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Abstract

A stepped-wedge cluster randomized trial (CRT) is a unidirectional crossover study in which 

timings of treatment initiation for clusters are randomized. Because the timing of treatment 

initiation is different for each cluster, an emerging question is whether the treatment effect 

depends on the exposure time, namely, the time duration since the initiation of treatment. Existing 

approaches for assessing exposure-time treatment effect heterogeneity either assume a parametric 

functional form of exposure time or model the exposure time as a categorical variable, in which 

case the number of parameters increases with the number of exposure-time periods, leading to 

a potential loss in efficiency. In this article, we propose a new model formulation for assessing 

treatment effect heterogeneity over exposure time. Rather than a categorical term for each level of 

exposure time, the proposed model includes a random effect to represent varying treatment effects 

by exposure time. This allows for pooling information across exposure-time periods and may 

result in more precise average and exposure-time-specific treatment effect estimates. In addition, 

we develop an accompanying permutation test for the variance component of the heterogeneous 

treatment effect parameters. We conduct simulation studies to compare the proposed model and 

permutation test to alternative methods to elucidate their finite-sample operating characteristics, 

and to generate practical guidance on model choices for assessing exposure-time treatment effect 

heterogeneity in stepped-wedge CRTs.
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1 ∣ INTRODUCTION

Cluster randomized trials (CRTs) are increasingly used to evaluate policy and health systems 

interventions, and can often be operationally more feasible than traditional individually 

randomized trials (Murray, 1998). A comprehensive methodological review of cluster 

randomized designs can be found in Turner et al. (2017). The stepped-wedge CRT is a 

design variation in which treatment is rolled out in different clusters at randomly assigned 

time points, until all clusters are exposed under the treatment condition; see Web Appendix 

A (Figure S1) for a graphical illustration of this design with eight clusters and five time 

periods. Hemming and Taljaard (2020) recently provided four broad justifications for using 

the stepped-wedge design as a means to conduct a rigorous evaluation of the intervention 

effect. Depending on whether different individuals are included at each time point in 

a cluster, stepped-wedge designs can be categorized into cross-sectional, closed-cohort, 

and open-cohort designs (Copas et al., 2015). For each type of stepped-wedge design, 

the principal analytical strategy dates back to Hussey and Hughes (2007) and typically 

involves a linear mixed model with categorical time effects and a time constant treatment 

effect, along with a specific random-effects structure to adjust for the intraclass correlation 

coefficient (ICC) (Li et al., 2021; Li & Wang, 2022).

While models that adopt a time-constant treatment effect are simple and convenient for 

study design, such models may not always be adequate for analyzing stepped-wedge CRTs 

as they fail to capture the potentially heterogeneous treatment effect as a function of 

exposure time, namely, the discrete time since the intervention was first introduced in each 

cluster. This phenomenon, known as exposure-time treatment effect heterogeneity, can arise 

due to cumulative exposure and latency effects, changes in treatment themselves, or time-

varying confounders affected by previous exposure levels. For example, in a stepped-wedge 

CRT assessing the effect of exercise on clinical depression, the full effect may take weeks 

or months to reach. As another example, Kenny et al. (2022) conducted a secondary analysis 

of data from the Washington State Community-Level Expedited Partner Treatment (EPT) 

Randomized Trial, which sought to test the effect of EPT, an intervention in which the sex 

partners of individuals with sexually transmitted diseases are treated without evaluation, 

on rates of chlamydia and gonorrhea (Golden et al., 2015). When the instantaneous and 

sustained treatment effect was assumed, the parameter estimates indicated a small beneficial 

treatment effect. However, when exposure-time heterogeneity was accounted for, parameter 

estimates indicated a potentially harmful treatment effect.

Exposure-time treatment effect heterogeneity has previously been explored under the linear 

mixed model framework with a continuous outcome (Hughes et al., 2015; Kenny et al., 

2022; Nickless et al., 2018). If the form of exposure-time treatment effect heterogeneity 

is known a priori, one can proceed by modeling the treatment effect as an explicit, 
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parametric function of exposure time. For example, Hughes et al. (2015) proposed fixed-

effects parameterizations which include delayed, linear-time, and exponential-time treatment 

effect functions, and Kenny et al. (2022) further developed overall summary measures 

based on such time-specific treatment effects. The knowledge of the true functional form 

for exposure-time treatment heterogeneity, however, may not be available in practice. In 

this case, one can alternatively specify a general time-on-treatment effect model with 

a categorical term for each level of exposure time. Nickless et al. (2018) conducted a 

simulation study of stepped-wedge CRTs with exposure-time treatment effect heterogeneity 

and continuous outcomes. They found that the general time-on-treatment effect model had 

lower bias and better coverage probabilities for estimating the average treatment effect than 

other parametric formulations of exposure and calendar time in a wide range of scenarios, at 

the cost of reduced efficiency and wider confidence intervals (CIs). In particular, the fitting 

of such a model can become increasingly unstable because the number of treatment effect 

parameters increases linearly with exposure time observed in a stepped-wedge CRT. Putting 

this into a concrete context, Grayling et al. (2017) reviewed 123 stepped-wedge CRTs 

published until February 2015 and found a median of nine steps involved in these trials. If 

crossover occurs in the second time period (as shown in Figure S1), eight treatment effect 

parameters would be required to formulate the general time-on-treatment effect model for a 

trial with nine steps. These many treatment effect parameters can lead to loss in precision in 

linear mixed model analysis with a continuous outcome, and may also result in numerical 

instability for generalized linear mixed models with a binary outcome, because the marginal 

likelihood for the latter involves integrals with respect to the random-effects distribution that 

generally do not have a closed-form representation.

To enable the objective assessment of exposure-time treatment effect heterogeneity in 

stepped-wedge CRTs in the absence of knowledge on its explicit functional form, we 

propose an alternative generalized linear mixed model formulation that captures treatment 

effects via additional random effects depending on exposure time. While the standard Wald, 

likelihood ratio (LR) or score tests may be used to investigate the exposure-time treatment 

heterogeneity in a fixed-effects modeling framework, these tests can involve an increasing 

number of treatment effect parameters with an increasing number of time periods and may 

be subject to suboptimal power. In the proposed model, testing for exposure-time treatment 

effect heterogeneity is formulated by testing whether the random-effects variance component 

associated with exposure time is equal to zero. Particularly, since the null hypothesis places 

the variance component on the boundary of the parameter space, the asymptotic distribution 

of standard tests (such as LR tests) have to be carefully derived (Baey et al., 2019; Self & 

Liang, 1987). Given that stepped-wedge CRTs often include a limited number of clusters 

which can be insufficient for asymptotic inference with variance components (Baey et al., 

2019; Drikvandi et al., 2013), we instead propose a new permutation testing procedure to 

achieve exact inference for the existence of exposure-time treatment effect heterogeneity. 

Beyond testing for exposure-time treatment heterogeneity, the proposed generalized linear 

mixed model formulation can lead to more precise inference with the average and exposure-

time-specific treatment effects in stepped-wedge CRTs by pooling information across 

different time periods, as compared to existing fixed-effects modeling alternatives.
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The remainder of this article is organized as follows. In Section 2, we describe the proposed 

generalized linear mixed model formulation and introduce the corresponding permutation 

inference procedure for assessing exposure-time treatment effect heterogeneity in stepped-

wedge CRTs. In Section 3, we apply the proposed method to data from a cross-sectional 

stepped-wedge CRT comparing tuberculosis (TB) diagnosis techniques in Brazil. In Section 

4, we report simulation studies to compare the performance of the proposed testing and 

estimation methods to existing alternative methods. In Section 5, we provide practical 

recommendations in terms of trial planning and model selection. We discuss possible 

extensions and areas of future research in Section 6.

2 ∣ INFERENCE FOR EXPOSURE-TIME TREATMENT EFFECT 

HETEROGENEITY

2.1 ∣ Notation and setup

We consider a cross-sectional stepped-wedge CRT where T represents the number of time 

periods observed, K the number of clusters recruited, E the maximum exposure-time periods 

observed (or equivalently, the maximum number of periods a cluster can be exposed under 

the treatment condition in the trial), and nkt the number of individuals observed from cluster 

k at any time period t. Let Ykti be the observed response in individual i (i = 1, … , nkt) in 

cluster k (k = 1, … , K) at time t (t = 1, … , T), Ekt (Ekt = 0, … , E) be the exposure time for 

cluster k at time t, and Xkt = I(Ekt > 0) be the binary treatment indicator which is equal to 1 

when cluster k at time t is under the treatment condition and 0 when cluster k is still under 

control at time t.

2.2 ∣ Model formulations

Suppose Ykti is an exponential family outcome, the standard generalized linear mixed model 

for analyzing stepped-wedge CRTs is an extension of the linear mixed model in Hussey and 

Hughes (2007) (Model 1), and can be written as

ℎ{E(Y kti ∣ Xkt, αk)} = μ + βt + θXkt + αk, (1)

where h is a link function, μ is the intercept, βt (t = 1, … , T) is the fixed effect for time 

(β1 = 0 for identifiability) or secular trend parameter, θ is the treatment effect parameter, 

and αk ∼ N(0, σα
2) is a cluster-level random intercept. Here, θ can be interpreted as a time-

adjusted intervention effect on the link function scale. Extensions of Model 1 to allow for 

linear-time, delayed, and general time-on-treatment effect have been proposed in Hughes et 

al. (2015) for a continuous outcome. With more general outcome types and link function 

h, the generalized linear mixed models allowing for exposure-time-specific treatment effect 

often take the form ℎ{E(Y kti ∣ Ekt, αk)} = μ + βt + θ(Ekt)Xkt + αk, where μ is the intercept, βt (t = 

1, … , T) is the fixed effect for time (β1 = 0 for identifiability), θ(Ekt) is the treatment effect 

as a function of the exposure time for Ekt ≥ 1 (and θ(0) = 0 by definition), and αk ∼ N(0, σα
2)

is a random cluster intercept. For example, Model 1 takes θ(Ekt) = θ. If the outcome is 

continuous and normally distributed, we can use an identity link function for h and obtain 

Ykti = μ + βt + θ(Ekt)Xkt + αk + ϵkti, where ϵkti ∼ N(0, σϵ
2). In all models, we also consider 

an average treatment effect, defined by the average of the treatment effects at each level of 
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exposure time on the link function scale. More specifically, the average treatment effect is 

E−1∑e = 1
E θ(e). See Web Appendix B for a discussion on the causal interpretation of Δ and 

Table 1 for the expression of Δ in each model we consider. Specifically, in Mode 1 Δ = θ.

The linear-time treatment effect model (Model 2) specifies

θ(Ekt) = ω0 + ω1(Ekt − 1), (2)

or, more simply sets ω0 = ω1 = ω to obtain θ(Ekt) = ωEkt. This model assumes that the 

treatment effect is a linear function of the number of periods exposed under treatment (i.e., 

2 months of exposure has twice the effect of 1 month of exposure). Here, the average 

treatment effect can be summarized by E−1∑e = 1
E eω. In a similar spirit, the delayed treatment 

effect model (Model 3) takes

θ(Ekt) = π(1)I(0 < Ekt ≤ ℓ) + π(2)I(Ekt > ℓ), (3)

with ℓ a predetermined value reflecting the anticipated delay time for the treatment to be 

fully effective. One common choice is ℓ = 1, allowing initial treatment effect to be only a 

fraction of those in later time periods (π(1) < π(2)). For general ℓ, the average treatment effect 

can be summarized by E−1{ℓπ(1) + (E − ℓ)π(2)}. Finally, the general time-on-treatment effect 

formulation (Model 4) extends Model 1 by setting

θ(Ekt) = θEkt . (4)

Essentially, θEkt is a distinct value for each level of exposure time and therefore can 

represent any generic functional form of the exposure-time treatment effect heterogeneity. 

Correspondingly, the average treatment effect under this model formulation is given by 

E−1∑e = 1
E θe.

We propose a new model formulation (Model 5) in which θ(Ekt) = ϕ + δEkt, where δEkt 
follows a distribution F and is independent of αk ∼ N(0, σα

2):

ℎ{E(Y kti ∣ Xkt, αk, δEkt)} = μ + βt + ϕ + δEkt Xkt + αk . (5)

Model 5 allows for estimation of a unique treatment effect at each level of exposure time, 

as in Model 4. Here, the treatment effect of Ekt units of exposure time is ϕ + δEkt and 

the average treatment effect is ϕ. Specifically, in the case of ℱ = N(0, σδ
2), Model 5 reduces 

the problem of characterizing exposure-time heterogeneity from estimating E parameters 

(as in Model 4) to the estimation of a single variance component, σδ
2, and therefore the 

number of parameters in Model 5 does not grow linearly with the number of exposure-time 

periods in a stepped-wedge CRT. This key feature allows for pooling information across 

exposure time points, potentially increasing the stability and efficiency for quantifying both 

the average and the exposure-time-specific treatment effects. In what follows, we discuss 

inferential methods for testing and quantifying treatment effect heterogeneity based on the 
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above models. We primarily focus on Models 4 and 5 as they require no knowledge of the 

functional form of treatment effect heterogeneity, which is rarely known in practice.

2.3 ∣ Testing for exposure-time treatment effect heterogeneity

A common approach to assess the exposure-time treatment heterogeneity in stepped-wedge 

CRTs is based on an LR test. We will focus on two of such tests. The first is an LR test of 

fixed-effects parameters in Model 4 with the null hypothesis:

H0 : θ1 = θ2 = ⋯ = θE . (6)

As in previous sections, let Ekt, Xkt, and Ykti denote the exposure time, treatment indicator, 

and outcome, respectively, for individual i in cluster k at time t. Let t, E, X, k, Y be vectors 

that contain the calendar time, exposure time, treatment status, cluster index, and outcome 

value, respectively, for all observations at all time periods. We write D = (t, E, X, k, Y) as 

the observed data matrix, ℝp be the p-dimensional space of all real numbers with ℝ = ℝ1, ℝ+
p

as the p-dimensional space of all positive real numbers with ℝ+ = ℝ+
1  and L(η ∣ D) as the 

likelihood of parameters η given data D. The LR test statistic is given by:

LRTN = − 2 log supη ∈ Θ0 ℒ η ∣ D
supη ∈ Θ ℒ η ∣ D , (7)

where Θ0 = {μ ∈ ℝ, β ∈ ℝT − 1, θ ∈ ℝ, σα
2 ∈ ℝ+} is the parameter space under the null and 

Θ = {μ ∈ ℝ, β ∈ ℝT − 1, θ ∈ ℝE, σα
2 ∈ ℝ+} is the joint parameter space under the null and 

alternative. Under Model 4, we can then proceed with the test using the asymptotic χE − 1
2

distribution.

The second test we consider is an LR test assessing σδ
2 = 0 in Model 5 with 

δ = (δ1, …, δE)T ∼ N(0, Mσδ
2), where M is a general E × E correlation matrix. For example, 

we assume (α, δ) have the covariance matrix Γ, which under the independence assumption 

becomes

Γ = σα
2I 0
0 σδ

2M
. (8)

The null and alternative hypotheses can then be given by

H0 :Γ = σα
2I 0
0 0

vs . H1 :Γ = σα
2I 0
0 σδ

2M
. (9)

We can then use the LR test statistic described in (7) where 

Θ0 = {μ ∈ ℝ, β ∈ ℝT − 1, ϕ ∈ ℝ, σα
2 ∈ ℝ+, σδ

2 = 0} is the parameter space under the null and 

Θ = {μ ∈ ℝ, β ∈ ℝT − 1, ϕ ∈ ℝ, σα
2 ∈ ℝ+, σδ

2 ∈ ℝ+, M is a valid correlation matrix} is the joint 

parameter space under the null and alternative. Baey et al. (2019) derived the asymptotic 

Maleyeff et al. Page 6

Biometrics. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distribution of (7), extending the results of Self and Liang (1987). They showed that under 

certain conditions and when the number of clusters becomes large, LRTN converges to a 

mixture of χ2 distributions. In the situation of testing σδ
2 = 0 where M is an E × E identity 

matrix, the asymptotic distribution of (7) is a 50–50 mixture of χ1
2 and χ2

2. In finite samples 

with only a limited number of clusters, however, tests based on this mixture can have low 

power and incorrect type I error rates (Drikvandi et al., 2013). For a more robust assessment 

of exposure-time treatment effect heterogeneity, we propose a permutation test under Model 

5 which does not depend on the distributional assumption (e.g., the normality assumption) of 

δEkt, or require a large number of clusters for valid inference. Under the null hypothesis of 

no treatment effect heterogeneity across exposure time, that is, H0 :σδ
2 = 0, Model 5 reduces 

to Model 1 and the exposure-time-specific treatment effects are all the same. Therefore, in 

each cluster k, Ekt ⫫ Ykti ∣ αk, Xkt = 1, with “⫫” denoting independent of. In other words, 

in cluster periods under the treatment condition, Ekt is exchangeable with respect to Ykti 

within the same cluster. This allows us to permute the indices of exposure time among the 

treated observations within the same cluster, resulting in data sets that are equally likely 

as the observed one under the null hypothesis assuming that Model 5 holds. Based on the 

notation above, we let Dobs = (Eobs, t, X, k, Y) denote the observed data matrix and Db = 

(Eb, t, X, k, Y) denote a permuted data matrix, where Eb is a permutation of Eobs. Under the 

null hypothesis of no exposure-time treatment effect heterogeneity,

ℙ(D = Db ∣ E =p Eobs, D = Dobs) = 1
N+

, (10)

where N+ is the number of permissible permutations. It follows that for any test statistic T 
= T(D), such as the LR test statistic (7), the observed value of T(Dobs) can be viewed as 

a random sample of size 1 from the discrete permutation distribution, based on which the 

p-value for testing the null can be obtained. Operationally, the permutation procedure can be 

obtained as follows:

1. Compute the LR test statistic (7) in the observed sample, denoted Qobs.

2. Among the treated observations, randomly permute the exposure time indices 

within each cluster. Then, compute the LR test statistic Q.

3. Repeat this process B times, giving B test statistics Qb, b = 1, … , B.

4. The p-value is computed as the proportion of permutation samples with Qb ≥ 

Qobs.

2.4 ∣ Quantifying the average and the exposure-time-specific treatment effects

We estimate the parameters in Models 1-5 using maximum likelihood (ML) estimation 

within the generalized linear mixed model framework (Diggle et al., 2002). The parameters 

of interest reflecting the average and the exposure-time-specific treatment effects based on 

each of the Models 1-5 are provided in Table 1.

For the estimation of random effects, δ, empirical Bayes estimates are used (Laird & 

Ware, 1982). For empirical Bayes estimation, we take the conditional distribution of the 

data as the likelihood, the distributional assumptions on the random effects as the prior, 
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and derive a posterior distribution of δ: f(δ ∣ Dobs, η) ∝ ℒ(δ ∣ Dobs, η) × f(δ ∣ σγ
2), where 

η = (μ, β2, …, βT, ϕ, σα
2, σδ

2)′ and Dobs is the observed data. One may estimate δ using the mean 

of this posterior distribution, E(δ ∣ Dobs, η). For generalized linear mixed models, we can 

estimate δ with the quantity

δ = ∫ δ × ℒ(δ ∣ Dobs, η) × f(δ ∣ σγ
2)dδ

∫ ℒ(δ ∣ Dobs, η) × f(δ ∣ σγ
2)dδ

. (11)

For continuous outcomes and an identity link function (e.g., linear mixed models), the 

likelihood functions and their derivatives have closed-form expressions under the normal 

distribution assumptions. For binary outcomes with a logistic link function, these quantities 

can be computed via Laplace approximation (Liu & Pierce, 1994).

Model-based variance estimators for treatment effect estimates in Models 1-4 are often 

used in practice. For treatment effect estimates obtained from Model 5, the model-based 

variance estimators implemented in standard software, for example, lme4::glmer in R, are 

associated with the data-generating process where δEkt’s are treated as random variables. In 

the current setting where δEkt represents the deviation of exposure-time-specific treatment 

effect from the average effect, we consider δEkt’s, in a specific trial, as fixed in the true 

outcome data-generating process. Therefore, to properly quantify the standard errors in the 

average and exposure-time-specific treatment effect estimates, we use the bootstrap methods 

that are described in Section 4.2.

3 ∣ APPLICATION TO THE XPERTMTB/RIF TB STEPPED-WEDGE TRIAL

We illustrate the proposed methods using a stepped-wedge CRT comparing TB diagnosis 

techniques in Brazil (NCT01363765) (Durovni et al., 2014). This trial assessed the impact 

of replacing standard-of-care smear microscopy with XpertMTB/RIF, a rapid diagnostic test 

of TB and rifampicin resistance. The 14 trial laboratories were randomly assigned to the 

order in which they started the intervention. All laboratories started off providing samples 

in the smear microscopy arm and two laboratories switched overnight to the XpertMTB/RIF 

arm every month, so that in the eighth and final month of the trial all units were in the 

XpertMTB/RIF arm (K = 14 and E = 7). Trajman et al. (2015) carried out an analysis 

of individuals diagnosed with TB to determine whether the rapid test had any impact on 

reducing unfavorable outcomes (a composite binary outcome indicating death from any 

cause, loss to follow-up, transfer out due to first-line drug failure, or suspicion of drug 

resistance). Among the 3926 individuals included in their final analysis, 31% (556/1777) 

under control and 29% (625/2149) under intervention had unfavorable outcomes.

Logistic generalized linear mixed models were fit with results presented in Table 2. There 

is no evidence of exposure-time treatment effect heterogeneity in the original data (p > 0.99 

from the proposed permutation test with 2000 permutations, p = 0.52 from the Model 4 

LR test, and p > 0.99 from the Model 5 LR test). The parameter estimates for the average 

treatment effects and their associated standard errors are almost identical in Models 1 and 

5 with σδ
2 < 0.0001 (see Table 2). The average and exposure-time-specific treatment effects 

Maleyeff et al. Page 8

Biometrics. Author manuscript; available in PMC 2023 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01363765


estimates obtained from Model 4 are more variable with larger standard errors compared to 

those from Model 5.

To illustrate the use of our methods in settings where treatment effect varies by exposure 

time, we conducted a second analysis of a synthetic data where heterogeneity was induced in 

the original data. The procedure for inducing heterogeneity was as follows: (1) compute the 

observed probabilities of the binary outcome for the treated units in each cluster-exposure-

time period (pe,k; e = 1, … , E, k = 1, … , K); (2) introduce exposure-time treatment 

effect heterogeneity into the predicted probabilities on the link function scale, that is, obtain 

pe, k
∗  where logit(pe, k

∗ ) = logit(pe, k) + δe, where δ = (δ1, … , δE) is obtained by first generating 

a random sample of size E from N(0E, 0.3242IE) and then sorting them in increasing 

magnitude such that δ1 ≤ ⋯ ≤ δE; (3) simulate new outcomes, Y kti
∗ ∣ (Ekt = e) ∼ Bernoulli(pe, k

∗ ).

The exposure-time-specific treatment effects from the simulated synthetic data are 

heterogeneous with increasing magnitude over exposure time (i.e., effect at exposure time 

1 is less than effect at exposure time 2, and so on), with an average treatment effect of 

1.19. As expected, the synthetic data show evidence of exposure-time heterogeneity (p = 

0.006 from the proposed permutation test with 2000 permutations, p < 0.001 from the 

Model 4 LR test, and p = 0.08 from the Model 5 LR test). The average treatment effect 

estimate from Model 5 is less biased and associated with a smaller standard error than that 

from Model 4. The exposure-time-specific treatment effects are also closer to the truth in 

general and are associated with smaller standard errors in Model 5 compared with Model 

4, particularly for larger exposure times. The average treatment effect estimate from Model 

1 is in the opposite direction of the truth (0.86 vs. 1.19). In the presence of exposure-time 

treatment effect heterogeneity, Kenny et al. (2022) also observe that the treatment effect 

estimates from Model 1 can be in the opposite direction of the true average treatment effect. 

In Web Appendix C (Figure S2), we present the parameter estimates and their 95% CIs for 

exposure-time-specific treatment effects based on the synthetic data from Models 1-5. In this 

case, Models 1, 2, and 3 are misspecified, whereas Models 4 and 5 are more appropriate. 

Estimates from Model 4 show increasing variability with exposure time. In contrast, the 

exposure-time-specific treatment effect estimates from Model 5 (σδ
2 = 0.07) are pulled toward 

the average effect, with similar estimated variability of the heterogeneous treatment effects 

across exposure time.

4 ∣ SIMULATION STUDIES

To further understand the operating characteristics of the proposed permutation test and 

various models for estimating the average and exposure-time-specific treatment effects in 

cross-sectional stepped-wedge CRTs, we carried out two set of simulation studies and 

describe them in detail below.

4.1 ∣ Testing for exposure-time treatment heterogeneity

The first simulation study was designed to compare the proposed permutation test with 

two existing testing methods described in Section 2.3: the LR test based on Model 

4 and the LR test based on Model 5. The data were generated from Model 5 with 
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logit{ℙ(Y kti = 1 ∣ Ekt)} = logit(0.7) + f(t) + {log(1.2) + δEkt}Xkt + αk, αk ∼ N(0, 0.12), δE ∼ N(0, σδ
2)

and f(t) = 0.5 sin{2π(t − 1)/(T − 1)}. We assessed a varying number of exposure-time 

periods E ∈ {3, 5, 7, 9} which correspond to T ∈ {4, 6, 8, 10}, respectively, and selected 

unique σδ
2 for each E such that the maximum empirical power for detecting exposure-time 

treatment heterogeneity was close to 80%. We let K = E clusters and nkt = 30 individuals per 

cluster per time point. Results were based on 500 independently generated data sets.

Figure 1 shows the type I error and power computed from the simulation studies for varying 

E. We observe a type I error rate less than 0.8% for the Model 5 LR test for all E. The 

type I error rate for the LR test based on Model 4 always exceeds 5% (5.4–6.6%). However, 

the type I error rate for the proposed permutation test is always closest to 5% (2.6–5.4%). 

The proposed permutation test has highest power when E > 3, with an increasing advantage 

over the LR tests in power as E increases. In comparison, the LR test based on Model 5 

consistently has the lowest power. This is consistent with previous simulation studies which 

suggest that tests based on the asymptotic distribution of LR tests of random-effects variance 

parameters are conservative (Drikvandi et al., 2013).

4.2 ∣ Estimation of average and exposure-time-specific treatment effects

Next, we carried out a simulation study to compare the finite-sample performance of the 

proposed Model 5 with alternative methods (Models 1-4) in terms of estimating the average 

and exposure-time-specific treatment effects, for both continuous and binary outcomes.

4.2.1 ∣ Estimation and inference of average treatment effect—We first simulated 

stepped-wedge CRTs with continuous outcomes. Here, we assumed a study conducted over 

8 months with 14 clusters, with a maximum of 7 months exposure time and 100 individuals 

per cluster. Data were generated from the linear mixed model Ykti = 14 + f(t) + g(Ekt) 

+ αk + ϵkti, with f(t) = 0.5 sin{2π(t − 1)/7}, αk ~ N(0, 0.1412), ϵkti ~ N(0, 1), and 

g(Ekt) designed to reflect four scenarios: (1) the treatment effect remained constant over 

exposure time; (2) exposure-time-specific treatment effects were normally distributed; (3) 

exposure-time-specific treatment effects increased linearly; and (4) the treatment effect was 

delayed initially then plateaued as exposure time accumulated. All settings correspond to 

an average treatment effect of Δ = 2. For settings (2)–(4) the exposure-time-specific effects 

have standard deviation σδ = 2.

For each simulated data set, we fit Models 1-5 and obtained estimates of the average 

treatment effect, its estimated standard error, and the corresponding 95% CIs. In addition 

to model-based standard error estimates obtained directly from the software, we considered 

two bootstrap standard error estimates: one was obtained by bootstrapping individual data 

within each cluster, and the other one was obtained by bootstrapping individual data within 

each cluster period. The within cluster-period bootstrap has the advantage of ensuring same 

cluster-period sample sizes across bootstrap samples; while the within cluster bootstrap may 

be more stable when the cluster-period sample sizes are small. For each setting, we report 

the empirical mean, the empirical standard error, the average of standard error estimates, 

and the empirical coverage of the average treatment effect estimates from each model across 

1000 simulated experiments. Results are presented in Table 3.
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When the treatment effect is constant over exposure time (Setting 1), the average treatment 

effect estimators obtained from all models are unbiased. The estimator from Model 1 is 

associated with the lowest standard error. Of note, the estimator based on Model 5 has a 

standard error similar to that from Model 1, while the standard errors from Models 2 and 4 

are substantially larger.

In the presence of treatment effect heterogeneity, the average treatment effect estimator 

from Model 1 can be substantially biased, and in some settings, it converges to a number 

in the opposite direction of the true parameter. Model 4 is correctly specified and the 

estimator is unbiased in all settings. Under Setting 3, Model 2 is correctly specified and 

makes use of additional information of a linear trend, leading an unbiased and slightly more 

efficient estimator compared to Model 5. Similarly, under Setting 4, Model 3 is correctly 

specified and incorporates additional information about the treatment effect heterogeneity, 

leading to an unbiased and a more efficient estimator compared to Model 4. These two 

estimators, however, perform poorly when the functional form of exposure-time-specific 

treatment effects is misspecified. Estimators from Model 5 have very similar performance 

to Model 4 in terms of bias and efficiency, even when the random effect distribution for 

exposure-time-specific treatment effects is misspecified (Settings 3 and 4).

For Models 1-4, model-based variance estimators work well when the model is correctly 

specified. When the model is misspecified, for example, Model 1 under Settings 2–4, 

Model 2 under Settings 2 and 4, and Model 3 under Settings 2 and 3, the model-based 

variance estimators can be substantially biased, highlighting that when the functional form 

of the treatment effect heterogeneity is misspecified, not only is the average treatment 

effect estimator is biased, its model-based variance estimator is also biased. As noted in 

Section 2.4, the model-based variance estimator based on Model 5 reflects the variability 

in the average treatment effect estimator assuming that exposure-time-specific treatment 

effects are a random draw from the underlying distribution. In our simulation studies, the 

exposure-time-specific treatment effects are held constant across experiments, and therefore 

the model-based variance estimator in general overestimates the true sampling variability. 

Both bootstrap methods work well and produce variance estimates that are close to the 

empirical standard errors in all settings.

In Web Appendix D, we report results from additional simulation studies with continuous 

outcomes varying cluster-period size, number of steps in the study, and magnitude of 

treatment effect heterogeneity (σδ). The findings are similar (Tables S1 and S2).

We then conducted a simulation study to assess the finite-sample properties of Models 

1, 4, and 5 in stepped-wedge CRTs with binary outcomes, mimicking the data example 

in Section 3. We considered a stepped-wedge CRT with T = 8 steps, E = 7 exposure 

times and a varying number of clusters K and cluster-period sizes nkt. Specifically, we 

considered K ∈ {14, 42}, and three sets of nkt: (1) same as the data example with median 

[range]: 34 [6–96]; (2) fixed across cluster periods at 100; and (3) fixed across cluster 

periods at 500. Data were generated from the logistic generalized linear mixed model, 

logit{ℙ(Y kti = 1 ∣ αk, Ekt)} = 0.774 + f(t) + g(Ekt) + αk, where f(t) corresponds to the background 

calendar time trend observed in the data example, g(e) models the treatment effect as a 
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function of exposure times, and αk are draws from N(0, 0.1312). For the exposure-time-

specific treatment effect g(e) we considered four types of treatment effect heterogeneity 

as in the continuous outcome case. All scenarios have an average treatment effect of Δ 

= log(1.19) = 0.173. In the presence of treatment effect heterogeneity (Settings 2–4), the 

exposure-time-specific effects have standard deviation σδ = 0.324.

Results are presented in Table 4. As in the continuous outcome case, in the absence of 

treatment effect heterogeneity, the three estimators perform similarly in terms of bias and 

coverage. The estimator from Model 1 is most efficient. The efficiency of the estimator from 

Model 5 is close to that from Model 1. The efficiency loss from Model 4 is more substantial, 

and this persists even when the number of cluster is 42 and the cluster-period size is 500.

In the presence of treatment effect heterogeneity across exposure time, the average treatment 

effect estimator from Model 1 can be severely biased. Model 4 performs well in all settings 

considered. When the random effects distribution is correctly specified, Model 5 performs 

well. When the random effects distribution is not correctly specified, the average treatment 

effect estimator from Model 5 can be substantially biased in finite samples; this bias, 

however, decreases as sample size (number of clusters and cluster-period size) increases.

4.2.2 ∣ Estimation and inference of exposure-time-specific effects—We 

conducted an additional simulation study to assess estimation of exposure-time-specific 

effects. The details of the simulation study are described in Web Appendix E (Table S3 

and Figure S3). Figure 2 shows the mean squared error (MSE) associated with estimating 

treatment effects for each level of exposure time in all scenarios for Models 4 and 5. The 

results reveal a consistent pattern: the MSE increases substantially over exposure time for 

Models 4 but remains relatively constant over exposure time for Model 5. The tipping point 

for Model 5 having a lower MSE than Model 4 is usually somewhere around the middle 

exposure-time period; that is, Model 4 has the lowest MSE for estimating treatment effects 

at earlier exposure-time periods, but the difference between the MSEs for Models 4 and 5 is 

small. Model 5 has the lowest MSE for estimating treatment effects at later exposure-time 

periods, and the difference in MSE from Model 4 can be substantial. In Figure S4, we report 

the 95% CI coverage and width for each exposure-time-specific estimate from Models 1, 4, 

and 5 in two scenarios. Coverage for Models 4 and 5 was similar, with CI widths increasing 

over exposure time in Model 4.

5 ∣ PRACTICAL CONSIDERATIONS

5.1 ∣ Trial planning

For study planning, standard sample size calculation formula based on Model 1 may not 

be accurate in the presence of exposure-time treatment effect heterogeneity. To facilitate 

trial planning when exposure-time treatment effect heterogeneity is anticipated, we derive 

a variance expression for the average treatment effect estimator accounting for this 

heterogeneity based on Model 4 for stepped-wedge CRTs with continuous outcomes. For 

a traditional design with T periods, a total of K clusters, and n individuals per cluster 
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period, the variance of the average treatment effect estimator, derived in Web Appendix F, 

Var( 1
E ∑e θ e), is

KTλ1λ2σy
2

nE2 1E
′ λ2 U1

⊗ 2 + KTU2 − TW1 − KW1

+ λ1 KW1 − U1
⊗ 2 −11E,

(12)

where σy
2 = σα

2 + σe
2 is the total outcome variance, ρ = σα

2 σy
2 is the ICC, λ1 = 1 − ρ, λ2 = 1 

+ (Tn − 1)ρ are functions of the ICC, and 1E is an E × 1 vector of ones. Defining {s1, … , 

sK} as the crossover times for clusters 1 to K, the design constants are U1 = ∑k = 1
K ∑l = 1

T − sk + 1 el, 

U2 = ∑k = 1
K ∑l = 1

T − sk + 1 elel
′, W1 = ∑k = 1

K (∑l = 1
T − sk + 1 el)(∑l = 1

T − sk + 1 el)′, where el is the E × 1 orthonormal 

basis with the lth element equal to 1 and zero everywhere else, and U1
⊗ 2 = U1U1

′ . From 

this derivation, it is important to note that the variance of the average treatment effect 

estimator (12) is independent of the true values of the exposure-time-specific treatment 

effect, and only concerns the design resources (such as number of periods and maximum 

exposure time), randomization schedule (design constants), as well as the ICC parameter ρ. 

This property simplifies the design calculation by dispensing the need to specify the full 

exposure-time treatment effect patterns which are often unknown during study planning.

For the settings we considered in our simulation studies, we observe that the average 

treatment effect estimator based on Model 5 is often at least as efficient as its counterpart 

from Model 4. If the primary analysis proceeds with Model 5, the sample size calculation 

based on Model 4 can be regarded as a conservative approach. Alternatively, one can 

consider a simulation-based approach to assess the sample size requirements. In Web 

Appendix F.2, we illustrate the use of the proposed sample size calculation methods for 

trial planning.

5.2 ∣ Model choice

The model choice for study analysis would ideally depend on subject-matter knowledge 

as to whether and how the treatment effects may vary according to exposure time. If 

no exposure-time treatment effect heterogeneity is anticipated, Model 1 is adequate. If 

exposure-time treatment heterogeneity exists and the form is known a priori, its form can 

be modeled directly. For example, we may consider Model 2 if the effect is expected to 

strengthen linearly over time or Model 3 if the treatment takes additional time to develop its 

full effect.

In the more common situation where the form or existence of exposure-time treatment effect 

heterogeneity is unknown, the proposed permutation test can aid in model determination. 

If there is strong evidence against a constant and persistent treatment effect over exposure 

time, one would want to choose a model reflecting the heterogeneity, such as Models 

4 and 5. Model 4 in general presents the most robust modeling approach because it 

does not make assumptions about either the functional form or the distribution of the 

exposure-time-specific treatment effects, at the price of some efficiency loss, especially 

when the magnitude of heterogeneity is small and/or when the number of exposure times 

is large. For trials with a large number of exposure times, for example, E = 30, fitting 
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Model 4 involves estimating a large number of fixed-effects parameters, which can decrease 

estimation efficiency and stability when the sample size is small, especially in the binary 

outcome case. In such settings, Model 5 may be more robust to computational instability and 

efficient compared to Model 4 in estimating the average treatment effect, by postulating a 

random effects distribution for the exposure-time-specific treatment effects. For continuous 

outcomes, Model 5 works well in general even when the normality assumption on the 

random effects is violated. For binary outcomes, Model 5 is more sensitive to departures 

of the normality assumption, potentially leading to bias in estimating the average treatment 

effect when sample size is small; in our simulation studies, we find that this bias decreases 

as sample size increases.

Recognizing that power for testing heterogeneity may be low with limited sample size and 

that there is often a lack of prior knowledge about the form of treatment effects, investigators 

may fit both Models 1 and 5 to assess the robustness of the conclusions on the average 

treatment effect. In the absence of treatment effect heterogeneity, the average treatment 

effect estimate from Model 5 and that from Model 1 will be similar and the use of Model 5 

is often only associated with a small efficiency loss. In contrast, Model 4 may be associated 

with substantial efficiency loss due to the need to estimate a larger number of parameters.

6 ∣ DISCUSSION

In this study, we propose a new generalized linear mixed model formulation and a 

new permutation test for evaluating exposure-time treatment effect heterogeneity in cross-

sectional stepped-wedge CRTs. The permutation test is more powerful than both LR tests, 

while retaining type I error rates across all scenarios considered in our simulations. Analysis 

of stepped-wedge CRTs based on Model 5, which pools information across exposure time 

points, tends to result in more efficient treatment effect estimates compared to the approach 

based on Model 4, where exposure time is modeled as a categorical variable, especially 

when the number of exposure times is large. Models 1-3 require a priori knowledge on the 

presence of and form of exposure-time heterogeneity and as such, perform well when the 

functional form is correctly specified. If this information is unknown, as is generally the 

case, Models 4 and 5 present more robust alternatives. Although our data application and 

simulation study focus on binary and continuous responses, these methods may be used 

for other types of exponential family outcomes with specific choices of link and variance 

functions.

In simulation studies with binary outcomes, we observe bias when estimating the average 

treatment effect from all models when sample size is small, even when models are 

correctly specified. This is likely due to fitting algorithms to obtain the ML estimators. 

For generalized linear mixed models, restricted ML-like estimators have been developed for 

possibly improved inference (Lee et al., 2018). In particular, Noh and Lee (2007) propose 

an estimating method which uses a hierarchical likelihood approach to estimate model 

parameters.

In Models 1-5, we focus on heterogeneity as a function of exposure time, ignoring 

heterogeneity on the cluster scale. One can consider a more general model (Model 6) as 
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ℎ{E(Y kti ∣ Xkt, αk, δEkt, νk)} = μ + βt + (π + δEkt + νk)Xkt + αk, where νk ∼ N(0, σν
2) and Corr(νk, αk) 

= ρ. Special cases of this model include Model 5 which sets σν
2 = 0 and the model described 

in Hemming et al. (2018) which sets σδ
2 = 0; see schematic comparison in Web Appendix G 

(Figure S6). These models focus on different aspects and potentially different mechanisms 

for treatment effect heterogeneity. In the Hemming et al. (2018) model, heterogeneity is on 

the scale of cluster and may arise from differential operationalization of the intervention, 

resources, or equipment by cluster. In Model 5, heterogeneity is on the scale of exposure 

time and may arise from latency or learning effects due to duration of treatment condition. 

Model 6 may be used in cases where both types of treatment effect heterogeneity are 

anticipated.

It would be useful to develop fitting algorithms to allow more flexible distributional 

assumptions on random-effects terms of the proposed Model 5. For example, Model 2 

corresponds to postulating a uniform distribution on the exposure-time-specific treatment 

effects. As another example, we can consider a version of Model 5 where δ ∼ NE(0, σδ
2M), 

with M a prespecified E × E correlation matrix for δ. This allows for nonzero correlation 

between the random effects for each exposure-time period. One possible choice is a first-

order autoregressive correlation structure, similar to the exponential decay structure studied 

in Kasza et al. (2019). Such AR-1 extension allows for exposure-time-specific treatment 

effects to be correlated and the magnitude of correlation depends on the time distance in 

discrete periods. Future work is warranted to develop such extensions.

Finally, it would be interesting to compare the performance of sample size calculation 

methods based on Models 1, 4, and 5 in the presence or absence of exposure-time treatment 

effect heterogeneity. Grantham et al. (2020) considered time parameterizations for the 

underlying temporal trends in CRT planning and provided a sufficient condition for when 

the choice of time parameterization does not affect the form of the variance of the treatment 

effect estimator. Our variance formula based on Model 4 shares a similar attractive feature 

in that it does not require knowledge of the full exposure-time treatment effect pat-terns. 

Comparisons of sample size calculation methods based on different modeling assumptions 

require careful consideration of the interplay between bias and efficiency as well as the role 

of different ICC parameters, which merits additional research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Empirical power (pσδ, E), with Monte Carlo error bars computed with upper and lower limits 

defined by pσδ, E ± z0.025 (pσδ, E(1 − pσδ, E) ∕ 500, where z0.025 is the 0.025-tail probability of the 

standard normal distribution, as function of σδ
2 for varying number of exposure time points 

observed (E). The orange solid line with circles represents the proposed permutation test. 

The blue dot-dashed line with open squares represents the likelihood ratio (LR) test based on 

Model 4. The orange dotted line with triangles represents the LR test based on Model 5. The 

black horizontal line corresponds to 80%. The red horizontal line corresponds to 5%.
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FIGURE 2. 
Comparison of empirical mean squared error for estimating exposure-time-specific 

treatment effects by the number of exposure time points from Models 4 (blue) and 5 

(orange) in the simulation study
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