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up to 17% in the human brain [5, 6]. The morphological 
appearance of microglia depends on their activation status. 
In the homeostatic, non-activated state microglia display 
highly branched cellular processes and are also referred 
to as ramified (Fig. 1). Previously designated “resting” or 
“quiescent”, intravital imaging revealed that these microg-
lia show constant motility of their cellular processes within 
the CNS tissue in order to survey their environment in a 
non-overlapping territorial fashion [7, 8]. In response to 
infection or tissue damage by traumatic brain injury or other 
insults, pathogen- or damage-associated molecular patterns 
(PAMPs, DAMPs) are sensed by pattern recognition recep-
tors leading to microglia activation [9, 10]. This causes a 
dramatic change in microglia morphology, involving a rapid 
reorientation of processes towards the site of injury, fol-
lowed by a reactive state, characterized by a shortening and 
thickening of cellular processes, and finally an amoeboid 
shape with full phagocytic capacity (Fig. 1). Similar to other 
tissue macrophages, microglia can polarize towards func-
tionally different activation states that are broadly catego-
rized into classical inflammatory (M1-like) and alternative 
anti-inflammatory activation (M2-like) [11, 12].

Inflammatory activation is mediated by pattern rec-
ognition receptors like the toll-like receptors (TLRs), for 
example the endotoxin receptor TLR4, sensing bacterial 
lipopolysaccharides (LPS). This induces the production of 
toxic nitric oxide (NO) and reactive oxygen species (ROS) 

Microglia and neuroinflammation

Macrophages are part of the first line of defense against 
pathogens and engaged in tissue repair. A special type of 
tissue macrophages are microglia, the resident macrophage 
population of the central nervous system. They colonize 
the developing brain before the formation of the blood 
brain barrier, which then isolates them from the periphery 
[1]. Microglia therefore must fulfill functions related to 
immunosurveillance and tissue homeostasis that in periph-
eral tissues are allocated to different types of mononuclear 
phagocytes, i.e. macrophages and dendritic cells [DCs; 
2]. In case of a disruption of the blood brain barrier, how-
ever, microglia are supported by infiltrating immune cells, 
including monocyte-derived macrophages that can acquire 
phenotypes hardly distinguishable from microglia [3, 4].

Depending on brain region and species, numbers of 
microglia vary greatly and estimates range from 5 to 12% 
of all cells in the brain parenchyma of mice and from 0.5 
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to neutralize pathogens, as well as expression and release 
of proinflammatory cytokines, such as tumor necrosis fac-
tor (TNF), interleukin (IL)-6, and IL-1ß to promote local 
inflammatory activation, and of a number of chemokines 
to attract additional immune cells. Hallmarks of M2-like 
activation are the expression of arginase-1 antagonizing 
NO synthesis, and the production of anti-inflammatory 
cytokines such as IL-4, IL-10 and IL-13 (Fig. 1). However, 
especially for microglia, the classification of macrophage 
activation into M1- and M2-like states cannot adequately 
reflect the complex situation in vivo [13]. Nevertheless, par-
ticularly for in vitro studies, it still is a helpful concept for 
the characterization of microglia activation states.

Balancing pro- and anti-inflammatory activation in the 
damaged brain is crucial for efficient repair while preventing 
overshooting immune responses [14]. Neuroinflammation 
may be beneficial or detrimental depending on the context 
(Fig. 1). It is indispensable for pathogen defense but also 
implicated in neurotoxicity and neurodegenerative diseases 
[11, 15, 16]. Along the same lines, anti-inflammatory states 
are related to tissue repair and angiogenesis, but in the con-
text of neovascularization in brain tumor development the 
latter can be fatal [17]. More general, the unique, but over-
all anti-inflammatory profile of microglia and macrophages 
associated with brain tumors such as gliomas favors tumor 
progression and is linked to poor prognosis [18]. Together, 
this highlights that understanding the mechanisms that con-
trol microglia activation and recruitment is essential for 
therapeutic interference with inflammation in brain disease.

Polysialic acid: Brief synopsis on structure, 
biosynthesis, cell surface presentation, and 
NCAM modulation

Polysialic acid (polySia) is the generic term for linear poly-
mers of sialic acids (a.k.a. neuraminic acids) with variable 
lengths, i.e. degrees of polymerization (DP). In vertebrates, 
polySia consists of at least eight and up to 90 or more 
N-acetylneuraminic acid residues linked by α2,8 glyco-
sidic bonds [19, 20]. As a unique posttranslational modi-
fication of only a small number of select proteins, polySia 
can be added to terminal sialic acids on N- and O-glycans 
by two different enzymes of the trans-Golgi compartment, 
the polysialyltransferases ST8SIA2 and ST8SIA4, which 
show distinct but often overlapping expression patterns 
[21–23]. Notably, polySia with the exact same structure but 
a completely unrelated biosynthetic pathway is found as a 
capsular polysaccharide called colominic acid on certain 
pathogenic bacteria [24, 25]. PolySia is mostly presented 
on the cell surface and alters basic biophysical properties 
of its protein carrier. Thereby, polySia regulates specific 
protein functions, but also is able to modulate overall cell 
surface interactions with major implications for nervous 
system development and plasticity [19, 26]. In this regard, 
the by far most abundant and best studied carrier presenting 
polySia at the surface of neural lineage cells, namely oligo-
dendroglia, astroglia and neurons, is the neural cell adhe-
sion molecule NCAM, which can be polysialylated by each 
of the two polysialyltranferases individually or combined 
[27]. Numerous comprehensive reviews highlight the divers 
roles of polySia-NCAM and the impact of its dysregulation 
on mostly mouse brain development, structural and synap-
tic plasticity, or nervous system repair, with consequences 
for learning, memory, and cognition, as well as for setting a 

Fig. 1  Simplified overview on 
microglia activation and func-
tions. See text for details. Abbre-
viations: DAMPs and PAMPs, 
damage- and pathogen-associated 
molecular patterns; IL, inter-
leukin; NO, nitric oxide; PRR, 
pattern recognition receptors; 
ROS, reactive oxygen species; 
TGF, transforming growth factor; 
TLRs, toll-like receptors; TNF, 
tumor necrosis factor
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neurodevelopmental predisposition to psychiatric diseases 
[see for example 19, 22, 25, 28, 29, 30].

Polysialic acid of neural lineage cells on 
proteins other than NCAM

The remarkably specific polysialylation of NCAM is high-
lighted by the observation that the brain of NCAM-negative 
mice is almost, but not completely, devoid of polySia [31]. 
Indeed, a few other carriers of polysialic acid have been iden-
tified and some of them were also detected in the brain [21]. 
Occurrence of polySia has been reported on sodium channel 
alpha subunits in synaptosomal fractions of adult rat brain 
[32] and on SynCAM 1 (gene name Cadm1) at a few, rather 
undefined sites during perinatal development of the mouse 
brain [33]. In both cases, the physiological consequences 
of the polySia modification remain elusive. Analyses of a 
muscular sodium channel alpha subunit expressed in CHO 
cells capable or not capable of polysialylation indicated that 
polySia has a stabilizing effect on voltage-dependent gating 
[34]. Concerning SynCAM 1, the most prominent function 
is its ability to induce synapse formation of neurons [35]. 
In contrast, polysialylated SynCAM 1 was not detected in 
neurons, but associated with NG2-positive oligodendrocyte 
precursor cells (OPCs) of murine and human origin [33, 36, 
37]. This cell population mainly gives rise to myelinating 
oligodendrocytes in development, maintenance and repair 
of myelin, the insulating sheath around axons that allows 
rapid nerve conduction and also provides metabolic support 
to maintain axonal integrity [38]. OPCs can receive tran-
sient synaptic input from neurons prior to further differen-
tiation [39–41], and recent data from zebrafish suggest that 
a subpopulation of OPCs integrates neuronal information 
and proliferates to generate another OPC subpopulation that 
executes myelin formation [42].

Despite this progress, the relevance of neuron-OPC 
synapses remains poorly understood [43, 44]. However, 
the dynamic regulation of neuronal synapse formation and 
maintenance by SynCAM 1 [45], together with the abroga-
tion of its adhesive properties by polySia [33], raised the 
possibility that the generation of polySia-SynCAM 1 by 
OPCs may play a role in the turnover of neuron-OPC syn-
apses. With regard to this possible function of polySia-Syn-
CAM 1, it was intriguing that about 20% of mouse OPCs 
in vitro were negative for NCAM and positive for polySia-
SynCAM 1, which accumulated in the Golgi compartment, 
but was transiently recruited to the cell surface in response 
to depolarization [37]. Yet, a physiological function could 
not be assigned to polySia-SynCAM 1. In vivo and in 
vitro, polySia on SynCAM 1 is exclusively produced by 
ST8SIA2 [37, 46] and St8sia2-negative mice show deficits 

of developmental myelination and myelin maintenance, 
which may be caused by impaired transition from OPCs to 
myelinating oligodendrocytes [47]. A potential contribution 
of polySia-SynCAM 1 was not investigated in this study, 
but in a mouse model of cuprizone-induced de- and remy-
elination, the deficits of myelin repair and OPC differen-
tiation in St8sia2-negative mice were faithfully reproduced 
by Ncam deficiency, and even during the phase of highest 
OPC recruitment no polySia-SynCAM 1 could be detected 
[48]. Thus, a prominent role of polySia-SynCAM 1 in 
myelination and myelin repair appears unlikely. In contrast, 
increasing evidence points towards roles of OPCs beyond 
myelination, such as a modulation of neuroinflammation 
[44, 49]. Therefore, polySia-SynCAM 1 produced by OPCs 
may contribute to the immunomodulatory functions of poly-
Sia as discussed in the following sections.

Polysialic acid in microglia and macrophages

Strikingly similar to the Golgi-enrichment and activity-
dependent recruitment of polySia-SynCAM 1 in OPCs, 
cultured murine microglia and human THP1 macrophages 
accumulate polysialylated proteins in the Golgi compart-
ment, and, in response to activation, which in this case is 
induced by inflammatory LPS treatment, these polysi-
alylated proteins are translocated to the cell surface and 
released [37, 50] (Fig. 2).

One of these polysialylated proteins is neuropilin-2 
(NRP2), well-known as a regulator of axon guidance and 
angiogenesis [51]. NRP2 has first been identified as a poly-
Sia carrier on the surface of human monocyte-derived DCs 
[52]. In DCs, cell surface polysialylation increases with 
maturation and a first functional analysis indicated an inhib-
itory role of polySia-NRP2 in T cell activation and prolif-
eration mediated by mature DCs [52]. As further detailed 
in the section on “PolySia-chemokine interactions”, polySia 
on mature DCs is also indispensable for their chemotactic 
migration towards CCL21. Based on the knowledge on 
polySia-NRP2 expression by DCs, the presence of poly-
Sia-NRP2 in microglia was detected by analyzing polySia 
immunoreactivity of primary microglia cultures derived 
from the early postnatal brain of NCAM knockout mice 
[37].

The second polysialylated protein in microglia and mac-
rophages is E-selectin ligand-1 (ESL-1; gene name Glg1). 
As the name implies, ESL-1 is a cell adhesion ligand of 
E-selectin, implicated in leukocyte rolling [53, 54]. It 
was first described as Golgi-localized sialoglycoprotein 
MG-160 [55] regulating TGF-ß maturation during carti-
lage and bone homeostasis [56, 57], and as a cysteine-rich 
fibroblast growth factor receptor [58] implicated in FGF 
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knockout mice [50] and, in a later study, also for the murine 
microglial cell line BV2 [60].

In contrast to polySia on NCAM or SynCAM 1, which 
is attached to complex N-glycans by either both polysial-
yltransferases or specifically by ST8SIA2 (see above), 
polysialylation of NRP2 was found to be performed only by 
ST8SIA4 and occurs exclusively on mucin-type O-glycans 
[61]. The glycosylation sites that harbor polySia on ESL-1 
have not been analyzed yet. Evidently, however, ESL-1 
is also polysialylated by ST8SIA4 on O-glycans, because 
the Golgi-resident polySia was (i) still present in microg-
lia derived from Ncam and St8sia2 double-knockout mice, 
but completely absent from NCAM- and ST8SIA4-negative 
microglia and (ii) unaffected by enzymatic digestion of 
N-glycans with PNGaseF but eliminated by inhibition of 
O-glycan synthesis with benzyl-2-acetamido-2-deoxy-α-D-
galactopyranoside (benzyl-α-GalNAc) [37].

and heparin binding at the cell surface [59]. ESL-1 was 
selected as a candidate polySia carrier from a list of pro-
teins identified by mass spectrometry in lysates from two 
different mouse embryonic stem cell (ES)-derived microglia 
lines that have been enriched for polysialylated proteins by 
either immunoprecipitation (IP) with the polySia-specific 
monoclonal antibody 735 or affinity precipitation with an 
inactivated phage-derived endosialidase [50]. Subsequently, 
polysialylation of NRP2 and ESL-1 was unequivocally 
demonstrated by Western blot analyses after IP with poly-
Sia-specific antibodies and, reversely, after IP with NRP2- 
or ESL-1-specific antibodies. The simultaneous occurrence 
of polySia-NRP2 and polySia-ESL-1 could be confirmed 
for the two ES-derived microglia lines used in the glycopro-
teomic approach, for primary cultured mouse microglia and 
human THP1 macrophages as well as for injury-induced 
microglia in brain slice cultures from wildtype and Ncam 

Fig. 2  Working model of the proposed impact of polySia and polysi-
alylated proteins on microglia activation and recruitment. See text for 
details. Abbreviations: CCL, C-C motif ligand; CCR, C-C motif che-
mokine receptor; CXCR C-X-C motif chemokine receptor; DAP12, 

DNAX-activating protein of 12  kDa; Ig, immunoglobulin; ITAM, 
immunoreceptor tyrosine-based activation motif; ITIM, immuno-
receptor tyrosine-based inhibitory motif; Siglec, sialic acid-binding 
immunoglobulin-like lectin. Others: see legend to Fig. 1
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compartment and both did not parallel the LPS-induced loss 
of polySia.

The trigger for the release of the polysialylated proteins 
from the Golgi compartment in response to the inflam-
matory activation of microglia seems to be a depletion of 
calcium (Fig. 2). The mobilization of calcium from intracel-
lular stores is a central element of LPS-induced microglia 
activation and involves the activation of ryanodine recep-
tors (RyRs) [9, 62]. The trans-Golgi compartment, where 
polysialylation takes place, is also a calcium store that 
can be selectively mobilized by activation of RyRs [63, 
64]. Remarkably, in the absence of LPS, a translocation 
of polysialylated proteins from the Golgi compartment to 
the cell surface, but not their release, could be induced by 
treatment with an RyR agonist, whereas an RyR antagonist 
was able to prevent the LPS-induced release [60]. Hence, 
because NRP2 and ESL-1 share no obvious feature other 
than polysialylation, calcium-dependent changes of polySia 
interactions may underlie the common regulation of Golgi 
retention and LPS-induced mobilization of polySia-NRP2 
and polySia-ESL-1 from the Golgi compartment. During 
polysialylation, ST8SIA4 interacts with nascent polySia 
chains and with the protein acceptor [65–67]. As shown for 
polySia antibody binding, calcium affects polySia-protein 
interactions, probably by stabilizing conformational states 
of polySia epitopes [19, 68]. In this way, calcium-dependent 
interactions between polySia and ST8SIA4 could mediate 
retention of polySia-NRP2 and polySia-ESL-1 in the Golgi 
compartment, and calcium depletion may trigger their 
release.

Analyses by immunostaining indicated a rapid discharge 
of polysialylated proteins within the first hour after LPS-
induction of microglia [37, 50]. In contrast, monitoring 
by immunoaffinity chromatography revealed that cultured 
microglia continuously release protein-bound polySia for 
at least 24  h after LPS induction [60]. This implies that 
the amount of d polySia can be much higher than antici-
pated based on immunostaining and that analysis by immu-
nostaining will not be suited to detect a potential release 
of polysialylated proteins by activated microglia in, e.g., 
chronic states of neuroinflammation.

Evidently, primary cultured microglia experience activa-
tion during isolation and cultivation which is problematic to 
define and can hardly be matched to a particular activation 
state in vivo [69, 70]. The same applies to cell lines cul-
tured in the presence of serum, and, a little less though, to 
ES-derived microglia derived under serum-free conditions 
[71]. It therefore is crucial to validate findings obtained 
in vitro by observations in situ or in vivo. Concerning the 
expression of polySia by cultured microglia the data are 
conflicting. Polysia-NCAM was detected on the cell surface 
of primary cultured microglia obtained from early postnatal 

The prevailing model of polySia as a modulator of cell 
surface interactions seems hardly compatible with the 
Golgi-localization of polysialylated proteins in microglia. 
However, upon inflammatory activation of microglia with 
LPS, the Golgi-confined pool of polySia was rapidly trans-
located to the cell surface [37, 50]. By immunostaining of 
fixed, non-permeabilized ES-derived microglia, polySia at 
the cell surface could be detected between ten minutes and 
about one hour after LPS induction, before the signals dis-
appeared, so that LPS-induced cells with the amoeboid mor-
phology of activated microglia became negative for polySia 
on the cell surface and in the Golgi. In contrast, the Golgi-
like polySia pattern remained unaltered and no cell surface 
translocation was observed, when the cells were activated 
by IL-4 to induce microglia with an amoeboid morphology, 
but an M2-like profile characterized by arginase 1 immu-
nostaining [37].

Pretreatment with the anti-inflammatory drug mino-
cycline inhibited the appearance of amoeboid cells and 
reduced the LPS-induced loss of Golgi-resident polySia 
[37]. Furthermore, inhibition of metalloproteinases pre-
vented the polySia depletion in response to LPS treatment 
and polySia signals were maintained on the surface of cells 
with the morphology of activated microglia [50]. Together, 
this indicates that inflammatory activation induces metallo-
proteinase-mediated ectodomain shedding of polysialylated 
proteins. Indeed, by polySia-IP and Western blot analyses 
polySia-NRP2 and polySia-ESL-1 could be detected in cell 
culture supernatants of LPS-induced microglia. A compari-
son of the protein bands after enzymatic removal of polySia 
with endosialidase revealed that NRP2 and ESL-1 immu-
noreactive bands appeared at a lower apparent molecular 
weight as compared to the respective bands obtained from 
cell pellets, indicating a smaller protein backbone of the 
polySia-NRP2 and polySia-ESL-1 species in the super-
natant [50]. This supports that the polysialylated proteins 
are released from the cell surface by ectodomain shedding 
(indicated by the scissors symbol in Fig. 2).

In ES-derived murine microglia and human THP1 mac-
rophages, polySia was detected on only small fractions of 
NRP2 and ESL-1, and out of several NRP2 isoforms, only 
one with an apparent molecular weight of about 125 kDa 
was polysialylated [50]. In the case of ESL-1, polySia was 
associated with a band at about 150 kDa. This was the only 
ESL-1 species found in murine microglia, but for human 
THP1 macrophages, Western blot analysis revealed a sec-
ond ESL-1 band at a higher molecular weight that was not 
polysialylated and, based on its electrophoretic migration, 
appeared too big to represent a second isoform reported 
for human ESL-1 [50]. Before and after LPS treatment, 
NRP2 immunoreactivity was distributed over the entire 
cell, while ESL-1 signals were always confined to the Golgi 
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physiological conditions are devoid of polySia-NCAM and 
produce polySia on NRP2 and ESL-1 upon activation by 
injury or DAMPs present in, e.g., serum-supplemented cell 
cultures.

Proof of principle that polySia can be produced by acti-
vated microglia in vivo was obtained in a mouse model of 
traumatic brain injury (TBI) [60]. Seven days after a small 
confined stab lesion to the cortex, numerous cells positive 
for the microglial marker Iba-1 and featuring the morphol-
ogy of activated microglia could be detected around the 
wound channel (Fig. 3). Some, but only few of these cells 
displayed the characteristic Golgi-like polySia staining pre-
viously detected in vitro and in slice cultures. They were 
all located in some distance to the wound channel, suggest-
ing that microglia in close proximity to the lesion site lost 
polySia immunoreactivity upon further activation. In anal-
ogy to the continuous shedding of polysialylated proteins 
by activated microglia in vitro, this points towards a release 
of polysialylated proteins by injury-activated microglia in 
vivo. With increasing distance from the wound, reactive 
microglia with short, thick processes appeared and finally 
displayed ramified morphologies, indicative for the homeo-
static state. In both of the latter states, microglia were nega-
tive for polySia. Based on these findings, it can be assumed 
that cultured microglia, which consistently display accumu-
lations of polySia in the Golgi compartment, correspond to 
a transient injury-induced activation state of polySia-posi-
tive microglia in TBI.

mouse brain [37, 72] as well as on the mouse microglial cell 
line Ra2 [73]. In contrast, analyses of two different mouse 
ES-derived microglia lines and of the widely used microg-
lial cell line BV2 by immunostaining, IP and Western blot 
yielded no NCAM, polySia-NCAM, or cell surface polySia 
staining, and NRP2 and ESL-1 were the only detectable car-
riers of polySia [50, 60].

With regard to these discrepancies the following observa-
tions are worth mentioning: First, primary cultured microglia 
express markers unique to peripheral monocytes indicating 
a deviating phenotype in vitro [70]. Second, human THP1 
cells show a remarkable switch from the expression of poly-
Sia-NCAM on the cell surface at the monocyte-like stage 
towards the expression of Golgi-localized polySia on NRP2 
and ESL-1 after phorbol ester-induced differentiation into a 
macrophage-like state [50]. Third, despite large amounts of 
polySia on neurons, microglia in organotypic slice cultures 
from early postnatal mouse brain were devoid of polySia 
at the cell surface, but between one and five days of culti-
vation, an increasing amount of the injury-induced microg-
lia displayed Golgi-localized polySia signals that could be 
abolished by LPS treatment [50]. Due to the downregulation 
of polySia during postnatal mouse brain development [74], 
brain slice cultures from older mice were largely devoid of 
polySia-NCAM on neurons. Hence, in many parts of these 
slice cultures, the Golgi-like polySia signals of activated 
microglia were the only source of polySia immunoreactivity 
[50]. Taken together, it seems obvious that microglia under 

Fig. 3  PolySia in microglia 
one week after activation by 
traumatic brain injury (TBI). a-b, 
Immunofluorescence staining of 
polySia (green, yellow arrow-
heads) combined with a nuclear 
counterstain (DAPI, blue) in 
(a) and, additionally, with the 
microglia marker Iba-1 (red) in 
(b). The dotted line indicates the 
position of the wound channel. 
c-f, Higher magnifications of the 
boxed areas in (b) and corre-
sponding schemes of microglia 
with morphologies indicative for 
different states of activation, as 
described in the text. Modified 
from [60]
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Siglec-11 is an ITIM-containing human immune recep-
tor of microglia and other tissue macrophages that has no 
direct counterpart in mice [80, 81]. However, in search for 
possible functions of the polysialylated proteins released by 
murine microglia, it became apparent that soluble polySia 
efficiently inhibits the LPS-induced activation of murine 
primary cultured and ES-derived microglia, indicating the 
presence of an inhibitory polySia receptor in mice [37, 50].

Dampening inflammatory activation of microglia by free, 
soluble polySia implicated a negative feedback mechanism 
through the release of protein-bound polySia. This was cor-
roborated by the finding that primary cultured microglia 
from NCAM and ST8SIA4 negative mice, i.e. microglia 
that is no longer able to release polysialylated NRP2 and 
ESL-1, show a significantly higher activation in response to 
LPS, when compared to microglia with wildtype ST8SIA4 
obtained from mice lacking NCAM and ST8SIA2 [37] 
(Fig. 4, left).

Searching for the murine polySia receptor, Siglec-E 
appeared to be a promising candidate, because Siglec-E 
is a major inhibitory Siglec of murine microglia and mac-
rophages [82, 83] and in vitro data indicated that polySia 
encapsulated E. coli K1 bind to the extracellular part of 
Siglec-E as efficiently as to human Siglec-11 [84]. However, 
Siglec-E is considered to be a promiscuous receptor and in 
a glycan array study, Siglec-E-Fc chimeric protein bound to 
a wide range of sialoglycans [85]. Among them were α2,8-
linked di- and trisialic acid (DP2, DP3), showing a manifold 
higher Siglec-E binding than oligo- and polysialic acids with 

Immunomodulation by the polySia-Siglec 
axis: In vitro evidence, conjectures, and 
pending questions

The first study linking polySia to microglia activation 
described that polySia-NCAM on neurons was able to reduce 
neurotoxicity of murine microglia that has been transduced 
with Siglec-11 [72]. Siglecs (sialic acid-binding immuno-
globulin-like lectins) are among the receptors that are able 
to modify the activity of brain resident microglia and of 
immune cells infiltrating the damaged brain [75]. They are 
‘immuno globulin-type’ (I-type) lectins that bind sialylated 
glycans with an amino-terminal V-set immunoglobulin (Ig) 
domain [76–79]. Conventionally, Siglecs are divided into 
those that are structurally conserved across mammals and 
the group of CD33 (Siglec-3)-related Siglecs that vary 
considerably between species. In contrast to ten functional 
CD33-related Siglecs in humans, only five members of 
this group are known in mice [77, 79]. In their cytoplasmic 
domain, most CD33-related Siglecs have immunorecep-
tor tyrosine-based inhibitory motifs (ITIMs), which signal 
through tyrosine phosphorylation by Src-family kinases 
and recruitment of mainly the protein tyrosine phosphatases 
SHP-1 and SHP-2. The ITIM-containing receptors counter-
act signaling from receptors associated with an immunore-
ceptor tyrosine-based activation motif (ITAM), such as the 
triggering receptor expressed on myeloid cells 2 (TREM2) 
[76–79].

Fig. 4  Loss of ST8SIA4 and Siglec-E potentiates the microglial 
response to LPS. NO production in response to LPS is significantly 
increased in primary microglia derived from NCAM- and ST8SIA4-
negative mice (St8sia4−/−) as compared to NCAM-negative mice with 
wildtype St8sia4 (St8sia4+/+, left panel), as well as in Siglec-E-defi-
cient (Siglece−/−) as compared to wildtype BV2 microglia (Siglece+/+). 
Consistent with the inability to produce polySia as a ligand of Siglec-

E, or the loss of Siglec-E as a receptor of polySia, addition of free, 
soluble polySia to LPS-induced cells is still able to inhibit ST8SIA4- 
but not Siglec-E-deficient microglia. For each graph, data were nor-
malized to untreated controls, and, after two-way ANOVA, results of 
Holms–Sidak’s post hoc tests are shown for selected group compari-
sons (* p < 0.05, **** p < 0.0001). Data compiled from Werneburg et 
al. [37], with permission from Wiley, and from Thiesler et al. [60]
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for multivalent binding may differ between Siglec-E and 
Siglec-11. Such an interaction would either require that 
moieties within the polySia chain form interacting motifs, 
also designated endo binding mode [89], as described for 
binding sites of polySia-specific antibodies [90, 91] or the 
endosialidase from the bacteriophage K1F (endo NF) [92, 
93]. Alternatively, if only the nonreducing end of polySia 
engaged in interactions with the conserved sialic acid-
binding site of the V-set Ig domain in an exo binding mode, 
as shown for the interaction of polySia with the short fiber 
knob of the human adenovirus 52 [89, 94], clustering would 
require additional polySia binding sites of the correspond-
ing Siglec.

With regard to the expression of Siglec-E in response to 
inflammatory activation, a strong increase of Siglec-E on 
the mRNA level contrasted with immunostaining results 
showing a drastic downregulation of Siglec-E cell surface 
presentation after LPS induction of BV2 microglia [60]. A 
similar reduction of Siglec-E at the cell surface could be 
induced by application of free, soluble polySia to other-
wise untreated cells, whereas pharmacological inhibition of 
clathrin-independent endocytosis prevented the downregu-
lation and caused a massive accumulation of Siglec-E at the 
surface of LPS-induced microglia. These findings suggest 
an internalization of Siglec-E in response to interaction 
with polySia, further supporting that Siglec-E acts as poly-
Sia receptor (Fig. 2). Indeed, co-localization of polySia and 
Siglec-E with the endosomal marker early endosomal anti-
gen 1 (EEA1) could be detected after LPS-induction [60].

Endocytosis of Siglecs by clathrin-dependent or -inde-
pendent mechanisms has been observed in response to anti-
body ligation or interactions with multivalent ligands, but 
the consequences of the receptor internalization are not clear 
[78, 95, 96]. Likewise, it remains open how the endocytosis 
of polySia and Siglec-E may contribute to Siglec-E medi-
ated inhibitory signaling and it is not yet known if human 
Siglec-11 undergoes a similar internalization. Nevertheless, 
it appears likely that the uptake of the Siglec receptor together 
with its ligand limits the availability of soluble polySia or 
polysialylated proteins. Both, signaling and ligand depletion 
may be different for intercellular signaling interactions of 
Siglecs with polySia presented by proteins on the surface 
of neighboring cells, such as polySia-NCAM on neurons 
(as indicated in Fig. 2), because this configuration may not 
allow for an internalization of the polySia ligand together 
with an interacting Siglec receptor. However, it should be 
noted that after downregulation of polysialylation during 
postnatal brain development [74], polySia-NCAM is actu-
ally rare in most parts of the healthy adult brain [19, 97]. In 
contrast, the re-expression of polySia-NCAM is a hallmark 
of many tumors, including brain tumors, such as medullo-
blastoma and gliomas, including glioblastoma [27, 98–102]. 

DP4, 6, 8, 10 or 11. Likewise, studies with a Siglec-11-Fc 
chimera indicated binding of short oligomers [80]. In con-
trast, LPS-induced inflammatory activation of human THP1 
macrophages could be attenuated by experimentally added 
soluble polySia with an average DP of 20 (avDP20), but 
not by oligosialic acid with DP6, and lentiviral knockdown 
of Siglec-11 eliminated the inhibitory effect [86]. Similarly, 
knockdown of Siglec-E from murine ES-derived microglia 
abolished the anti-inflammatory impact of avDP20 [87], 
but, as emphasized by the authors, in mouse microglia with 
uncompromised Siglec-E expression, about tenfold more 
avDP20 (1.3µM) was needed to elicit the same inhibitory 
response as for the Siglec-11-mediated inhibition of human 
THP1 macrophages (140nM). Contradictory at first sight, 
30 nM of polySia with chain lengths ranging from DP5 
to DP > 100 and an average DP of 50 (avDP50) was suf-
ficient to inhibit the LPS-induced activation of NO produc-
tion in murine BV-2 microglia and CRISPR/Cas9 mediated 
knockout of Siglec-E in these cells prevented inhibition, 
even when tenfold more (300nM) polySia was applied [60]. 
The data therefore infer that the DP of polySia needed for 
optimal activation of the inhibitory receptors differ between 
Siglec-E and Siglec-11 in a way that the polySia prepara-
tion with avDP20 used by Karlstetter et al. [87] efficiently 
interacts with Siglec-11, but contains only a minor fraction 
of polySia with a chain length able to activate Siglec-E 
signaling.

Besides the loss of inhibition by experimentally added 
polySia, Siglec-E deficiency resulted in a strong increase 
of the LPS response [60] that was comparable to the higher 
responsiveness of primary cultured microglia with abol-
ished polySia synthesis (Fig. 4). Together, these data clearly 
argue that the release of polysialylated proteins by activated 
microglia is part of a negative feedback mechanism, in 
which polySia acts as a trans-activating ligand of Siglec-E 
to prevent an overshooting neuroinflammatory response.

The underlying mechanisms responsible for the marked 
differences between the binding properties of Siglec-E in 
glycan arrays compared to the Siglec-E mediated anti-
inflammatory activity, as well as for the divergent responses 
of Siglec-E and Siglec-11 to different polySia preparations 
remain to be explored. Of note, clustering of both Siglec 
receptors and their ligands seems essential for high-avidity 
interactions [76]. Accordingly, the multivalent display of 
disialic acids (DP2) on nanoparticles, but not free soluble 
DP2, was able to enhance the oligomerization of Siglec-
E and to inhibit inflammatory activation of macrophages 
[88]. This raises the possibility that polySia, in contrast to 
sialic acid oligomers, is able to induce inhibitory signal-
ing by presenting multiple interaction motifs to organize 
receptor clustering (as indicated in Fig.  2). In keeping 
with this assumption, the minimal chain lengths needed 
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the experimental evidence is limited to the observation that, 
in the subset of polySia-NCAM negative cells in primary 
mouse OPC cultures, depolarization leads to translocation 
of polySia-SynCAM 1 from the Golgi compartment to the 
cell surface before the cells loose polySia immunoreactivity 
[37]. However, not only this sequence, but also the time win-
dow of about one hour between the depolarizing treatment 
and the loss of cell-associated polySia is highly reminiscent 
to the findings in microglia. Also similar to the inflamma-
tory activation of microglia, depolarization of OPCs leads 
to a calcium release from internal stores that involves the 
activation of RyRs [104].

So far, it is not known if a release of polysia-SynCAM 
1 from OPCs can be caused by neuroinflammatory signals. 
Yet, protein ectodomain shedding by cells of the oligoden-
drocyte lineage, including OPCs, contributes significantly 
to the secretome of the adult mouse brain [105], and all 
polysialylated isoforms of SynCAM 1 contain the variably 
spliced exon 8b [46] coding for 11 amino acid residues that 
are necessary and sufficient for SynCAM 1 ectodomain 
shedding [106]. Considering, furthermore, that the continu-
ous release of polysialylated proteins by activated microglia 
was undetectable by immunostaining [60], it seems possible 
that ectodomain shedding of polySia-SynCAM 1 by OPCs 
takes part in the control of neuroinflammation, although 
polySia-SynCAM 1 could not be detected during the inflam-
matory response to cuprizone-induced demyelination [48]. 
In this regard, since polySia on SynCAM 1 is produced by 
ST8SIA2, it is interesting that a recent study reports a link 
between the mRNA expression level of ST8SIA2, regulated 
by a network of circular RNA and microRNA interactions, 
and immune regulation in a mouse model of postoperative 
neurocognitive disorder [107].

Siglec-11 and Siglec-16 as paired polySia 
receptors of human microglia and 
macrophages

Experimentally added soluble polySia with avDP20 has 
been demonstrated to interact with Siglec-11 and to attenu-
ate LPS-induced inflammatory activation of human THP1 
macrophages [86]. Interestingly, expression of Siglec-11 on 
brain microglia is uniquely human, because in nonhuman 
primates, Siglec-11 seems limited to peripheral tissue mac-
rophages [81, 108, 109]. Moreover, microglia express a dif-
ferent Siglec-11 isoform than tissue macrophages [72, 110]. 
Microglial Siglec-11 lacks the exon encoding the innermost 
C2-set Ig domain of the extracellular protein part, but little 
is known about the functional consequences of this varia-
tion. When expressed as recombinant soluble IgG-Fc chi-
meras, the microglial isoform binds better to immobilized 

Up to now, however, nothing is known about the potential 
impact of polySia-NCAM interactions with Siglecs of the 
tumor immune environment1.

In the frame of a study on the engineering of protein 
sialylation in plants, it could be demonstrated that protein-
bound polySia, in this case attached to an NCAM frag-
ment, is as potent as free soluble polySia in reducing the 
LPS-induced production of nitric oxide by BV2 microglia 
[103], indicating that this immunomodulatory function of 
polySia is independent from its underlying protein carrier. It 
therefore is puzzling and so far unresolved, why microglia 
release two different polysialylated proteins in response to 
LPS. The two polySia carriers NRP2 and ESL-1 may dif-
fer in their interactions with ST8SIA4, which could affect 
rates of polySia synthesis and eventually result in different 
lengths of the resulting polySia chains. Differences between 
the two proteins may also be relevant for the regulation 
of ectodomain shedding as well as for the availability and 
accessibility of polySia in the extracellular environment. 
For example, ESL-1 interacts with heparan sulfate proteo-
glycans [59] and therefore binds to the extracellular matrix, 
which may be important to limit diffusion and increase the 
local concentration of polySia-ESL-1 after shedding. Fur-
thermore, as for polySia on NCAM and SynCAM 1 (see 
above), it can be assumed that polysialylation of NRP2 and 
ESL-1 also modulates protein-specific functions either in 
regulating interactions within the Golgi compartment, dur-
ing the short period of cell surface presentation, or after 
shedding.

Since immunomodulation by the polySia-Siglec axis 
seems independent from functions of the polySia protein 
carriers, release of polySia-SynCAM 1 by OPCs may add to 
a pool of polySia implicated in modifying neuroinflamma-
tion in vivo. OPCs are abundant throughout the adult brain, 
highly mitotically active and, based on single-cell RNA 
sequencing datasets, comprise numerous subtypes, while 
only a small percentage is needed for myelin maintenance 
[44]. Because OPCs are also highly sensitive to proinflam-
matory cytokines and, in response, express a number of 
cytokines, chemokines and other immunomodulatory fac-
tors themselves, it has been suggested that OPCs and OPC 
crosstalk with microglia contribute to the regulation of neu-
roinflammation [44, 49]. Concerning polySia-SynCAM 1, 

1  During peer reviewing of this manuscript a study was published 
showing that the polySia-Siglec-16 axis has a proinflammatory impact 
on tumor-associated macrophages (TAM) in glioblastoma. This 
was linked to increased survival of glioblastoma patients that were 
SIGLEC16 carriers and had tumors presenting with high levels of 
polySia-NCAM on the tumor cells (Thiesler et al., Proinflammatory 
macrophage activation by the polysialic acid-Siglec-16 axis is linked 
to increased survival of patients with glioblastoma. Clin. Cancer Res. 
https://doi.org/10.1158/1078-0432.CCR-22-1488. Online ahead of 
print, 14.04.2023).
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Siglec-16 transfectants, the survival of sialic acid-deficient 
bacteria was also reduced, possibly due to a higher overall 
reactivity towards bacterial antigens. Similarly, and compa-
rable to the effect of Siglec-E deficiency described above, 
a murine macrophage-like cell line transfected to express 
chimeric Siglec-E16, consisting of the extracellular part of 
Siglec-E fused to the transmembrane domain of Siglec-16, 
displayed higher inflammatory cytokine production in 
response to LPS stimulation [84]. Finally, mice were gener-
ated, in which Siglec-E was replaced by Siglec-E16. Similar 
to the inherent Siglec-E, expression of the chimeric receptor 
could be detected on blood neutrophils as well as on spleen 
and liver macrophages. One hour after intravenous injec-
tion of E. coli K1, significantly less bacteria were retrieved 
from blood, liver and spleen of homozygous Siglec-E16 
transgenic as compared to Siglec-E wildtype mice. Con-
comitantly, blood levels of inflammatory cytokines were 
increased. Thus, replacing inhibitory Siglec-E by activating 
Siglec-16 signaling domains conveyed a protective innate 
immune response against a polySia-presenting pathogen 
[84]. It remains open if the altered responsiveness of the 
Siglec-E16 transgenic mice is caused by the loss of inhibi-
tory Siglec-E, a gain of activating Siglec-16 signaling, or a 
combination of both.

Despite these implications of Siglec-16 to counteract 
a dampening of inflammatory responses by the polySia-
Siglec-11 axis, its interplay with Siglec-11 under physi-
ological conditions remains to be explored and virtually 
nothing is known about how the presence or absence of 
functional Siglec-16 affects neuroinflammation after insults 
or in neurodegenerative diseases, or how it may modulate 
the immune environment of polySia-positive brain tumors1. 
It is evident, though, that the Siglec-16 status has to be 
considered in translational studies concerning the polySia-
mediated modulation of innate immune responses.

PolySia interacts with the chemokine CCL21

Immature DCs in the periphery sense pathogens and cap-
ture antigens leading to their maturation and migration to 
lymphoid tissues, where they present the antigens to naïve 
T cells [115, 116]. After the initial discovery of polySia-
NRP2 on the surface of human monocyte-derived DC [52], 
substantial work has been performed to unravel the role of 
polySia for chemotactic migration of DCs from the periph-
ery to the lymph node in response to the chemokine CCL21 
[reviewed in 21]. Despite clear evidence that polySia inter-
acts with CCL21 and that polySia on DCs is required for 
CCL21-directed migration [117–119], a later study dem-
onstrated that NRP2-negative DCs still respond to CCL21 
and still carry polySia, leading to the identification of the 

E. coli K1-derived polySia than the tissue macrophage form, 
and after transient expression in HEK293 cells, microglial 
Siglec-11 was secreted by ectodomain shedding as well as in 
exosomes [110]. The secreted Siglec-11, therefore, has the 
potential to bind to polySia on the surface of distant cells, 
but the relevance of this mechanism and its occurrence in 
vivo remain elusive.

As another feature of the human system, the inhibitory 
receptor Siglec-11 has a paired receptor, Siglec-16, which 
has a highly similar extracellular domain, but lacks the 
ITIM-bearing cytoplasmic tail [111–113]. Instead, Siglec-16 
has a positively charged amino acid in its transmembrane 
region that interacts with the activating ITAM-containing 
adaptor DAP12 (Fig. 2). Putatively functional orthologs of 
human SIGLEC16 have been detected by database compari-
sons in a number of other mammals, but not e.g. in rodents 
[114]. It seems however unique to the human population, 
that not all individuals have a functional SIGLEC16 allele. 
The widespread occurrence of a SIGLEC16P pseudogene 
with a four base pair deletion, causing a reading frame shift, 
leads to an allelic frequency of 0.22 for the SIGLEC16 allele 
and a penetrance for functional Siglec-16 of less than 40%, 
i.e. more than 60% of the human population are not able to 
produce functional Siglec-16 [80, 109, 111].

In its initial description, Siglec-16 was detected on tis-
sue macrophages as well as on a rare population of cells 
in the human brain using antiserum raised against the short 
cytoplasmic tail of Siglec-16 [111]. More recently, newly 
established monoclonal antibodies against peptides from the 
extracellular domains of Siglec-11 and Siglec-16 enabled 
double immunofluorescence staining to demonstrate that 
the two paired Siglecs can occur together on human spleen 
macrophages [84]. As before [111], Siglec-16 was rarely 
detected by immunostaining in the brain, but database anal-
ysis indicated mRNA expression of Siglec-16 by microglia 
[84].

Concerning the assumed functions of Siglec-16, it has 
been suggested early on, that the switch from inhibitory to 
activating signaling in response to the same ligand may be 
an evolutionary strategy to balance responses to pathogens 
that interact with Siglec-11 and thereby exploit its inhibi-
tory signaling to suppress the immune response of the host 
[111]. In this regard, it could be demonstrated that polySia 
encapsulated E. coli K1 binds equally well to Siglec-Fc chi-
meras comprising the first two Ig-domains of Siglec-11 or 
Siglec-16, whereas a sialic acid-deficient K1 strain lost the 
binding to Siglec-11 [84]. E. coli K1 also interacted with sub-
populations of microglial cells transfected to express either 
Siglec-11 or Siglec-16, and after infection with E. coli K1 in 
vitro, more bacteria could be recovered from the Siglec-11 
and less from the Siglec-16 transfected cells, as compared to 
controls transfected with empty vector [84]. However, in the 
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129]. As shown in these studies, pre-incubation of NETs 
with soluble polySia or poySia-NCAM reduced NET-medi-
ated cytotoxicity. In addition, polySia inhibits the release of 
NETs by interacting with lactoferrin, which forms shell-like 
structures around activated neutrophils [130], and interac-
tions of polySia with histones and lactoferrin as NET com-
ponents may impact on their composition and toxicity [131, 
132]. It therefore will be important to analyze, if the release 
of polysialylated proteins, as predicted for TBI and related 
neuroinflammatory conditions, contributes to a better out-
come by reducing the formation and cytotoxicity of NETs 
from infiltrating neutrophils in addition to a Siglec-depen-
dent limitation of the neuroinflammatory response.

Immunomodulation by polySia application 
in vivo

The immunomodulatory potential of polySia application in 
vivo was explored in transgenic mice expressing Siglec-11 
in mononuclear phagocytes. In these mice, intravitreal 
injection of polySia with avDP20 reduced laser-induced 
vascular damage in the retina as a model of age-related 
macular degeneration, and inhibited microglia and mac-
rophage activation [87]. With a higher dose of polySia 
avDP20, both effects were also detected in wildtype mice. 
This has been attributed to a lower sensitivity of murine 
Siglec-E, determined by comparing the inhibitory effects of 
polySia avDP20 on LPS-induced activation of mouse ES 
cell-derived microglia and human THP1 macrophages. As 
discussed above (Immunomodulation by the polySia-Siglec 
axis), the difference in vitro may actually be due to dif-
ferent polySia chain lengths required for the activation of 
Siglec-E and Siglec-11. The same may apply to the higher 
sensitivity of the Siglec-11 transgenic mice towards the 
polySia-induced reduction of retinal damage, but, in addi-
tion or instead, the transgenic expression of Siglec-11 on 
top of endogenous Siglec-E may augment sensitivity by 
raising the density of polySia-responsive inhibitory Siglecs. 
Nevertheless, the study by Karlstetter et al. [87] provides 
proof-of-principle for the therapeutic potential of polySia 
applications.

Another finding of this study was a reduced deposition 
of the complement membrane attack complex in the laser-
induced retina lesions after polySia application, which was 
observed in Siglec-11 transgenic and in wildtpye mice. In 
vitro, LPS-induced deposition of complement was reduced 
by polySia avDP20 indicating an inhibition of the alterna-
tive complement pathway [87]. This was followed up in a 
recent study showing that polySia avDP20 directly inter-
acts with properdin, a positive regulator of the alternative 
pathway, and reduces properdin-mediated complement 

CCL21 receptor CCR7 as a second polySia-presenting pro-
tein on the surface of DCs [120]. As shown in this study, 
polysialylation of CCR7 is indispensable for the chemotac-
tic response during the interstitial migration of DCs before 
entering the lumen of lymphatic vessels. CCL21 carries a 
positively charged, polybasic C-terminal extension, which 
keeps the chemokine in an autoinhibited conformation. By 
binding to the C-terminal extension, polySia releases this 
autoinhibitory state and allows DCs to sense CCL21 gradi-
ents [120].

In microglia, CCR7 has been detected after activation 
with LPS or protein antigens and LPS-induced microg-
lia exhibits CCR7-dependent chemotaxis towards CCL21 
[121]. CCR7 was not included in the list of candidate poly-
Sia carriers in cultured microglia and cell-associated poly-
Sia could not be detected in LPS-induced microglia [50]. 
Unlike for dendritic cells, it therefore is highly improbable 
that polySia on the surface of LPS-induced microglia acti-
vates CCL21 for recognition by CCR7. However, as a rare 
example of a CC chemokine that binds to a CXC chemokine 
receptor, CCL21 can also bind to CXCR3 [122] and microg-
lia obtained from CCR7 knockout mice are still able to 
respond to CCL21, whereas chemotactic migration towards 
CCL21 was abolished in microglia from mice that lack 
CXCR3 [123]. Thus, irrespective of activation state and of 
the receptor employed, microglia show chemotaxis towards 
CCL21. Importantly, CCL21 is exclusively released by dam-
aged neurons, not glial cells, to activate microglia distant 
from a primary lesion [124]. In light of the strong binding 
interactions between polySia and CCL21 [120], it appears 
likely that polySia on proteins released by injury-activated 
microglia binds CCL21 from injured neurons. These inter-
actions may modulate the perception and the chemotactic 
response of microglia towards CCL21 (Fig. 2).

PolySia modulates release and toxicity of 
neutrophil extracellular traps

Another immunomodulatory function of polysialylated pro-
teins released by microglia or OPCs may be their impact on 
neutrophil extracellular traps (NETs). NETs are extrusions 
of modified chromatin structures that are released by neu-
trophils as part of the first line of innate immune defense 
against pathogens [125], but show detrimental effects in TBI, 
stroke and other insults that involve leakage of the blood-
brain barrier and inflammatory immune cell infiltration [4, 
126, 127]. As shown in cell culture and in a mouse model 
of chronic obstructive pulmonary disease, polySia-NCAM 
accumulates in the trans-Golgi compartment of lung epithe-
lial cells, and is released after stimulation with IL-1β or LPS 
by metalloproteinase-mediated ectodomain shedding [128, 
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the lesioned retina [87], but may be explained by different 
sensitivities in the detection of transcriptional and immuno-
histological changes.

Furthermore, in both wildtype and Siglec-11 trans-
genic mice, systemic polySia treatment reduced the LPS-
induced increase of the microglial markers Iba-1 and CD68 
detected by immunostaining and also prevented the loss of 
dopaminergic neurons in the substantia nigra [139]. Again, 
the apparent discrepancies between the effects of polySia 
avDP20 on global transcriptional changes of brain microg-
lia and localized effects detected by immunohistochemistry 
in the substantia nigra might be due to different detection 
limits. Nonetheless, it is evident that polySia treatment has 
potent anti-inflammatory and neuroprotective effects also in 
wildtype mice, most probably mediated by interactions with 
Siglec-E. It should, however, be noted that systemic LPS 
administration may trigger neuroinflammation and neurode-
generation by an initial, temporary increase of TNF produc-
tion in the periphery, because intraperitoneal TNF injections 
reproduced the effects of LPS, and in TNF receptor defi-
cient mice, LPS injections were unable to induce any of the 
pro-inflammatory changes observed in the brain of wildtype 
mice [140]. It therefore seems possible that intraperitoneal 
polySia application exerts its effect not by acting on brain 
microglia after crossing the blood-brain-barrier, but by inhi-
bition of peripheral inflammation and TNF production, for 
example in Kupffer cells, the liver-resident tissue macro-
phages, which are the major source of circulating TNF and 
known to express Siglec-E in mice and Siglec-11 in humans 
[80, 141].

Perspectives

An important task for upcoming research will be to estab-
lish if and to what extent and under which neuropathologi-
cal conditions protein-bound polySia can be released by 
activated microglia or possibly OPCs in vivo. Up to know, 
we only have first hints from in vitro studies on continu-
ous shedding of polysialylated proteins by LPS-induced 
microglia in combination with the immunohistochemical 
localization of intracellular polySia in a transient activation 
state of injury-induced microglia in situ. Sensitive methods 
for the detection of soluble polySia-ESL-1, polySia-NRP2, 
or even polySia-SynCAM 1 in extracts from brain tissue or 
in cerebrospinal fluid will allow to determine if shedding 
of polysialylated proteins by activated microglia, invading 
monocyte-derived macrophages, and possibly OPCs occurs 
during acute or chronic neuroinflammation after TBI or 
other brain insults, in neurogenerative diseases, or in the 
immune environment of brain tumors. Once established, 
a major challenge will be to explore the consequences of 

deposition [133]. Properdin is an oligomeric protein with 
an unusually high isoelectric point (> pH 9.5). Under physi-
ological conditions, therefore, properdin is highly positively 
charged, and tends to bind to polyanionic structures such as 
sulfated glycosaminoglycans on the cell surface or in the 
extracellular environment [134, 135]. This may be the rea-
son, why polyanionic polySia interacts with properdin and 
why soluble forms of polySia are able to compete with com-
plement activation by properdin at the surface of lesioned 
cells [133].

In these in vitro experiments, a significant inhibition 
of properdin binding to lesioned cells by polySia avDP20 
was observed at concentrations between 32 and 45 µM. In 
contrast, 1.3 µM of polySia avDP20 and 30 nM of avDP50 
were sufficient for the Siglec-E dependent inhibition of 
LPS-induced murine microglia [60, 87], pointing towards 
a lower threshold for activation of the polySia-Siglec axis 
as compared to polySia-properdin interactions. Interest-
ingly, the release of inflammatory cytokines from microglia 
as observed in brain injury and neurodegenerative disor-
ders induces astrocyte activation towards a complement-
producing neurotoxic phenotype [136]. Considering this 
microglia-astrocyte crosstalk in the initiation of comple-
ment-mediated neurotoxicity, it will be an important direc-
tion of future research to explore if an impact of polySia 
on complement deposition in injured neural tissue is due to 
inhibitory interactions between polySia and properdin, or 
based on a Siglec-dependent inhibition of microglia leading 
to reduced complement production by reactive astrocytes, 
or possibly a combination of both.

Activation of microglia is prominent in the substantia 
nigra of patients with Parkinson’s disease, and observed 
prior to the loss of dopaminergic neurons, the neuropatho-
logical hallmark of parkinsonism. This implicates that 
microglia mediates detrimental neurotoxic effects, but such 
a causal link is disputed and a contribution of peripheral 
inflammation is discussed [137]. In mice, systemic chal-
lenge by intraperitoneal injections of LPS leads to inflamma-
tory activation of microglia and to a complement-dependent 
loss of dopaminergic neurons in the substantia nigra [138]. 
In the model of Siglec-11 transgenic mice, effects of sys-
temic LPS administration on the whole-brain transcrip-
tional signature of inflammatory microglia activation could 
be ameliorated by concomitant intraperitoneal injections 
of polySia avDP20 [139]. Similar to the previous study on 
retina damage [87], and with the same caveats discussed 
above, polySia had no such effect in LPS treated wildtype 
mice. Likewise, effects of polySia on the LPS-induced 
expression of genes related to the complement pathway 
were also restricted to the Siglec-11 transgenic mice [139]. 
This seems to contradict the polySia effect on the formation 
of the complement-mediated membrane attack complex in 
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