS and the Pearson 
correlation between the MBR score and the immune traits. Inset highlights  
the significant Pearson correlations (P < 0.05), associations with FDR  
< 0.2 are indicated with a yellow dot. IFN, interferon; ES, enrichment score.  

b,c, Kaplan–Meier curves of OS by mICRoScore in AC-ICAM (b) and TCGA-
COAD (c). d,e, Kaplan–Meier curve of OS in ICR-high samples by mICRoScore 
in AC-ICAM (d) and TCGA-COAD (e). Overall P value is calculated by log-rank 
test. Vertical lines indicate censor points. HRs and 95% confidence intervals are 
calculated by Cox proportional hazard regression. All P values are two-sided;  
n reflects the independent number of samples.
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including the berry Myrciaria dubia), resulting in enhanced antitumor 
immunity, possibly mediated by boosting antigen presentation and 
T cell response59.

Administration of Myrciaria dubia powder concomitantly with 
immune checkpoint inhibitors is currently being explored in patients 
with melanoma and non-small-cell lung cancer (NCT05303493).

Our study has some notable limitations. While the cohort was rela-
tively large and compares favorably with the TCGA-COAD colon cohort 
(for example, ~50% OS events more in AC-ICAM versus TCGA-COAD60), 
it remains underpowered for stage-specific survival analysis. For the 
mICRoScore, we were unable to assess and quantify potential data 
overfitting as we did not reserve internal samples for this purpose; 
however, we observed a good performance of the mICRoScore in the 
external validation cohort (TCGA-COAD), which may be due to the 
combination of two biologically relevant variables (ICR and MBR) 
into the model. This combination likely contributed to the model’s 
impact and suggests that the mICRoScore might be generally appli-
cable. We did not perform in situ spatial profiling, which could reveal 
more complex spatial immune–microbiome interactions61. Additional 
research is needed to confirm the validity of the mICRoScore and inves-
tigate its potential applications in clinical treatment decision-making. 
Both the mICRoScore and IES could be tested in the context of cancer 
immunotherapy as predictive biomarkers. Data from the NIBIT-M4 
trial and publicly available datasets suggest that the combination 
of the genetic immunoediting and ICR (IES) has predictive value in 
melanoma patients treated with immune checkpoint inhibitors62. The 
quantification of the immunoediting using WES data is an emerging 
subject of research63,64. These scores might also be explored to define 
a subgroup of patients with stage III tumors that could be eligible for 
a reduced chemotherapy regimen.

In conclusion, the AC-ICAM provided insight into the biology of 
colon cancer that could be utilized to establish clinical-grade prog-
nostic or predictive biomarkers and to identify targeted therapies for 
personalized treatment approaches. We hope that further exploita-
tions of our resource by physicians and scientists around the globe 
will lead to the discovery of new concepts within cancer research, 
ultimately improving life expectancy of patients suffering from this 
frequent and aggressive disease.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-023-02324-5.
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Methods
Samples used in this observational cohort study (tumor tissue and 
matched healthy colon tissue, AC-ICAM cohort) are from patients 
with colon cancer diagnosed at Leiden University Medical Center, 
the Netherlands, from 2001 to 2015 that did not object for future use 
of human tissues for scientific research and that were consented on 
biospecimen protocol ‘Immunology and Genetic of colon Cancer’ 
approved by the Committee on Medical Ethics of Leiden University 
Medical Center (study protocol no. P00.193 (06/2001)). Snap-frozen 
tumor and healthy colon tissue were stored at −80°C until processing 
for DNA and RNA extraction. DNA and RNA from those samples were 
extracted at Leiden University Medical Center and then transferred 
to Sidra Medicine for sequencing together with de-identified clinico-
pathological data of the corresponding patients (Sidra Medicine IRB 
study protocols no. 1768087-1 (04/2016)/1602002725 (06/2022)). All 
genomic assays (WES, WGS, 16S RNA gene sequencing, RNA-seq, TCR 
sequencing and PCR) were performed at Sidra Medicine.

Patient information was de-identified and patient samples 
were anonymized and handled according to the medical guidelines 
described in the Code of Conduct for Proper Secondary Use of Human 
Tissue of The Federation of Dutch Medical Scientific Societies. This 
research was performed according to the recommendations outlined 
in the Helsinki Declaration.

For each assay we included all samples that had sufficient material 
(for example, DNA or RNA) available at the time of processing consider-
ing the need to preserve aliquots for additional/future assays.

Collection of biological samples
Snap-frozen tumor and healthy colon tissue were collected from 
patients with colon cancer who underwent surgical resection of the 
primary tumor between 2001 and 2015 at Leiden University Medical 
Center. Patients who received radiotherapy and/or chemotherapy 
before resection and patients with a primary tumor of non-epithelial 
origin were excluded. Based on tissue availability, successful nucleic 
acid extraction and subsequent sequencing quality control (QC), 
data from 348 patients were retained in the final AC-ICAM cohort 
(Extended Data Fig. 1). Clinicopathological and follow-up data were 
retrospectively collected from hospital records. Patient information 
was de-identified and patient samples were anonymized and handled 
according to the medical guidelines described in the Code of Conduct 
for Proper Secondary Use of Human Tissue of The Federation of Dutch 
Medical Scientific Societies. Extensive clinicopathological and survival 
data of the cohort are available (Supplementary Table 1).

Statistical analysis
Details of the statistical analysis are described in each method section. 
All P values were two-sided. Multiple testing corrections were per-
formed by calculating the FDR using the Benjamini–Hochberg method, 
as appropriate. For missing data, no data imputations were used.

Survival analysis
Kaplan–Meier curves were generated using ggsurvplot from R pack-
age survminer (v.0.4.9). HRs between any two groups of interest and 
corresponding P values based on a Cox proportional hazard regression 
analysis and 95% confidence intervals (95% CI), were calculated using 
R package survival (v.2.41–3). Cox proportional hazard analysis was 
only computed when both groups of comparison consisted of at least 
ten patients. Overall P value for comparison of survival between two 
or more groups was also calculated by log-rank test.

Multivariate Cox regression was performed using conventional 
clinical and biological variables, as explained in the specific section. 
Separate multivariate Cox regression analyses were run including age 
(continuous), pathological stage (ordinal), MSI status (binary) and 
CMS (categorical). Additional variables that were found significant in 
univariate Cox proportional hazard regression analysis were added 

to these models. These variables included, ICR score (continuous) or 
ICR cluster (ordinal), GIE (binary) and MBR group (binary). Forest plots 
were generated using ‘forestplot’ (v.1.7.2).

Tissue processing
Tumor and healthy tissue samples (unselected for tumor cell purity) 
were sectioned in a cryostat until the surface area was sufficient to assess 
tissue morphology by H&E staining. Non-target tissue was removed by 
macrodissection, including necrotic or adipose tissue and for tumor tis-
sue samples, healthy colon tissue. When macrodissection was required, 
an H&E-stained slide was examined after this to confirm removal of 
unwanted tissue types. Frozen tissue was then sectioned at 20 µm until 
approximately ~10–15 mg was collected per sample. A final section 
post-sample processing was made for H&E staining. The collected tissue 
was stored at −80 °C for a few months until DNA and RNA extraction.

QC metrics of RNA and DNA data were superimposable between 
samples collected over the years (Supplementary Figs. 13 and 14).

DNA and RNA extraction
Nucleic acid extraction from fresh-frozen tissue sections was per-
formed using the QIAGEN AllPrep DNA/RNA Mini kit following the 
manufacturer’s protocol. This process was fully automated on a QIA-
GEN QIAcube. β-mercaptoethanol (β-ME) was added to the lysis buffer 
on the day of use. Lysis was performed by completely submerging the 
sections in 350 µl lysis buffer. Tubes were rotated for at least 1 h at room 
temperature to allow complete homogenization. QIAcube AllPrep DNA/
RNA Mini kit Standard (v.2) program was run, after which DNA and RNA 
samples were stored at −80 °C. The same DNA was used for human and 
microbiome sequencing. Samples were shipped from Leiden University 
Medical Centre (LUMC), The Netherlands to Sidra Medicine, Qatar 
under a temperature-controlled environment at −80 °C (for 4 d). Sam-
ples from 361 patients were sequenced by WES and RNA-seq. Samples 
from 13 patients were excluded as they did not pass QC, including con-
cordance between healthy and tumor samples (Extended Data Fig. 1).  
The final cohort included 348 patients, for which RNA-seq for tumor 
samples was possible and passed QC. A subset of samples from these 
patients were processed with additional assays including WGS, TCR 
sequencing and 16S RNA gene sequencing, based on the availability 
of samples for these assays, as described in the following sections.

RNA sequencing
The integrity and concentration of the extracted RNA was assessed 
on the LabChip GXII Touch HT using the RNA Assay and the DNA 5K/
RNA/Charge Variant Assay LabChip (PerkinElmer). Sequencing mRNA 
libraries were constructed from 500 ng of total RNA using the Illumina 
TruSeqStranded mRNA kit (Illumina). cDNA was synthesized using 
Superscript IV Reverse Transcriptase (Thermo Fisher) and amplified 
for 15 cycles after ligating with TruSeq RNA Combinatorial Dual-Index 
adapters. Clonal amplification and cluster generation was performed 
using Illumina’s cBot 2 System. Sequencing libraries were run on Illu-
mina HiSeq platforms using 75 bp (93% of samples) or 150 bp (7% of 
samples) paired-end reads at the Clinical Genomics Laboratory, Sidra 
Medicine. We targeted a coverage of 20 M reads per sample. Obtained 
coverage was 18.4 M (s.d. 4.7 M).

Transcriptomic data processing
Data conversion and demultiplexing was performed using bcl2fastq2 
conversion software (v.2.20). FastQC was run to perform QC checks 
on the raw sequence data (Python v.2.7.1, FastQC v.0.11.2). Trimming 
of adaptor sequences was performed using flexbar (v.3.0.3) using Illu-
mina primers FASTA file. Subsequently, reads were aligned to reference 
genome GRCh38.93 by Hisat2 (v.2.1.0) using SAMtools (v.1.3). After 
alignment, QC was performed to verify quality of the alignment and 
paired-end mapping overlap (Bowtie2, v.2.3.4.2). Finally, the feature-
Counts function of subreads (v.1.5.1) was used to count paired reads per 
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genes. Gene expression normalization was performed within lanes, to 
correct for gene-specific effects (including GC content) and between 
lanes, to correct for sample-related differences (including sequenc-
ing depth) using R package EDASeq (Exploratory Data Analysis and 
Normalization for RNA-seq) (v.2.12.0). The resulting expression values 
were quantile normalized using R package preprocessCore (v.1.36.0). 
All downstream analysis of the expression data was performed using 
R (v.3.5.1, or later).

Whole-exome sequencing
DNA concentrations were quantified using Quant-iT broad range dsDNA 
Assay (Thermo Fisher) on the FlexStation 3 Microplate reader (Molecular 
Devices). DNA of both tumor and matched normal samples was available 
for 294 patients. Whole-exome libraries were constructed with the Agilent 
SureSelect XT Target enrichment kit and the exonic DNA was captured 
using the Agilent SureSelect XT Human All Exon V6r2 capture library for 
60-Mb exonic regions. Libraries were constructed using 250 ng of DNA 
and were sequenced on Illumina’s HiSeq 4000 platform using 150 bp 
paired-end reads (150PE) at the Genomics Core, Sidra Medicine. Reads 
were mapped to reference genome hs37d5 (1000 Genomes Phase2 Refer-
ence Genome Sequence) based on GRCh37/hg19 using BWA (v.0.7.12)65. 
WES (200× for tumor and 100× for normal) had an on-target sequenc-
ing rate of 65–70%. The median (across samples) of the average target 
coverage (per sample) was 129× (interquartile range (IQR) 18) for tumor 
samples and 69× (IQR 10) for normal samples (Extended Data Fig. 5a).  
In tumors, sequencing achieved >20-fold coverage of at least 99% of 
targeted exons and >70-fold in at least 81% targeted exons. In healthy 
samples, sequencing achieved >20-fold coverage of at least 94% of tar-
geted exons and >30-fold in at least 84% targeted exons. Adaptor trim-
ming was performed using the tool trimadap (v.0.1.3). ConPair was run 
to evaluate concordance and estimate contamination between matched 
tumor–normal pairs. In eight of the pairs a mismatch was detected 
and for five pairs, a potential contamination was indicated. HLA typing 
data were used to validate these results. All potential mismatches and 
contaminations were excluded, retaining 281 patients for data analysis.

TCGA data
RNA sequencing. RNA-seq data (raw counts) from TCGA were down-
loaded and processed using R package TCGAbiolinks (v.2.18.0). Gene 
symbols were converted to official HGNC gene symbols and genes 
without symbol or gene information were excluded. Normalization was 
performed within lanes, to correct for gene-specific effects (including 
GC content) and between lanes, to correct for sample-related differ-
ences (including sequencing depth) using R package EDASeq (v.2.12.0) 
and quantile normalized using preprocessCore (v.1.36.0). After nor-
malization, samples were extracted to obtain a single primary tumor 
tissue (TP) sample per patient. Clinical data were sourced from the 
TCGA Pan-Cancer Clinical Data Resource11 and survival events OS and 
progression-free interval (relabeled here as PFS) were used. ICR cluster-
ing and calculation of ICR score was performed exactly as described 
for the AC-ICAM cohort. For the TCGA-COAD cohort, the optimal num-
ber of clusters for best segregation based on the Calinski–Harabasz 
criterion was three. CMS classification of TCGA-COAD samples was 
performed as described for the AC-ICAM cohort. The Single Sample 
Predictor by ‘CMSclassifier’ (v.1.0) was used for comparison of CMS 
classification between AC-ICAM and TCGA-COAD.

A renormalized matrix of both TCGA-COAD and AC-ICAM datasets 
was generated by merging the raw counts matrices and performing the 
EDASeq normalization, as described above, on this combined matrix. 
These data were used to calculate ssGSEA scores for deconvoluted 
immune cell subpopulations, immune signatures and oncogenic path-
ways, to compare between cohorts.

Somatic mutation data. Somatic mutation calls from the TCGA MC3 
Project were downloaded using R package TCGAmutations (v.0.3.0) 

using the function tcga_load() with parameters ‘COAD’ for study and 
‘MC3’ for source. The downloaded Mutation Annotation Format (MAF) 
file contained 406 distinct TCGA tumor sample barcodes and 18,183 
genes (Hugo Symbol). This file was filtered to only include nonsynony-
mous mutations (‘Frame_Shift_Del’, ‘Frame_Shift_Ins’, ‘In_Frame_Del’, 
‘In_Frame_Ins’, ‘Missense_Mutation’, ‘Nonsense_Mutation’, ‘Splice_Site’, 
‘Translation_Start_Site’, ‘Nonstop_Mutation’), analogous to the variant 
filter applied to the AC-ICAM somatic mutation calls.

Microbiome. Microbiome genus relative abundance matrix for 
TCGA-COAD cohort (125 tumor samples and 221 genera, WGS data) was 
downloaded from The Cancer Microbiome Atlas website 13. TCGA-COAD 
relative abundance matrix was filtered to exclude duplicated samples 
(samples from vial B, eight samples). Overall, 81 genera were present 
with a nonzero abundance in at least one of the 117 samples (main 
matrix). When we applied the same filter as the one used for AC-ICAM 
16S RNA gene-sequencing data (presence in at least 10% of the samples 
with at least 1% relative abundance in one sample), 27 taxa at the genus 
level were retained.

NHS and the HPFS study data
Somatic mutation data. Somatic mutations in NHS and HPFS Colorectal  
Cancers were downloaded from the supplementary data of the Gian-
nakis et al. study (Giannakis, Supplementary Table 3). The downloaded 
file contained 619 distinct tumor sample barcodes and 19,208 genes 
(Hugo Symbol). We excluded the samples with tumor anatomic site 
specified as rectum (anatomic site is available in Giannakis Supplemen-
tary Table 1) and retained 482 colon cancer samples. Only nonsynony-
mous mutations were included at the variant filter (‘Frame_Shift_Del’, 
‘Frame_Shift_Ins’, ‘In_Frame_Del’, ‘In_Frame_Ins’, ‘Missense_Mutation’, 
‘Nonsense_Mutation’, ‘Splice_Site’, ‘Translation_Start_Site’, ‘Nonstop_
Mutation’), analogous to the variant filter applied to the AC-ICAM and 
TCGA-COAD somatic mutation files.

Cancer-related gene annotation
A cancer-related gene list was constructed from using different sources, 
as previously described:35 (1) genes used by two consortia to define 
germline genetic variations in pediatric cancers (n = 159;34 n = 565 
(ref. 33)); (2) genes with at least one pathogenic or likely pathogenic 
germline variants in the TCGA cohort (n = 99)66; (3) genes classified as 
driver genes according to the most updated TCGA analysis (n = 299)32; 
(4) genes included in the MSK-IMPACT (n = 505), MSK-IMPACT HEME 
(n = 575), Foundation One CDx (n = 324) and Foundation One Heme 
(n = 593) panels; (5) cancer genes cataloged as tier 1 by the Sanger 
Cancer Gene Census (n = 576); and (6) cancer genes defined as such 
by Vogelstein et al.67. Sources 4–6 were downloaded from OncoKB68. 
Original sources’ gene names were converted into Ensemble GRCh37 
gene symbols. The final list included 1,219 unique cancer genes and is 
provided in the Supplementary Information.

Transcriptome analysis
ICR score and clustering. Consensus clustering based on 20 a priori 
selected ICR genes (IFNG, IRF1, STAT1, IL12B, TBX21, CD8A, CD8B, 
CXCL9, CXCL10, CCL5, GZMB, GNLY, PRF1, GZMH, GZMA, CD274/PDL1, 
PDCD1, CTLA4, FOXP3 and IDO1)21, was applied to the normalized 
log2-transformed expression matrix using R package ConsensusClus-
terPlus (v.1.42.0)69 using 5,000 repeats, agglomerative hierarchical 
clustering with Ward criterion inner and complete outer linkage. The 
optimal number of clusters allowing for the best segregation of sam-
ples was based on the Calinski–Harabasz criterion. Optimal number of 
clusters used for segregation was three. Colon cancer samples in the 
cluster with the highest expression of ICR genes were designated as ‘ICR 
high’, the intermediate cluster as ‘ICR medium’ and the cluster with the 
lowest expression was designated ‘ICR low’. The mean log2-transformed 
expression value of the 20 ICR genes is referred to as the ICR score.
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CMS classification. Samples were classified according to CMS by 
R package ‘CMSclassifier’ (v.1.0) using random forest method16. The 
obtained CMS labels (from the column ‘RF.predictedCMS’ in output 
dataframe) were used for all downstream analyses with the exception of 
the comparison of CMS subtypes between AC-ICAM and TCGA cohort. 
To allow between-cohort comparison, we ran the CMSclassifier using 
the ‘single-sample predictor’ method. This method makes it possible 
to predict unique samples, with a constant output whether the sample 
is predicted alone or within a series of samples16 and can therefore be 
used for comparison across cohorts.

Dimension-reduction of the complete expression matrix was 
performed using t-SNE by ‘Rtsne’ (v.0.15) and visualized using ggplot2 
(v.3.3.2). The t-SNE plot was annotated with distinct colors to visualize 
the distribution of samples of different CMS (using random forest 
method) in high-dimensional space. The same t-SNE plot was annotated 
by ICR cluster in a separate panel. A circos plot to visualize the relation 
between CMS and ICR classifications was generated using the chord-
Diagram function from R package ‘circlize’ (v.0.4.8).

Immune cell deconvolution and ESTIMATE. Consensus tumor micro-
environment cell estimation (ConsensusTME)70 was performed to 
estimate relative abundancies of specific immune cell subsets from 
bulk transcriptome data. This method relies on integrated gene sets 
from multiple sources that have been curated and validated on a 
per-cancer-type basis, using benchmark datasets and seems to out-
perform previously published methods70. We applied ConsensusTME 
using R package ConsensusTME (v.0.0.1.9) using parameters ‘COAD’ to 
specify cancer type and ‘ssgsea’ as statistical method.

The median of each ConsensusTME score was calculated per CMS 
stratified by ICR cluster and was displayed in a dotted heat map using 
R package ComplexHeatmap (v.2.1.2). The association of each Con-
sensusTME score with OS and PFS was calculated by Cox proportional 
hazard regression. HR and corresponding 95% CIs as are displayed as 
forest plots (forestplot v.2.0.1).

To infer estimated levels of overall stromal and immune cell infil-
tration to the tumor, the ESTIMATE algorithm (v.1.0.13) was applied to 
the expression data in R. ESTIMATE was run for both TCGA-COAD data-
set and the AC-ICAM cohort. The combined ESTIMATE score for both 
the stromal and immune signature was compared between cohorts 
and a box-plot was generated using ggplot2 (v.3.3.2).

Analysis of tumor-related signatures and immune traits. 
Single-sample gene set enrichment analysis (ssGSEA) was applied to 
the log2-transformed, normalized gene expression matrix71 (GSVA, 
v.1.38.2). Gene sets that reflect specific tumor-related pathways were 
selected from multiple sources as described in detail in Roelands 
et al.10 and Supplementary Source Data Table 6a. Enrichment scores 
of each of these 48 pathways by CMS were visualized using Complex-
Heatmap (v.2.1.2). To better understand the interactions between 
tumor-intrinsic signaling and the immune microenvironment, we 
calculated the Pearson correlation between the ICR score and the scores 
of the 48 tumor-related pathways. This analysis was performed in the 
total cohort as well as across CMS subtypes.

Immune traits considered for analysis were based on a collection 
of well-characterized immune traits3,72. This collection includes 68 
gene signatures related to immunomodulatory signaling, including 
IFN signaling, TGF-β, wound healing (core serum response) and T cell/B 
cell response3,73. Gene expression values were median centered and 
gene symbols were mapped to EntrezIDs (org.Hs.eg.db_3.6.0). Sig-
natures scores were then mean centered and their s.d. values were 
scaled to one. For all other immune traits, ssGSEA was applied. These 
included signatures for antigen-presenting machinery (APM1 and 
APM2) and angiogenesis and nine TCGA-based coexpression sig-
natures (metagene attractors). This collection was supplemented 
with the tumor inflammation signature9 and two non-overlapping 

signatures of IFN-stimulated genes (ISGs), including IFNG hallmark 
gene set IFNG.GS and ISG resistance signature (ISG.RS)74, calculated 
using ssGSEA. Finally, the deconvoluted immune cell abundancies by 
ConsensusTME70 and ICR score10 were included among the immune 
traits. In total we used 103 immune traits (including ConsensusTME) 
(Supplementary Source Data 6 provides gene signatures and corre-
sponding references).

The pairwise Pearson correlation between all immune traits was 
calculated and the resulting correlation matrix was plotted using 
ComplexHeatmap (v.2.1.2) with hierarchical clustering. Co-clustering 
immune traits that formed distinct modules were visualized and 
labeled according to the immune traits’ enrichment. The clustering 
was compared to previously defined immune trait modules within a 
pan-cancer setting, by annotation of the correlation matrix with the 
previously defined clusters in Sayaman et al.3.

Survival analysis on AC-ICAM subsampling. We subsampled 
AC-ICAM hundreds of times in two ways, one was random, the other 
was on a subgroup of samples with an ESTIMATE distribution that 
approximates that of the TCGA-COAD. The function ‘approxfun’ in R 
was used to generate a function to approximate the density of ESTI-
MATE scores in TCGA-COAD. Cases were sampled from AC-ICAM using 
the ‘sample’ function in R with prob argument set to sample points with 
probability distribution of the TCGA-COAD. Each subsampled cohort 
consisted of 200 samples. The number of subsets in which the Cox 
proportional regression for ICR score was significant was compared 
between the two ways of subsampling, statistical significance was 
determined using a chi-squared test.

TCR targeted sequencing by immunoSEQ assay
This sensitive and specific dedicated assay requires high quantity of 
genomic DNA (>2 µg) and sample selection was exclusively based on 
DNA availability. TCR sequencing was performed using extracted DNA 
of 114 primary tissue samples and ten matched healthy colon tissues 
with sufficient DNA available.

DNA samples were normalized to a concentration of 125 ng μl−1 
using 3.840 μg of DNA as input per sample. The immunoSEQ assay 
from Adaptive Biotechnologies was used to amplify all possible vari-
able, diversity and joining (VDJ) gene rearrangements of the TCRβ 
locus (TRB) using a multiplex PCR method. PCR and magnetic bead 
cleanup were performed according to manufacturer’s instructions. 
Recommended QC was performed after the first PCR and second PCR 
amplification steps by running the PCR product on an agarose gel. Puri-
fied second PCR amplification products were pooled and the library 
pool was quantified using Agilent Bioanalyzer 2100. Subsequently, 
pools were diluted to a concentration of 1 pM and sequenced on Illu-
mina NextSeq 500/550 system with Mid Output kit (150 cycles) and 
Custom NextSeq Sequencing Primer (P/N, M150) (read 1, 156 cycles 
and read 2, 9 cycles). Sequencing was performed using survey resolu-
tion (two replicates per sample). A sample manifest was created in 
immunoSEQ Analyzer and the raw sequencing data were uploaded 
to the Adaptive Biotechnologies cloud following the manufacturer’s 
instructions. Data were processed using the company’s proprietary 
pipeline. Number of total templates analyzed per sample ranged 
1,906–95,834 (median 21,258). The average read coverage per sample 
ranged 11.4–80.6 (median 36.2).

TCR analysis
TCR immunoSEQ data analysis. ImmunoSEQ sample-based output 
variables, as made available by the immunoSEQ Analyzer, include 
the total number of templates analyzed, number of productive tem-
plates, fraction productive templates, number of total rearrangements, 
number of productive rearrangements, productive clonality and the 
maximum productive frequency. Herein, the total number of tem-
plates reflects the total number of T cells analyzed, of which only the 
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productive templates can produce a functional protein receptor (rear-
rangement in the sample are inframe and do not contain a stop codon). 
The total number of productive rearrangements is the total number of 
unique T cell clones and clonality is calculated by normalizing the pro-
ductive entropy using the total number of productive rearrangements 
and subtracting the result from 1. Values for (productive) clonality 
range from 0 to 1, with values near 0 reflecting more polyclonal sam-
ples and values near 1 representing samples with just few predominant 
rearrangements dominating the observed T cell repertoire (TRB gene).  
A high T cell clonality implies presence of expanded T cell clones.

Relationships between ICR score, immune traits, number of pro-
ductive templates and productive clonality were tested using Pearson’s 
correlation and visualized by scatter-plots using ggplot2 (v.3.3.2). 
Similarly, Pearson’s correlation coefficient was calculated between pro-
ductive clonality and each of the 18,270 genes in the expression matrix. 
A volcano plot was used to visualize significant results (ggplot2). The 
top 50 genes with the highest correlation with TCR productive clonal-
ity were mapped to the Global Molecular Network and core network 
analysis was performed using Ingenuity Pathway Analysis software.

Data on all productive rearrangements per sample were exported 
from the immunoSEQ Analyzer Rearrangement Details View. This 
file includes the exact nucleotide sequence generated through V(D)
J recombination, corresponding amino acid sequence, number of 
templates and productive frequency. Overlapping TCR sequences 
between tumor samples and matched healthy colon tissues (n = 9) were 
evaluated and visualized by scatter-plots (ggplot2). Sequences with a 
productive frequency at least 32-fold higher in the tumor compared to 
the healthy colon tissue and a tumor productive frequency >0.1% were 
defined as tumor-enriched sequences, as previously implemented by 
Beausang et al.75. The fraction of tumor-enriched TCR sequences in the 
tumor was calculated by dividing the number of productive templates 
of tumor-enriched sequences by the total number of productive tem-
plates per tumor sample. Pearson’s correlation coefficient between the 
fraction tumor-enriched TCR sequences and ICR score was calculated.

MiXCR for TCR repertoire derived from bulk RNA-seq. The software 
MiXCR (v.3.0.13)30 was used to retrieve the VDJ repertoire from bulk 
RNA-seq data aligned to reference genome GRCh37. MiXCR was run 
through docker and with the single command analyze shotgun. The 
R package ‘immunarch’ was used to analyze the MiXCR output into 
the R environment. For the TCRβ locus (TRB), the TCR clonality was 
calculated as 1 − normalized Shannon entropy (see Calculation section 
for details) for all samples, except seven cases for which MiXCR failed 
to identify clones.

Whole-exome-sequencing data analysis
Somatic mutation calling and small insertions and deletions. SNVs 
were called using mutect (v.1.1.7) and somatic small insertions and 
deletions (indels) using strelka2 (bcbio-nextgen v.1.1.1). We applied 
an optimized variant filtering pipeline (Extended Data Fig. 5b). To 
filter out false-positive single-nucleotide polymorphism calls, fpfilter 
was used, the applied filtering parameters are specified in the fpfiler.
pl script shared on GitHub. Subsequently, MAF files were generated 
using VCFtoMAF tool (v.1.6.16), which also appended the SIFT (sorting 
intolerant from tolerant), PolyPhen and Exome Aggregation Consor-
tium annotations. MAF files were loaded into R where indels with low 
complexity regions were excluded. For both SNVs and indels, a cutoff 
for minimum allele fraction of 5% and tumor depth of more than three 
reads was applied. The Exome Aggregation Consortium data were 
then used to filter out common variants that are encountered in >1% 
in the general population. After these technical exclusion criteria, 
biological filters were applied, including selection of nonsynonymous 
mutations (frame shift deletions, frame shift insertions, inframe dele-
tions, inframe insertions, missense mutations, nonsense mutations, 
nonstop mutations, splice site and translation start site mutations). 

The resulting number of variants/mutations per Mb (capture size is 
40 Mb) per sample is referred to as the nonsynonymous TMB. Next, to 
identify most frequently mutated genes in our cohort that might play a 
role in cancer, we excluded variants that are predicted to be tolerated 
according to SIFT annotation or benign according to PolyPhen (poly-
morphism phenotyping). Finally, all artifact genes, which are typically 
encountered as bystander mutations in cancer that are mutated for 
example as a consequence of a high homology of sequences in the 
gene, were excluded76. The OncoPlot function from ComplexHeatmap 
(v.2.1.2) was used to visualize the most frequent somatic mutations.

Comparison of TMB with TCGA datasets. To compare the TMB in 
the AC-ICAM with all 33 TCGA cohorts derived from the MC3 project, 
we used the tcgaCompare function from maftools (v.2.6.05, R). For 
AC-ICAM, the filtered MAF for nonsynonymous mutations was used 
as input with specified capture size of 40.

Comparison of somatic mutations with other cohorts. To define 
mutated genes in the AC-ICAM that were not previously described 
in colon cancer, we performed a comparison of the most frequently 
mutated genes in AC-ICAM (>5% of the tumor samples) with frequen-
cies detected in previously published datasets containing colon cancer 
samples (TCGA-COAD and NHS-HPFS) as well as reported cancer driver 
genes32 or colon oncogenic mediators38. First, we extracted genes with 
a nonsynonymous mutation frequency >5% in the AC-ICAM cohort. 
Subsequently, only genes that are likely involved in cancer develop-
ment, as described in the section ‘Cancer-related gene annotation’, 
were retained. All artifact genes (mutations typically encountered as 
bystander mutations in cancer that are mutated for example as a con-
sequence of a high homology of sequences in the gene), were excluded. 
Genes that have previously been reported as colon cancer oncogenic 
mediator38 or cancer driver gene for colorectal cancer (COADREAD)32 
were also excluded. Finally, only genes with a mutation frequency 
<5% in the NHS-HPFS colon cancer cohort37 and <5% in TCGA-COAD36 
were maintained. As a final filter, only genes that had a nonsynony-
mous mutation frequency of at least twofold in AC-ICAM compared to 
TCGA-COAD were labeled as potentially new in colon cancer.

Estimation of MSI from whole-exome sequencing data. We applied 
MANTIS (v.1.0.4), a tool for rapid detection of microsatellite instabil-
ity on our WES data77. Briefly, a bed file suitable for use by MANTIS 
was created using RepeatFinder function of the MANTIS tool, to find 
microsatellites regions within the reference genome (GRCh37). MANTIS 
was then run for each tumor and matched normal BAM file pair using 
these detected microsatellite loci. The instability score between the 
two samples within the pair was used to classify samples either as MSI-H 
(MANTIS score > 0.4) or MSS (MANTIS score ≤ 0.4).

Somatic mutations associated with ICR. We investigated the associa-
tion of specific somatic alterations, including SNVs and small insertions 
or deletions (indels) and ICR immune phenotype. Binomial linear 
regression models were fitted to define which specific mutations 
associate with ICR score using the glm function with family ‘bino-
mial’ (R). This analysis was performed in the total cohort (n = 281) as 
well as within hypermutated (n = 69) and non-hypermutated (n = 212) 
subgroups separately. The estimate and P value were extracted for 
each gene and FDR was calculated using the Benjamini–Hochberg 
method. Significant genes with an FDR < 0.1 and that were mutated in at  
least five patients in the analysis subgroup were plotted as OncoPrints 
(ComplexHeatmap, v.2.1.2).

Mutations in homologous recombination genes, mucinous  
histology, and ICR. Genes with an inverse association with ICR score 
within hypermutated colon cancer included genes involved in homolo-
gous recombination repair. The frequency of mutations in either of 
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the identified genes (BRCA2, BRCA1 and FANCA) genes were compared 
between hypermutated cases of mucinous histology with hypermu-
tated cases with other histological classifications. An unpaired Stu-
dent’s t-test was used to compare ICR score between hypermutated 
cases of mucinous histology with hypermutated cases with other 
histological classifications.

Somatic copy-number alteration segmentation
A segmentation file was generated for each sample and later a merged 
file for all samples was uploaded to IGV (v.2.11.0). We have used a pipe-
line using GATK (gatk-package-4. beta.6) to generate each tumor sam-
ple’s segmentation file. We performed the below steps:

	1.	 Calculated the coverage of tumor and normal BAM files for each 
interval using GATK CalculateTargetCoverage.

	2.	 Generated the panel of ‘normal’ using normal samples by GATK 
CreatePanelOfNormals options.

	3.	 Normalizing the tumor data using GATK NormalizeSo-
maticReadCounts methods using PON generated during the 
above step.

	4.	 Performed the segmentation of tumor data using input files 
from the above steps using GATK PerformSegmentation.

	5.	 The merged segmentation file of all the samples was uploaded 
to IGV and snapshots were generated.

Overview of SCNAs. We explored the prevalence of SCNAs among ICR 
clusters and hypermutated and non-hypermutated subgroups by explora-
tion of the segmentation file in IGV. Briefly, the log2-transformed segmen-
tation file was loaded in IGV with reference genome GRCh37, including an 
annotation text file including mutational load category (hypermutated, 
non-hypermutated), POLE mutation status, ICR cluster, CMS and MSI 
status. The samples were ordered consecutively by MSI status, CMS, ICR, 
POLE and mutational load category. Prevalence of amplification and dele-
tions was visually inspected and compared between groups.

Genetic immunoediting and immunoediting score
HLA typing, neoantigen prediction and GIE. HLA typing was per-
formed on both WES and RNA-seq data using OptiType (bcbio-nextgen 
v.1.1.5 in Python v.2.7.0)78. Neoantigen prediction tool pVACseq from 
pVACtools was run using the following predictors: MHCnuggetsI, 
NNalign, NetMHC, SMM, SMMPMBEC and SMMalign. The obtained 
vcfs from our somatic mutation calling pipeline were used as input 
for pVACseq, along with the predicted HLA type from WES data. Gene 
expression data aligned to GRCh37 in transcripts per million was anno-
tated to the vcfs using vcf-expression-annotator. Mutant-specific 
binders, relevant to the restricted HLA-I allele, are referred to as neo-
antigens, as described in detail by Zhang et al.79. Mutated epitopes with 
a median IC50 binding affinity across all prediction algorithms used 
<500 nM, with a corresponding wild-type epitope with a median IC50 
binding affinity > 500 nM, were used as criteria to infer neoantigens. 
Predicted neoantigens were used to calculate the GIE value. We calcu-
lated the GIE value by taking the ratio between the number of observed 
versus the number of expected neoantigens. The expected number of 
neoantigens was based on the assumption of a linearity between TMB 
and the number of neoantigens. We therefore assumed that samples 
that have a lower frequency of neoantigens than expected (lower GIE 
values), display evidence of immunoediting. A higher frequency of 
neoantigens than expected indicates a lack of immunoediting, see 
calculations section for details.

IES classification and analysis. The IES is a composite score based on 
both ICR and GIE. Tumors of IES4 are those predicted to be the most 
immune active, as they are ICR high and display GIE. Tumors of IES1 
are expected to be most immune silent, classified both as ICR low and 
an absence of GIE. Tumors of the intermediate groups IES2 and IES3 

reflect ICR-low and GIE and ICR-high and non-GIE tumors, respectively. 
Mutational load category, MSI status and pathological stage distribu-
tion was compared between IES groups using a chi-squared test. The 
OS was compared between patients with different IES and between GIE 
and non-GIE tumors in the ICR-medium group using Cox proportional 
hazard regression analysis. A Cox proportional hazard’s multivariate 
model was fitted with IES (ordinal) and pathological stage (ordinal).

Association between IES and TCR clonality. The Spearman correla-
tion between IES as ordinal variable and TCR clonality from immu-
noSEQ as well as MiXCR-based clonality was calculated. We performed 
several additional analyses to assess whether the relationship between 
TCR productive clonality and IES was driven by ICR. Multiple regres-
sion analysis was performed with ICR score and immunoSEQ TCR 
clonality as continuous variables to predict productive TCR clonality  
(immunoSEQ). Second, the data were modeled through local polyno-
mial regression fitting of the productive TCR clonality (immunoSEQ) 
by IES category (ordinal variable).

Microbiome: bacterial 16S rRNA PCR sequencing
This study complies with the STORM reporting guidelines; the com-
pleted checklist can be found in Supplementary Table 12.

The 16S rRNA gene sequencing was performed at the Host–
microbe Interaction Laboratory, Sidra Medicine.

Hypervariable regions V3–V4 of 16S rRNA gene were amplified with 
PCR using the amplicon primers with Illumina adaptors (underlined):

Forward:
5′TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNG-

GCWGCAG′3
Reverse:
5′GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACH-

VGGGTATCTAATCC′3.
In brief, PCR was performed in a 25-μl reaction mixture containing 

5 μl each forward and reverse primer (1 μM), 2.5 μl template DNA for 
the samples and 12.5 μl 1× Hot Master Mix (Phusion Hot Start Master 
Mix). No human DNA depletion was used. The amplifications were per-
formed on a Veriti 96-well Thermal Cycler (Thermo Scientific) with the 
following program: initial denaturation at 95 °C for 2 min, followed by 
30 cycles of denaturation at 95 °C for 30 s, primer annealing at 60 °C for 
30 s and extension at 72 °C for 30 s, with a final elongation at 72 °C for 
5 min. The presence of PCR products was confirmed by electrophoresis 
in a 1.5% agarose gel conducted at 80 V/cm in Tris-borate–EDTA (TBE) 
buffer. Amplicons were then purified using AgenCourt AMPure XP 
magnetic beads (Beckman Coulter) according to the Illumina MiSeq 
16S Metagenomic Sequencing Library Preparation protocol. As positive 
controls, we included DNA from stool samples (extracted with QIAGEN 
QIAmp Fast DNA Stool Mini kit), using the same input of DNA as the one 
used for the AC-ICAM samples. We obtained similar 16S rRNA amplicon 
PCR products across the tissue samples and the positive controls, 
indicating that the DNA extraction protocol used resulted in enough 
recovery of the microbial DNA from our specimens.

Samples were multiplexed using a dual-index approach with the 
Nextera XT Index kit (Illumina) according to the manufacturer’s instruc-
tions. The concentration of amplicons was determined using the Qubit 
HS dsDNA assay kit (Life Technologies,) followed by pooling to achieve 
an equimolar library concentration. The final pooled product was 
paired-end sequenced at 2 × 300 bp using a MiSeq Reagent kit v3 on 
Illumina MiSeq platform (Illumina) at the Sidra Medicine research 
facility. Sequencing was also performed on 27 empty wells across plates 
to exclude the occurrence of large-scale cross-contamination among 
samples during sequencing procedures: the minimum and maximum 
read counts were 2 and 234, respectively and the average and median 
reads counts were 37 and 18, respectively. No negative controls for 
sampling or DNA extractions were included. Samples were aliquoted 
randomly in the plate.
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Microbiome: 16S rRNA gene sequencing and data processing
Sequenced data were demultiplexed using MiSeq Control Software. 
The overall quality of sequencing quality was evaluated using FastQC 
and the demultiplexed sequencing data were imported into Quantita-
tive Insights into Microbial Ecology (QIIME2; v.2019.4.0) software pack-
age. The data were denoised with DADA2, which includes a multi-step 
process, including read filtering, dereplication and chimera removal. 
Paired 250-bp reads were trimmed of the initial five low-quality bases 
and further processed to generate the amplicon sequence variant, 
interchangeably called operational taxonomic units (OTUs). The data 
were subsampled at a depth of 22,704 and then normalized using the 
rarefaction on OTUs count at even depth. Taxonomic classification 
was performed utilizing 16S rRNA gene database from Silva classifier 
(silva-132-99-515-806-nb-classifier). The data were imported into R in a 
Biological Observation Matrix (biom) format, before further evaluation 
with Phyloseq (v.1.34.0). The 16S rRNA gene sequencing was performed 
on all samples with sufficient DNA available: 246 tumor samples and 246 
matched healthy colon tissues from the same patients (AC-ICAM246) 
and on additional 42 tumor samples (ICAM42) for which there was no 
sufficient DNA available from the healthy colon counterpart.

The minimum and maximum read counts were 25,868 and 351,069, 
respectively. The average and median reads counts were 82,506 and 
75,668, respectively. No samples were excluded from the analysis.

Alpha diversity (within sample community) was assessed by 
observed OTUs (sum of unique OTUs per sample), Chao1 (Chao 1987) 
an abundance-based richness estimator that is sensitive to rare OTUs, 
Shannon (Shannon 1948) and inverse Simpson (InvSimpson) (Simpson 
1949), the last one being more dependent on highly abundant OTUs 
and less sensitive to rare OTUs. Indices were read into R using R pack-
age vegan (v.2.5–6).

Relative abundance of distinct microbiome elements was deter-
mined using the transform_sample_counts function from Phyloseq, 
such that sum of all abundance values per sample is equal to one 
(Microbiome_Relative = transform_sample_counts (pyloseq_object, 
function(x) x / sum(x))). OTU tables were aggregated by taxonomic 
ranks including phylum (26 unique phyla), class (48 classes), order 
(97 orders), family (207 families), genus (562 genera) and species (846 
species). As the confidence for annotation of reads decreases with 
decreasing rank, some reads were only annotated with higher ranks.

Microbiome: WGS and data processing
Library construction and sequencing was performed at the Sidra Clini-
cal Genomics Laboratory Sequencing Facility. DNA was quantified 
using the Quant-iT dsDNA Assay (Invitrogen) on the FlexStation 3 
(Molecular Devices). The library was constructed from 250 ng of DNA 
with the Illumina TruSeq DNA Nano kit. Library quality and concentra-
tion was assessed using the DNA 1k assay on a PerkinElmer GX2 and 
qPCR using the KAPA Library quantification kit on a Roche LightCycler 
480 II. Genomic libraries were sequenced with paired-end 150 bp on 
HiSeq X (32% of samples) and Novaseq 6000 (68% of samples) systems 
(Illumina) following the manufacturer’s recommended protocol to 
achieve a minimum average coverage 60× for tumor samples. Quality 
passed reads were aligned to the human reference genome GRCh38 
using BWA. Human sequencing reads were removed and unaligned 
nonhost reads were extracted using SAMtools. Low-quality unaligned 
reads were trimmed and samples were processed for taxonomic profil-
ing using MetaPhlAn2 (ref. 80). MetaPhlAn2 uses a library of unique 
clade-specific marker genes to estimate bacterial relative abundance 
at the species level. The program was run with default parameters 
except analysis type set to relative abundance and restricted to bacte-
rial organisms only. WGS was targeted to achieve >60× coverage per 
sample. The median (across samples) of the average target coverage 
(per sample) was 76× (range of 50–92).

Of 3.2 × 1011 total reads (median 1.9 × 109 reads per sample; IQR 
2.1 ×108), 1.5 × 108 (median 1×105 reads per sample; IQR 3.4 × 105) were 

aligned to bacteria. A total of 132 taxa, at genus level were detected, 
of which 3 were excluded as possible contaminants (Deinococcus,  
Ralstonia and Enhydrobacter)12 (main matrix). When we applied the 
same filter as the one used for 16S RNA gene-sequencing data (presence 
in at least 10% of the samples with at least 1% relative abundance in one 
sample), 54 taxa at the genus level were retained. WGS was performed 
in all samples with sufficient DNA available (n = 167).

Ruminococcus bromii PCR
PCR was performed based on Wang et al.81 using R. bromii 16S rDNA 
forward primer (GAAGTAGAGATACATTAGGTG) and R. bromii 16S rDNA 
reverse primer (ACGAGGTTGGACTACTGA). PCR was performed using 
AmpliTaq Gold 360 Master Mix (Thermo Fisher, 4398881), 20 ng of 
sample DNA and 5 nM of each primer. The amplification conditions 
were one cycle of 95 °C for 10 min, then 35 cycles of 95 °C for 30 s, 
50 °C for 30 s and 72 °C for 30 s and finally one cycle of 72 °C for 7 min 
before storing at 4 °C. PCR products (10 μl each) were separated by 
electrophoresis in 2% agarose gels (Sigma, A4718) containing eth-
idium bromide (1 μg ml−1) (Sigma, E1510) using a 100-bp DNA ladder  
(New England Biolabs, N0551G) for size verification. PCR band inten-
sity was defined as negative when intensity was absent or extremely 
faint. PCR was considered positive if band was gradually more intense 
(graded from 2 to 4). PCR was performed in all samples from the 
AC-ICAM246 cohort with sufficient amounts of DNA available (n = 126).

Microbiome data analysis
Genus-level filtering. On tumor samples, microbiome genera were fil-
tered to include genera which are present in at least 10% of the samples 
with at least 1% relative abundance in one sample; 138 out of 562 were 
retained. These included 137 genera and the genus labeled ‘unknown’ 
that reflects all reads for taxa with insufficient confidence at the genus 
level. The same filtering was applied to normal samples; 129 genera 
were retained. A total of 120 genera overlapped between normal and 
tumor samples, 9 genera were unique in normal samples and 18 genera 
were unique in tumor samples.

This set of filtered genera were used for all downstream analysis 
except for the comparison between tumor and normal pairs. For this 
analysis we include any genera that passed the filtering approach 
described above for either normal or tumor groups (if taxa passed the 
filtered in tumor samples they were retained in normal samples and 
vice versa; total 147 genera).

Contaminant assessment. To remove putative contaminants from 
the 16S rRNA gene-sequencing data, we used a list of microbial taxa 
that are typically found in negative blank reagents, as described by 
Salter et al.82. This list has previously been curated and annotated by 
Poore et al.12 by manual review of the literature. This curation allowed 
the discrimination of taxa that are ‘likely contaminants’, ‘potentially 
pathological or commensal genera’ and ‘mixed evidence’ genera that 
have been described both as pathogens as well as contaminants. We 
flagged those taxa that were ‘likely contaminants’ as well as ‘mixed 
evidence’ for potential exclusion from our 16S rRNA gene-sequencing 
microbiome abundance matrix.

In total, we detected 25 taxa that were ‘likely contaminants’ and 
10 taxa with ‘mixed evidence’ in at least one out of the 492 samples. 
To evaluate the extent of potential contamination by these 35 taxa, 
we calculated the sum of these taxa for each sample. On average, only 
0.04732% of the total microbial abundance per sample consisted of 
‘flagged’ taxa (min, 0%; first quartile, 0%; median, 0%; third quartile, 
0.03485%; and max, 4.46%). Furthermore, most of these putative con-
taminant taxa (n = 33) were detected in only fewer than 20 (out of 
492) samples. Potential contaminating bacteria that we detected in 
the highest numbers of samples were Oxalobacter in 39 samples and 
Micrococcus in 28 samples. Detected putative contaminants and taxa 
with mixed evidence from the 16S rRNA-sequencing data were removed 
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when we applied the minimal abundance filter (presence in at least 
10% of the samples with at least 1% relative abundance in one sample).

Microbiome comparison between tumor and healthy colon tissue. 
At the phylum level, the overall distribution of microbiome composi-
tion was visualized using stacked bar charts. The order of samples was 
determined by descending relative abundance of the phylum Fusobac-
teria in tumor samples and the matching healthy colon samples from 
corresponding patients were ranked in the same order as the tumor 
stacked bar chart.

A paired Mann–Whitney U-test (two-sided) was used to deter-
mine microbial phyla/genera with significantly different relative abun-
dance between tumor and paired normal samples. FDR was calculated 
using the Benjamini–Hochberg method. Results were visualized in  
volcano plots.

Microbiome comparison between ICR groups. An unpaired Mann–
Whitney U-test (two-sided) was used to calculate which filtered genera 
(n = 138) were differentially abundant between ICR-high and ICR-low 
samples. FDR was calculated using the Benjamini–Hochberg method. 
Results were visualized in volcano plots.

Co-abundance network inference. We performed co-abundance 
analysis in tumor samples from the AC-ICAM246 cohort. Co-abundance 
analysis, which involves studying the presence of multiple components 
within a composition, can be difficult to perform accurately when using 
relative abundance. This is because the relative abundance of the dif-
ferent components is constrained to sum to 1, which can lead to the 
appearance of false correlations. To address this issue, techniques such 
as co-abundance network inference can be used to more accurately 
infer relationships between the components.

Before co-occurrence analysis, the genus labeled ‘unknown’ was 
excluded. SparCC48,83 was used to calculate the co-occurrences between 
the 137 remaining taxa using centered log-ratio (clr)-transformed OTU 
counts in tumor samples (Python, SparCC3). A total of 500 inference 
and 10 exclusion iterations were used to estimate the median correla-
tion of each pairwise. The statistical significance of the correlations was 
calculated using a bootstrapping procedure to generate 500 simulated 
data83. For each component pair, pseudo P values (two-sided) were 
assigned as the proportion of simulated bootstrapped data with a cor-
relation at least as extreme as the one computed for the original data. 
Benjamini–Hochberg FDR was used for multiple testing correction. 
All the correlations were then sorted using a statistically significant 
cutoff (FDR < 0.05) and SparCC correlation coefficient > ±0.3. Clusters 
among the networks (groups of at least three correlated genera using 
the cutoffs specified above) were defined via a fast greedy clustering 
algorithm. All co-occurrence networks were made using the R pack-
age ‘NetCoMI (v.1.1.0) – Network Construction and Comparison for 
Microbiome Data’84 and visualized using Cytoscape (v.3.9.1).

Within each cluster, the total relative abundance was calculated 
by summing up the relative abundance values for genera that posi-
tively correlated with each other. For each of the identified clusters, 
survival analysis was performed by binarizing each sample into high 
and low abundance based on the median total relative abundance of 
each cluster.

MBR model development, training set. We first normalized the genus 
abundance matrix by converting each genus column into a z score 
using mean and s.d. and treating the normalized abundance matrix 
as the training set. We built a relaxed multivariable elastic-net OS Cox 
regression model using the glmnet R package (v.4.1.4) on the train-
ing set. The optimal hyper parameters (γ and λ) for the best model 
were identified through fivefold cross-validation via a grid-search 
technique using the ‘cv.glmnet’ function. We used the concordance 
index as a performance metric. The parameters for which the mean 

cross-validation concordance index was the highest were selected as 
optimal hyper parameters. Next, the final model was built using these 
hyper parameters on the complete training set. To calculate risk scores 
in the training dataset (MBR scores), we passed the training set and 
best model to the ‘predict’ function. A total of 41 features (genera) 
were present in the best model with nonzero coefficients; we refer to 
these features as the ‘MBR classifier’, which represents the final model. 
A positive or negative coefficient of each genus of the MBR classifier 
can be binarized into ‘high-risk’ and ‘low-risk’ groups using the cutoff 
threshold of 0 and attributed to the strength of association with sur-
vival. A higher positive coefficient means high hazard risk of death, 
whereas a negative coefficient corresponds to lower risk of death.

MBR model validation, testing sets. We validated the final model on 
two datasets. Both datasets consist of samples that were not used for 
model training (unseen data). One is an independent internal (ICAM42) 
dataset, referred to as testing cohort 1 and the other is an external 
cohort (TCGA-COAD), referred to as testing cohort 2. The ICAM42 
consists of 42 samples and TCGA-COAD consists of 117 samples. We 
processed the two datasets to convert the abundance values for each 
genus into z scores using the mean and s.d. derived from the training 
set. These abundance matrices were passed to the ‘predict’ function 
along with the best model to estimate corresponding risk scores. The 
risk score (MBR score) of any tested sample is only dependent on the 
relative abundance of the list of genera that overlap with the ones 
included in the MBR classifier (the risk score for each sample is not 
dependent on one of the other samples). Finally, the MBR scores are 
binarized using the cutoff threshold 0 to categorize the test sample into 
‘high-risk’ (>0) and ‘low-risk’ (<0) groups as performed in the training 
set. Therefore, no cutoff optimization occurred in the validation phase.

MBR model performance assessment. We tested the concordance 
index (1) in the training set using the final MBR model; (2) in the training 
set using the cross-validation of the best MBR model (five permuta-
tions, 80% training and 20% validation partition); and (3) in each test 
set cohort separately (ICAM42 and TCGA-COAD) and in the full test 
set (ICAM42 and TCGA-COAD combined) using the final MBR model.

Taxa used for the MBR score calculation in other cohorts. To calcu-
late the MBR score in each additional dataset we used taxa that over-
lapped with the 41 genera of the MBR classifier, which was developed 
using 16S rRNA gene sequencing on tumor samples.

There were 16 of 41 taxa in the TCGA-COAD (WGS data) and 18 of 41 
taxa in the AC-ICAM WGS data (tumor sample) main matrices. All the 41 
taxa were available in the ICAM42 cohort (tumor samples) and the MBR 
score for AC-ICAM healthy colon tissue samples was based on 36 genera 
that passed the applied genus-level filtering for healthy tissue (the list of 
the taxa used for each platform is available in Supplementary Table 11).

The Silva classifier used for genus attribution in the 16S rRNA 
gene-sequencing data includes ‘Ruminococcus 1’ and ‘Ruminococ-
cus 2’, whereas WGS-WES TCGA data only include ‘Ruminococcus’ as 
genus-level taxa. Therefore, for matching purposes, when calculat-
ing the risk score, we replaced the labeling of ‘Ruminococcus 1’ and 
‘Ruminococcus 2’ with ‘Ruminococcus’. In WGS AC-ICAM ‘R. bromii’ 
was used instead.

R. bromii validation analysis. We characterized the specific species 
underlying the reads supporting the Ruminococcus 2 taxon from 16S 
sequencing data. Previously, a high degree of sequence similarity was 
reported between the Ruminococcus 2 taxa from the Silva classifier 
and the species R. bromii85. The subset of samples that had both 16S 
sequencing and WGS data available was used to calculate the Spear-
man correlation between each Ruminococcus species (from WGS data) 
and the 16S Ruminococcus 2 (16S) relative abundance. In addition, the 
proportion of WGS reads that mapped to each specific Ruminococcus 
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species was calculated as fraction of all WGS reads that were assigned 
to the Ruminococcus genus.

To confirm the presence of R. bromii, we performed a PCR specific 
to R. bromii on the 126 AC-ICAM tumor samples for which sufficient 
DNA was still available (see section R. bromii PCR for technical details 
on PCR). The concordance between detection of R. bromii in PCR and 
16S Ruminococcus 2 was defined as the percentage of samples for which 
both methods had identical results. The discordant cases were further 
examined by evaluation of WGS results. Furthermore, the concordance 
between detection of R. bromii in PCR and R. bromii in WGS was assessed 
in the 86 samples for which data from both methods were available.

mICRoScore development. In view of the individual contribution of 
analytes extrapolated by individual platforms such as the ICR (RNA-seq 
data), the GIE (WES data) and the MBR scores (16S data) and TCR clonal-
ity (immunoSEQ and MiXCR) we sought to develop a multi-omics param-
eter that could capture a subgroup of patients with exceptional survival.

Each parameter that was significant in the univariate Cox regression 
analysis (ICR, as ordinal variable, low, medium, high; GIE as binary vari-
able, non-GIE versus GIE; and MBR score, as binary variable, low versus 
high), was assessed within a multivariable Cox regression model adjusted 
for age (as continuous variable), CMS subtypes (as categorical variable, 
CMS1–CMS3, versus CMS4), stage (as ordinal variable, I, II, III and IV) and 
MSI status (as binary variable, MSS versus MSI-H). The parameters that 
were retained by the multivariable Cox models were combined into an 
integrated score. For univariate analysis we used RNA-seq, WES and TCR 
clonality data from the entire AC-ICAM cohort and MBR score derived 
from 16S rRNA gene-sequencing data of the AC-ICAM246 cohort.

The mICRoScore reflects the co-presence of ICR high and MBR 
low risk, defined as mICRoScore high. On the AC-ICAM246 (training 
set), all samples with MBR-high risk and/or in ICR-medium or ICR-low 
group are defined as mICRoScore low. The survival between patients 
with mICRoScore high and mICRoScore low was compared using Cox 
proportional hazard regression analysis and a log-rank test.

mICRoScore validation. We used data from TCGA-COAD as external 
validation cohort to test the mICRoScore (testing set). The TCGA-COAD 
cohort includes 107 patients with both tumor microbiome data (down-
loaded from Dohlman et al.10) and RNA-seq data available (used for ICR esti-
mation). ICR assignments from this cohort (see section TCGA data) were 
combined with the MBR classification to classify patients as mICRoScore 
high and mICRoScore low. The survival between patients with mICRoScore 
high and mICRoScore low was compared using a log-rank test.

Sample size considerations
Sample size calculation is challenging in multi-omics studies due to 
the multitude of parameters that could be examined (implying the 
use of different tests from different platforms generating data with 
different data distribution) and empirical methods have been used by 
many consortia. Correlation between ICR and survival was declared as 
a primary objective in the research proposal submitted to the funding 
agency before any genomic data were generated, representing there-
fore a prospective–retrospective validation ( JSREP07-010-3-005).

In the submitted proposal (2015), we planned to profile 400 
tumors for gene expression analysis (samples from 456 patients were 
screened, samples from 391 patients were available for processing 
and samples from 348 patients retained after QC in the final cohort, 
see Extended Data Fig. 1) and at least 100 tumor–normal pairs for WES 
analysis (initially planned only for a subgroup of ICR-high versus -low 
tumors) and 100 for TCR sequencing using the immunoSEQ assay 
considering the high amount of DNA that is necessary (>2 μg). Securing 
additional funds allowed us to perform WGS and 16S rRNA sequencing 
and to expand the WES and TCR analyses to any sample with sufficient 
DNA available. No specific power calculation was performed at that 
time and the targeted sample size was based on the estimated number 

of samples that could be retrieved from LUMC (n = 400), which com-
pared favorably with the sample size of similar studies in the field.

Regarding detection of somatic mutations and considering the 
overall somatic mutations frequency in colon cancer, 150 tumor 
exomes will give a power >90% to detect a 10% mutational frequency 
in 90% of genes86.

Regarding survival analysis, in terms of ICR (the primary objective 
in the submitted proposal), for the comparison between ICR high ver-
sus ICR low, with 77 OS events detected, our study has a power >80% for 
an HR of 0.5 with a two-sided α of 0.05. With 154 OS events in the whole 
cohort, our study has a power of 90% for an HR of 0.59 (assuming two 
group of equal size c) and a power of 90% for an HR of 0.57 (assuming 
groups with unequal sample size, 2:1) with a two-sided α of 0.05.

Calculations
TCR clonality calculation by immunoSEQ assay data (targeted 
DNA). Entropy (H) is calculated by a standard Shannon entropy calcula-
tion with log base 2. Clonality is the inverse of the normalized entropy 
calculation. The equations are below:

Shannon entropy ∶ H (x) = −ΣP (x) log2 [P (x)]

Specifically, for our data:
For a productive (inframe) sequence x,

P (x) = sequence count/total productive count

Entropy =

−1 × the sum over all unique productive (inframe) sequences of

( (sequence count/total productive count)

×log2 (sequence count/total productive count) )

Normalized entropy =

entropy/log2 (productive unique inframe sequences)

Clonality = 1 − normalized entropy

TCR clonality calculation on bulk RNA-seq data (MiXCR). Entropy 
(H) is calculated by a standard Shannon entropy calculation with log 
base 2. The equations are below:

Shannon entropy H (x) = −ΣP (x) log2 (P (x))

For a sequence x,

P (x) = sequence count/total count

The Shannon entropy was normalized so that it can assume a value 
between 0 and 1. The normalized Shannon entropy is referred to as 
Pielou’s evenness and is calculated as below:

Pielou’s evenness ∶ J = H/log (S)

where S is the number of unique TCR/CDR3 sequences.
Clonality is calculated as the inverse of the normalized entropy 

(J) calculation:

Clonality = 1−J

Genetic immunoediting value. The GIE value is calculated by taking 
the ratio between the observed (O) versus the expected (E) number 
of neoantigens:
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GIE value = O/E

in which E is a function of the number of nonsynonymous muta-
tions in that specific sample (x):

E (x) = −2.38770 + 0.09171 × x

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
BAM files for RNA and WES data, along with FastQ files for 16S rDNA 
sequencing and non-aligned WGS reads are available through con-
trolled access at dbGaP (phs002978.v1.p1) and public access SRA 
(PRJNA941834; 16S and WGS). Names of the raw data files contain 
barcodes with a fixed structure as follows:
Example barcode: SER-SILU-CC-P0001-PT-01-A-01
-Study category: SER (Sidra Extrant Research)
-Study: SILU (Sidra-LUMC)
-Cancer type: CC (Colon Cancer)
-Patient ID: P0001 (P for patient followed by four-digit number)
-Sample: PT (primary tumor), AN (adjacent normal)
-Portion: 01, 02, 03 (in case of multiple PT from same patient)
-Assay + pipeline: A-01: RNA-seq, GRCh38 (used for gene expression)
A-02: RNA-seq, GRCh37 (used for MiXCR and neoantigen prediction)
B-02: WES, GRCh37
C-01: TCRSeq, Adaptive pipeline
D-01: 16S rRNA gene sequencing
D-02: WGS unaligned nonhost reads
Source data for all main figures, Extended Data Figs. 1–10 and Supple-
mentary Figs. 1–12 are available as Supplementary Data. The Supple-
mentary Data workbook includes per-sample metrics from RNA-seq, 
WES, TCR immunoSEQ and microbiome profiling. A complete list of 
Source Data is available on sheet 1 of the Supplementary Data work-
book, followed by source data figure location in sheet 2.
A secondary repository for Supplementary Data is available via Fig-
Share (https://doi.org/10.6084/m9.figshare.16944775)87, including 
large files such as the MAF files for WES, segmentation file for the analy-
sis of copy-number genomic aberrations, the 16S OTU tables. FigShare 
will be also updated with metrics that will be generated in the future.
Processed data and clinical data are also available via cBioportal for 
interactive data exploration (Sidra-LUMC AC-ICAM dataset; https://
www.cbioportal.org/).
Access to SRA, cBioportal and FigShare is unrestricted and immediate, 
controlled access through dbGAP is managed by the National Institutes 
of Health/National Cancer Institute data access committee through 
the dbGAP portal. An estimation of the required time to obtain access 
to the data and detailed statistics on the outcome and timeline of the 
data access request can be found at https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/DataUseSummary.cgi. Source data are provided 
with this paper.

Code availability
Scripts and command lines used to analyze the sequencing and 
genomic data are available at GitHub AC-ICAM-NM, including the 
script used for the development of the MBR model and calculation of 
the MBR risk score (https://doi.org/10.5281/zenodo.7766220).
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Extended Data Fig. 4 | TCR productive clonality by CMS and comparison 
of clonotypes in paired tumor and normal colon tissue. a, Box-plot of 
TCR clonality for each ICR, stratified by CMS. P values are calculated using 
unpaired, two-sided t-test. Center line, box limits and whiskers represent the 
median, interquartile range and 1.5x interquartile range respectively. n reflects 
independent number of samples. b, Example of a plot showing productive TCR 
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tissue (y-axis). Blue indicates T cell clones that are restricted to the tumor, while 
T cell clones that are unique to normal colon tissue are orange. Represented in 

green are T cell clones found both in tumor and normal colon tissue. The side 
panels represent a cumulative histogram of the TCR productive frequencies 
across that axis. c, Productive TCR scatter-plots of all nine patients for which TCR 
sequencing was performed on both tumor and matched normal colon samples. 
T cell clones in the upper left region (red) are considered significantly enriched 
in the tumor. Tumor-enriched clones were defined as T cell clones with an 
abundance of >0.1% in the tumor, that are at least 32 times more abundant in the 
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connected, red lines reflect pairs with an increased proportion in the tumor, 
while blue lines reflect a decreased proportion in the tumor compared to 
matched normal. Center line, box limits, and whiskers represent the median, 
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diversity matrices (InvSimpson, Chao1, Observed and Shannon) between tumor 
and normal colon tissue, P values were calculated using paired Mann–Whitney 
U-test (upper). Alpha diversity between ICR High, ICR Medium, and ICR Low, 
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Extended Data Fig. 8 | Relation between relative abundance of Fusobacterium 
and tumor characteristics in AC-ICAM. Relative abundance of Fusobacterium 
(derived from 16 S rRNA gene sequencing) a-g, and Fusobacterium nucleatum 
(derived from WGS) h-m in relation with tumor characteristic and the 
tumor microenvironment in AC-ICAM. a, Box-plot for relative abundance of 
Fusobacterium in tumor samples by ICR cluster. Spearman correlation statistics 
and corresponding P value is indicated. b, Box-plots for relative abundance 
of Fusobacterium in tumor samples by anatomical location. c, Spearman 
correlation between the relative abundance of Fusobacterium in tumor samples 
as determined by 16 S rRNA gene sequencing and immune gene signatures 
d, Relative abundance of Fusobacterium in tumor samples by MSI status, 
hypermutation status, CMS (CMS1 vs the rest, unpaired t-test, P = 0.021), and 
by pathological stage, P values are calculated using unpaired t-test. e, Relative 
abundance of Fusobacterium in tumor samples by BRAF mutation status. Green 
box is not mutated, pink box with nonsynonymous mutation. f, Kaplan–Meier 

curves corresponding to patients with tumor samples with a relative abundance 
of Fusobacterium above the median compared to those below the median. Overall 
P value is calculated by log-rank test. Vertical lines indicate censor points. g, T cell 
enrichment score (ssGSEA using Bindea et al, T cell signature) in tumor samples 
with absence of Fusobacterium (negative) or presence (positive) (left). Stacked 
bar chart of distribution of T cell quartiles by Fusobacterium categories (negative, 
low, high) (right). h, Same as a, but for Fusobacterium nucleatum as determined  
by metagenomic analysis of WGS. i, Same as b, but for Fusobacterium nucleatum.  
j, Same as c, but for Fusobacterium nucleatum. k, Same as d, but for Fusobacterium 
nucleatum. l, Same as e, but for Fusobacterium nucleatum. m, Same as f, but for 
Fusobacterium nucleatum. n, Same as g, but for Fusobacterium nucleatum.  
All P values are two-sided; n reflects the independent number of samples in all 
panels. Overall Survival (OS). Progression-Free Survival (PFS). For all box-plots: 
Center line, box limits, and whiskers represent the median, interquartile range and 
1.5x interquartile range respectively.
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Extended Data Fig. 9 | Co-occurrence network of microbial taxa and 
associations of identified clusters with biological and clinical parameters. 
a, SparCC co-occurrence network using centered log-ratio transformed OTUs in 
the AC-ICAM246 tumor samples. b, Overlay of network taxa with taxa enriched 
in ICR High or Low group (left panel), with taxa enriched in tumor vs normal 
colon samples (middle panel), and when present in the MBR classifier, either as 
low or high risk (right panel). c, Association between OS and PFS and the sum 

of the relative abundance of each genus (High vs low based on median) in each 
cluster in AC-ICAM246. d, Association between OS and PFS and distinct alpha 
diversity metrics (High vs low based on median) of the tumor microbiome in 
AC-ICAM246. HR (center), corresponding 95% confidence intervals (error bars) 
and corresponding P values are calculated by cox proportional hazard regression 
(c-d). All P values are two-sided; n reflects the independent number of samples in 
all panels. Overall Survival (OS). Progression-Free Survival (PFS).
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Extended Data Fig. 10 | Technical validation of microbiome data, MBR and 
mICRoScore assessment, and correlation of MBR taxa with immune traits. a, 
16 S rRNA gene sequencing versus WGS relative abundance of Ruminococcus 2. 
Spearman correlation and P value are indicated. The gray band reflects the 95% 
confidence interval for predictions of the linear regression model between  
the plotted variables. b, PCR gel images of 126 DNA samples amplified for  
R. bromii. c, Concordance between R. bromii PCR and detection of Ruminococcus 
2 by 16 S rRNA gene sequencing or of R. bromii by WGS (positivity was defined 
as a relative abundance > 0). d, Concordance index of optimal multivariate cox 
regression model per dataset. The cross-validation performance highlights 
the mean concordance of 10-different folds with the optimal hyper parameters 
(gamma and lambda) that is, the same parameters as the optimal model. e, Forest 
plot with HR (center), corresponding 95% confidence intervals (error bars), and 
P value calculated by cox proportional hazard regression analysis for OS, using: 
1) the 16 S MBR score in AC-ICAM, 2) WGS R. bromii abundance 3) PCR-based R. 

bromii abundance, 4) 16 S Ruminococcus 2 relative abundance and 5) MBR score 
calculated using WGS data. f, Heat map of Spearman correlation between the 
relative abundance of the MBR classifier taxa in tumor samples and immune 
traits. Only correlations with an FDR > 0.1 are visualized. An additional row is 
added for Ruminococcus 2 showing all correlations, unfiltered for FDR. * The 
taxonomical order is indicated between brackets, as family was unassigned. 
g, Kaplan–Meier curve for PFS in AC-ICAM, with all patients stratified by 
mICRoScore High vs Low. HR and P value are calculated using cox proportional 
regression. h, AJCC pathological stage within the mICRoScore High group in 
AC-ICAM and within TCGA-COAD i, Kaplan–Meier curve for PFS in AC-ICAM, with 
all patients with ICR High stratified by mICRoScore. Overall P value is calculated 
by log-rank test and P value corresponding to HR is calculated using cox 
proportional hazard regression. Overall Survival (OS), Progression-Free Survival 
(PFS). All P values are two-sided; n reflects the independent number of samples 
in all panels.
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