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Abstract 

Plastic pollution is now so widespread that microplastics are regularly detected in biological samples surveyed for 
their presence. Despite their pervasiveness, very little is known about the effects of microplastics on the health of 
terrestrial vertebrates. While emerging studies are showing that microplastics represent a potentially serious threat to 
animal health, data have been limited to in vivo studies on laboratory rodents that were force fed plastics. The extent 
to which these studies are representative of the conditions that animals and humans might actually experience in the 
real world is largely unknown. Here, we review 114 papers from the peer-reviewed literature in order to understand 
how the concentrations and types of microplastics being administered to rodents in lab studies compare to those 
found in terrestrial soils. From 73 in vivo lab studies, and 41 soil studies, we found that lab studies have heretofore 
fed rodents microplastics at concentrations that were hundreds of thousands of times greater than they would be 
exposed to in nature. Furthermore, health effects have been studied for only 20% of the microplastic polymers that 
are known to occur in soils. Plastic pollution is arguably one of the most pressing ecological and public health issues 
of our time, yet existing lab-based research on the health effects of terrestrial microplastics does not reflect the condi-
tions that free-ranging vertebrates are actually experiencing. Going forward, performing more true-to-life research will 
be of the utmost importance to fully understand the impacts of microplastics and maintain the public’s faith in the 
scientific process.
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Graphical Abstract

Introduction
The invention of plastics in the early 1900s revolution-
ized human societies [1], yet the excessive consump-
tion of short-lived and single-use plastics has resulted 
in plastics accumulating almost everywhere on Earth [2, 
3]. Plastic pollution is now so widespread that micro-
plastics – plastic particles between 1 µm and 5 mm – are 
regularly detected in biological samples surveyed for 
their presence [4, 5]. Their resistance to degradation and 
ubiquitous nature make microplastics a worrying envi-
ronmental contaminant, yet, despite their pervasiveness, 
very little is known about how microplastics might be 
impacting the health of species living in terrestrial eco-
systems. This stands in stark contrast to the fact that 80% 
of species live on land [6], and that the volume of micro-
plastics in terrestrial systems may be greater than that in 
oceans [7, 8].

Though evidence is still extremely limited, emerging 
studies are attempting to identify the predicted no-
effect concentrations (PNEC) of soil microplastics  for 
different taxa [9, 10]. For terrestrial vertebrates, stud-
ies carried out on rodents are showing that microplas-
tics represent a potentially serious health  threat, and 
may impact an array of biological functions [11, 12]. 
For instance, recent work in mice and rats has dem-
onstrated the detrimental effects of microplastics on 
sperm production [13]. Similarly, a study conducted by 
Wang et al. [14] indicated that mice exposed to micro-
plastics experienced both necroptosis and inflamma-
tion within bladder epithelium, while Djouina et al. [15] 
found that microplastics can adversely affect the small 
intestine and colon of mice, causing histological and 

immune disturbances, as well as inflammation. Data 
have been primarily limited to in vivo studies on labo-
ratory rodents that were force fed plastics, however, 
and there are currently no studies describing the health 
effects of microplastics exposure on terrestrial verte-
brates outside of laboratory settings. Thus, although 
the findings from these studies are certainly worry-
ing, the extent to which they are representative of the 
conditions that humans and animals are actually expe-
riencing in the real world is largely unknown. Here, 
we review the peer-reviewed literature to explore the 
extent to which lab studies on the effects of microplas-
tics are representative of the conditions that terrestrial 
animals are experiencing in the real world. In particular 
we focused on understanding how the concentrations 
of microplastics and types of polymers being adminis-
tered to rodents in lab studies compared to those found 
in terrestrial soils. Although our focus was on micro-
plastics in soils, this is not the only path of exposure to 
microplastics. For instance, plants can uptake micro-
plastics [16], which can then be ingested by herbivo-
rous/omnivorous species. Airborne microplastics can 
also be inhaled, with intake rates that may be compara-
ble to ingestion [17]. Most studies on airborne micro-
plastics quantify concentrations in terms of deposition 
rates [18], however, making direct comparisons to lab 
studies impossible, and there is little information on 
the microplastic exposure and ingestion rates of free-
ranging terrestrial vertebrates. Nonetheless, air and 
waterborne microplastics will ultimately accumulate in 
soils [18, 19], and soils are at the base of many terres-
trial food webs [7]. The concentrations of microplastics 
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in soils are thus likely to be broadly representative of 
exposure levels. Our results can help provide much 
needed context to the findings of existing health stud-
ies, as well as an ecologically relevant baseline that can 
help guide future lab studies on the health effects of 
terrestrial microplastics.

Materials and methods
We first identified studies from the peer-reviewed litera-
ture that were focused on the health effects (i.e., changes 
in health resulting from exposure to a source) of micro-
plastics on terrestrial rodents, or on microplastics in ter-
restrial soil environments. As our goal was to identify as 
many peer-reviewed articles as possible, we conducted a 
search for the terms “microplastics”, “microplastics” and 
“mice”, “microplastics” and “rats”, “microplastics” and 
“rodents”, “microplastics in lab”, and “microplastics in 
soil” on both Google Scholar and Scopus. We focused 
on microplastics in rodents as they are important model 
species for human and animal health research. Any 
in  vivo lab studies not directly relating to the ingestion 
of microplastics were excluded as they were beyond the 
scope of our effort. Similarly, studies where soil samples 
were taken from lakes or river beds were excluded as 
our focus was on describing the conditions being expe-
rienced by terrestrial vertebrates. Through this initial 
search, 150 reviewed studies were compiled. For in vivo 
studies we extracted information on the polymer type, 
concentrations fed to laboratory rodents, and diameter, 
volume, and density of the microplastic particles. The 
microplastic type and final concentrations found in the 
soil environment were extracted from soil studies. There 
was very little consistency in the units across studies, 
and so to standardize microplastic measurements, all 
concentrations were converted to items/kg. To do this, 
polymer type was required to identify the density of the 
plastic, while diameter was required to calculate the vol-
ume. The known volume, density, and concentrations 
were then used in conjunction to calculate the num-
ber of particles and convert the data to items/kg. If any 
information required to make this conversion was absent 
from a study, it was excluded from subsequent analy-
ses. Similarly, soil studies were excluded if information 
on the concentrations of microplastic were absent, or if 
they were experimental studies. This further narrowed 
the number of studies down to a total of 73 in vivo stud-
ies describing 183 experimental concentrations, and 41 
soil studies with data on 93 sites. While it is possible that 
our literature search missed some relevant studies, the 
number of identified studies are in line with other recent 
reviews [20, 21] and our compiled dataset is thus likely 
to be representative of broad trends in the field. The full 
dataset is provided in Additional file 1 and the PRISMA 

checklist [22] in Additional file 2. The review process was 
not registered.

Results and discussion
The median concentration of microplastics fed to labora-
tory rodents in in vivo studies was 39,051,103 items/kg. 
This was close to 42,000 times greater than the median 
concentration of 930 items/kg found in soil (Fig.  1A). 
Only two of the in  vivo studies tested concentrations 
below this median value. The highest recorded mean 
concentration of microplastics in any soil sample was 
106,000 items/kg which was found across various urban 
landscapes, including landfills, dumps, parking lots, 
industry and construction areas, urban parks, wetlands, 
forests, and agricultural areas in Coimbra, Portugal [23]; 
only 14 out of the 72 compiled lab studies used concen-
trations below this amount. We also found that while 31 
different plastic polymers have been found to occur in 
soil, the health effects of only 6 polymers have been stud-
ied to date, with the overwhelming majority of in  vivo 
experiments having focused on polystyrene (Fig. 1B). The 
stark contrast between the types and concentrations of 
microplastics being administered to lab rodents in in vivo 
studies versus the conditions these animals are likely to 
encounter in the wild illustrates the need for more eco-
logically realistic studies. Using a mixed effects regres-
sion model, we found that there was also no relationship 
between year of study and the concentrations of micro-
plastics being administered to rodents in in  vivo stud-
ies (βYear = 0.25, 95% CI = -0.34–0.84; Fig.  1C). In other 
words, there was no evidence that studies are becoming 
increasingly environmentally realistic over time.

Notably, and in light of this disconnect, a common 
trend across lab studies was the lack of any rationale for 
the concentrations of microplastic that were adminis-
tered. The 31 studies that did provide justification chose 
concentrations that were based either on the concen-
trations of microplastic found in rivers [24–26], or on 
existing in  vivo studies [12, 14, 27–51]. For instance, 
Yang et al. [34] and Mu et al. [30], both based their study 
designs on work on mice by Deng et al. [52]. Deng et al. 
[52], however, based their study on microplastics concen-
trations found in rivers, and therefore it does not accu-
rately reflect exposure levels in terrestrial environments. 
In addition, while studies often use high concentrations 
of potential toxicants to establish dose-effect relation-
ships, it is rare for acute or chronic ratios to exceed 
100-fold greater than environmentally relevant concen-
trations [53]. In other words, the 4 order of magnitude 
difference between the microplastics administered in 
in  vivo health studies and environmental concentra-
tions can not be attributed to standard practice in dose-
effect research. It is likely that the lack of any rationale 
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contributed to the high variability in concentrations used 
between studies. Thus, while a handful of lab studies did 
provide some form of justification for their study design, 
the extent to which these studies are representative of the 
conditions that humans and animals are actually experi-
encing in the real world is limited.

Conclusions
Plastic pollution is arguably one of the most pressing eco-
logical and public health issues of our time, yet existing 
research on the health effects of terrestrial microplastics 

does not accurately reflect the conditions that humans 
and animals are actually experiencing. This is in line with 
earlier findings from toxicology work on microplastics  in 
aquatic environments [54–56], and our analyses showed 
no indication that exposure concentrations are becoming 
more realistic over time (Fig. 1C). Paired with this discon-
nect is the fact that 3,067 animals were sacrificed to gen-
erate the findings of these 73 studies, yet the majority of 
these animals were fed tens to hundreds of thousands of 
times more plastic than they would ever be exposed to 
in the wild. Because microplastics research also receives 

Fig. 1  The boxplot in A shows the concentrations of microplastics fed to rodents in in vivo lab studies, compared to those of MPs found in soils. 
In B the number of soil studies which identified different plastic polymers are shown in blue, whereas the number of polymers assessed via in vivo 
health studies are shown in red. In C, the concentrations of microplastics being administered to rodents in in vivo studies is shown as a function 
of year of publication. The dashed line in C represents the median concentration of microplastics found in soils, while the solid line represents the 
trend of a fitted regression model. Data were compiled from 114 peer-reviewed studies; 41 on microplastics in soil and 73 on the health effects of 
microplastics
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frequent media attention, performing true-to-life studies 
is of the utmost importance so as to not erode the public’s 
faith in the scientific process. It therefore falls on the scien-
tific community to describe the ecologically realistic effects 
of microplastics on the health of terrestrial species in order 
for well-founded mitigation efforts to be launched. 
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