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Cell type specific transcriptomic differences
in depression show similar patterns between
males and females but implicate distinct cell
types and genes

Malosree Maitra1,2,3, Haruka Mitsuhashi1,2,3, Reza Rahimian1,3, Anjali Chawla1,2,3,
Jennie Yang1,3, Laura M. Fiori1,3, Maria Antonietta Davoli1,3, Kelly Perlman1,2,3,
Zahia Aouabed1,3, Deborah C. Mash4, Matthew Suderman 5,6,
Naguib Mechawar 1,2,3, Gustavo Turecki 1,2,3,7 & Corina Nagy 1,2,3,7

Major depressive disorder (MDD) is a common, heterogenous, and potentially
serious psychiatric illness. Diverse brain cell types have been implicated in
MDD etiology. Significant sexual differences exist inMDD clinical presentation
andoutcome, and recent evidence suggests differentmolecular bases formale
and female MDD. We evaluated over 160,000 nuclei from 71 female and male
donors, leveraging new and pre-existing single-nucleus RNA-sequencing data
from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide
threshold-free MDD-associated gene expression patterns were similar
between the sexes, but significant differentially expressed genes (DEGs)
diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and
parvalbumin interneurons contributed the most DEGs in females, while deep
layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the
major contributors inmales. Further, theMic1 cluster with 38% of female DEGs
and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-
analysis of both sexes.

Major depressive disorder (MDD) is a serious and potentially debilitat-
ingmental illness affecting 200–300million peopleworldwide1.MDD is
a leading cause of disability globally1 and some prominent symptoms in
patients with MDD include persistent low mood, decreased interest
and/or pleasure, sleep and appetite disturbances, feelings of worth-
lessness, and suicidal thoughts2. Anumberof genetic variants havebeen
identified which contribute to the heritability of MDD3 and brain tran-
scriptomic differences4 are detected in this disease, but the molecular
etiology of MDD is still only partially understood.

There are known dissimilarities in the epidemiology and patho-
physiology of MDD between the sexes. Notably, it is twice as prevalent
inwomen thanmen5. Symptomatologydiffers in that, women aremore
likely to have comorbid anxiety, so-called atypical depression, and
recurrent episodes, while men are more likely to have comorbid sub-
stance use disorders and to die by suicide6–8. Sex-specific molecular
profiles inMDD and corresponding animalmodels are often attributed
to hormonal differences either during development or in adulthood,
to the contributions of sex-chromosomes, or to inherent sex
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differences in the monoaminergic system or the hypothalamic-
pituitary-adrenal axis (HPA), among other factors6,9.

Recent studies in humans have attempted to address the gap in
our knowledge of molecular sex differences in depression by exam-
ining MDD-associated sex-specific brain transcriptomic differences in
human patients7,10. Using bioinformatic andmeta-analysis approaches,
combined with validation in animal models, these studies found that,
overall, MDD-associated differences in brain transcriptomics are pri-
marily sex-specific across brain regions, with very little overlap of
differentially expressed genes (DEGs) and discordance in overall pat-
terns of difference between the sexes.

Single-nucleus RNA-sequencing (snRNA-seq) can disentangle cell
type specific transcriptomic contributions to complex neuropsychia-
tric conditions11–15, and our recent snRNA-seq results16 revealed
disruptions in deep layer excitatory neurons and immature oligoden-
drocyte precursor cells (OPCs) in the prefrontal cortex (PFC) of males
with MDD. Given the higher prevalence of MDD among women, the
known sex-specific differences in MDD, and growing evidence that
male and female MDD may be mediated by distinct brain molecular
mechanisms, we conducted a study in a cohort of female individuals
and applied an updated unified analysis pipeline to both the female
and previously generated male cohorts. With a total of 71 individuals,
37 cases and 34 controls and over 160,000 single-nuclei profiled, our
dataset represents the largest snRNA-seq study of the human brain in
MDD to date. We found that the DEGs detected and the cell types with
prominent differences were distinct in males and females. However,
the overall patterns of MDD-associated gene expression difference
within each cell type were consistent between the sexes. Whereas in
males our analysis indicated a strong involvement of deep layer exci-
tatory neurons, astrocytes, and OPCs—consistent with our previous
report, in females we found a striking contribution of microglia and
parvalbumin (PV) interneurons to MDD pathology.

Results
Profiling cells of the human dorsolateral prefrontal cor-
tex (dlPFC)
snRNA-seq data was generated from the dlPFC for 20 female subjects
with MDD and 18 neurotypical female controls (Fig. 1a, schematic;
Table 1, demographic and sample characteristics; Supplementary
Data 1, sequencing metrics) and combined with previously generated
data from males16. After pre-processing with a unified pipeline (Meth-
ods: Sequencing, alignment, and generation of count matrices), we
retained 160,711 high-quality nuclei with comparable contributions of
sex (51% from females) and disease status (58% MDD). We used
Harmony17 to correct for covariates, including batch effects (Supple-
mentary Fig. 1a–d), and applied the scclusteval18 workflow to optimize
the Seurat clustering parameters (Supplementary Fig. 2a–b) resulting
in the identification of 41 nuclei clusters. Clusters mostly did not
appear to be driven by batch, sex, brain bank, or subject (Supple-
mentary Fig. 3a–e, g).

Of the 41 clusters, 40 could each be confidently annotated to one
of 7 major brain cell types (Methods: Cluster annotation, Fig. 1b–d,
Supplementary Fig. 4, Supplementary Data 2)—excitatory neurons
(48% of nuclei), inhibitory neurons (18% of nuclei), oligodendrocytes
(14% of nuclei), astrocytes (8% of nuclei), OPCs (5% of nuclei), endo-
thelial cells (2.5% of nuclei), and microglia (2% of nuclei). The one
unassigned cluster displayed a mixed expression profile of neuronal
and glial marker genes (2% of nuclei).

We annotated 30 neuronal clusters, both excitatory (20 clusters)
and inhibitory (10 clusters), using known subtype markers (Supple-
mentary Fig. 5a, b). Excitatory neuronal clusters were annotated
according to their layer of origin and inhibitory neuronal clusters
according to their developmental origin, where applicable. For non-
neuronal cells, we identified one microglial cluster, two clusters of
astrocytes, and three clusters each of oligodendrocytes and OPCs.

Clusters annotated to the oligodendrocyte lineage (OL) were further
characterized using pseudotime trajectory analysis (Methods: Pseu-
dotime trajectory analysis; Supplementary Fig. 5c, d).

Using the gene expression patterns of our clusters and matching
them to published clusters in several human brain datasets19,20, we
found close correspondence between observed cell types (Fig. 1e,
Supplementary Fig. 6), further emphasizing that the quality of our
data, clustering, and annotation are at parwith other recent snRNA-seq
datasets for the human brain. Besides the single cluster with mixed
expression profile, two other clusters showed evidence of possible
technical effects, ExN17 and ExN5 (Methods: Assessment of clustering
quality).

Cell types with altered proportions in MDD
We next examined whether proportions of nuclei in broad cell types
and clusters differed between cases and controls. We observed that
the proportions of nuclei per subject contributing to the broad
astrocytic and OPC cell types were significantly decreased in cases
compared to controls (two-sidedWilcoxon-test, FDR = 3.46 × 10−4, Ast;
FDR = 5.32 × 10−4, OPC; Fig. 1f, Supplementary Data 3) and there were
concomitant increases in excitatory neurons (FDR 0.0477). Similarly,
there were reduced proportions of nuclei in both astrocytic clusters
(Ast1, FDR 0.00188; Ast2, FDR 0.00291) and in two of three OPC
clusters (OPC1, FDR 0.009799; OPC2, FDR 0.0168; Fig. 1f, Supple-
mentaryData 3). The robustnessof thesedifferenceswas supportedby
sub-sampling analysis (Methods: Cell type proportions comparison).
Splitting the male and female datasets revealed similar patterns as
observed for the combined data (Supplementary Fig. 7). These results
are similar to those found in analyses of other brain disorders11,21, and
indicate that there may be decreased proportion of astrocytes and
OPCs may be reduced in MDD. Here the FDR refers to Benjamini and
Hochberg correction.

Global cell type specific transcriptomic changes are largely
concordant between the sexes
We next asked whether there are sex-specific differences in the gene
expression patterns of individual cell types. To answer this question,
we performed differential gene expression analysis comparing cases
and controls in broad cell types and clusters, in males and females
separately. In both males and females, we observed a high proportion
of common DEGs between broad and cluster level analyses. However,
consistent with previous studies showing distinct brain transcriptomic
changes in males and females with MDD10,22, few DEGs were common
to both sexes (Fig. 2a). To compare overall patterns of depression-
associated gene expression in males and females beyond those genes
passing significance thresholds, we performed rank-rank hypergeo-
metric overlap (RRHO) analysis23 (Methods: Comparison of male and
female results). Specifically, we used RRHO2 to compare the orderings
of the genes induced byMDD association statistics in males compared
to females. These orderings were generally moderately to strongly
concordant between the sexes (Fig. 2b). Someevidence of discordance
was visible only for Oli and OPC. There was a significant overlap
betweenmales and females in genes less expressed inMDD inAst, ExN,
and InN (warm colors in top right quadrant of RRHO plots) and an
overlap in genes more expressed in MDD in Mic (warm colors in bot-
tom left quadrant of RRHO plot).

At the cluster level there was some evidence of discordance
between the sexes, with 8 out of 34 clusters compared showing dis-
cordant patterns. This encompassed certain neuronal clusters, primarily
excitatory neuronal, including ExN4_L35, ExN7, ExN12_L56, ExN13_L56,
InN10_ADARB2 (Supplementary Fig. 8). Within the oligodendrocyte
lineage, discordance is apparent for the Oli2, Oli3, and OPC1 clusters
(Fig. 2c). Supplementary Data 4 summarizes the maximum -log10
p-values from RRHO2 analyses and the classification of the results into
weak, moderate, strong categories or concordance and discordance—
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with strongly concordant or discordant results providing the most
convincing evidence for similarity or difference between the sexes. As
can be seen from Supplementary Data 4, we can seemoderate or strong
evidence for concordance between males and females in not only
neuronal cell types, but also glia (e.g., microglia and astrocytes).

Taken together we find that, although cell type specific statisti-
cally significant MDD-associated DEGs differ between the sexes, a
threshold-free ranking approach to comparison shows considerable
concordance betweenmales and females for themajority of broad cell
types and clusters.

We further assessed whether the similarities in cell type specific
MDD-associated gene expression differences between males and
females was likely to arise by chance using permutation analysis,
which supported our conclusion that the similarities are not driven
by chance (Methods: Permutation analysis, Supplementary Fig. 9e–j,
Supplementary Data 4). For broad cell types, excluding the cluster
annotated as having a mixed contribution of cell types, on average
91% of the time the real data yielded a higher correlation between
male and female results than the permuted data. For clusters with
concordant patterns, on average90%of the time the real data yielded
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a higher correlation between males and females than the permuted
data. However, for clusters with evidence of discordance, the real
correlation was higher than permuted correlation only 42% of
the time.

Cell types with strongest MDD associations differ by sex
Next, we identified the cell types with the strongest evidence of dys-
regulation due to MDD in each sex. In males, our reanalysis indicated
results consistentwith thosewe reported previously, i.e., for broad cell
types we identified the highest number of DEGs in astrocytes (90/151,
60%) and OPCs (54/151, 36%) (Fig. 3a, Supplementary Fig. 10a–d,
Supplementary Data 5), whereas at the cluster level (Fig. 3b, Supple-
mentary Figs. 10e–h, 11, Supplementary Data 5), the highest number of
DEGs were found in a cluster of deep layer excitatory neurons—
ExN10_L46 (238/447, 53%) and a cluster of astrocytes – Ast1 (98/447,
22%). A summary of the proportions of upregulated versus down-
regulatedgenes anduniqueDEGsversusDEGs shared across clusters is
provided in Fig. 3e. Correlations between gene expression fold dif-
ferences calculated in our reanalysis and our previous analysis are
provided in Supplementary Fig. 10i–l (Methods: Differential expres-
sion analysis—Comparison of male differential expression results to
previous results).

In females, for broad cell types, we detected a high number of
DEGs in microglia only (74/85, 87%) (Fig. 3c, Supplementary
Fig. 12a–d, Supplementary Data 6). The same analysis at the cluster
level (Fig. 3d, Supplementary Fig. 12e–h, Supplementary Data 6)
consistently showed the highest number of DEGs in the Mic1 (Fig. 3f;
68/180 DEGs, 38%) cluster with a large proportion (53/68, 78%)
overlapping with the microglial DEGs at the broad level. We focused
on cluster level results for follow up analyses (Methods: Differential
expression analysis, for justification) and assessed the robustness of
our microglial findings against misclassified or contaminating cells
(Supplementary Fig. 12i).

The majority of microglial DEGs (47/68, 69%) were confirmed to
be both transcribed and translated in microglia using a TRAP gene
expression dataset in a lipopolysaccharide challenge mouse model24.

In addition to microglia, several inhibitory neuronal clusters
(Fig. 3g), including two PVALB expressing clusters—InN1_PV and
InN9_PV as well as an SST expressing cluster—InN2_SST and an ADARB2
expressing cluster—InN8_ADARB2 contained themajority of remaining
DEGs. Our results thus pointed to dysregulation of microglia and
inhibitory neurons, especially PV interneurons in females with MDD
which further prompted us to explore the biological pathways within
and possible interactions between these cell types which could be
altered in MDD, as detailed below.

Further, our permutation analyses revealed that at the broad level
the number of unique DEGs identified with the real data was higher
than 93% of permutations for females and 97% of permutations for
males (Supplementary Fig. 9a, b). At the cluster level, for males, the
real number of unique DEGs was higher than the number of per-
muted unique DEGs 94% of the time (Supplementary Fig. 9c). The
evidence frompermutationswasweaker at the cluster level for females
with 60% of permutations revealing fewer unique DEGs than the real
data (Supplementary Fig. 9d).

Meta-analysis reveals additive effects of depression-associated
transcriptomic changes in males and females
To maximize statistical power to observe gene expression differences
common to both males and females, we performed meta-analyses of
the male and female data within each broad cell type and cluster. For
broad cell types, the meta-analysis revealed upregulated genes in
microglia and downregulated genes in astrocytes, with the majority of
DEGs from the separate male and female analyses retained (Fig. 4,
Supplementary Data 7). There weremore DEGs inmicroglia (172 DEGs)
than observed in the female dataset alone (74 DEGs), whereas there
were fewer DEGs in astrocytes (53 DEGs) than identified inmales alone
(90 DEGs). 49/90 (54%) DEGs in the broad astrocytic cluster in males
and 56/74 (76%) DEGs in the broad microglial cluster in females were
recapitulated in the meta-analysis. There were 22 DEGs in OPCs in
the meta-analysis, but the number was less than half compared to the
independent analysis of the male dataset (54 DEGs) whereas for oli-
godendrocytes the number of DEGs was higher when the data were

Fig. 1 | Overview of cell types characterized in the dlPFC. a Schematic of study
design. Diagrams depict the brain region of interest, Brodmann area 9, corre-
sponding to the dlPFC. b UMAP plot colored by the broad cell types. c UMAP plot
colored by the individual clusters identified and annotated. For UMAP plots, the x
and y-axes represent the first and second UMAP co-ordinates respectively.
d DotPlot depicting the expression of marker genes (SNAP25 – neurons, SLC17A7 –
excitatory neurons, GAD1 – inhibitory neurons, ALDH1L1 – astrocytes, PDGFRA –

oligodendrocyte precursor cells, PLP1 – oligodendrocytes, CLDN5 – endothelial
cells, CX3CR1 – microglia). The dendrogram next to the cluster names shows the
relationship between the clusters by using the distance based on average expres-
sion of highly variable genes. e Best hits heatmap fromMetaNeighbor showing the
correspondence between the clusters in our dataset (columns) and the broad
categories of cells identified in the Allen Brain Institute human motor cortex
snRNA-seq dataset20 (rows). f Boxplots showing the proportion of nuclei in each
cluster for each subject split by cases and controls for the broad OPC, astrocyte,
and excitatory neuron cell types and the Ast1, Ast2, OPC1, andOPC2 clusters (n = 37

cases, 34 controls, representing biologically independent samples for each cluster
or broad cell type). The middle line is the median. The lower and upper hinges
correspond to the 25th and 75th percentiles. Upper and lower whiskers extend
from the upper or lower hinges to the largest or smallest value no further than 1.5
times the inter-quartile range from the hinge, where the inter-quartile range is the
distance between the first and third quartiles. Points beyond the end of the whis-
kers are plotted individually. In Fig. 1c–e, excitatory neuronal cluster names contain
approximate layer annotations and inhibitory neuronal cluster names containMGE
or CGE specific marker information as a suffix where applicable, as described in
methods: Cluster annotation. For example, ExN10_L46 denotes a cluster of exci-
tatory neurons with enrichment of marker genes from layer 4 to layer 6 of the
cortex and InN1_PV denotes a cluster on inhibitory neurons with enrichment of the
MGE specific marker PV. This convention is used throughout the paper. Brain
diagram in 1a was created with BioRender.com. Source data are provided as a
Source Data file.

Table 1 | Demographic and sample characteristics of cohorts

Group Case (n = 37) Control (n = 34)

Sex Female (n = 20) Male (n = 17) Female (n = 18) Male (n = 16)

Age 45.10 ± 3.19 (0.92) 41.06 ± 4.66 (0.67) 47.89 ± 4.45 (0.92) 38.38 ± 4.58 (0.67)

PMI* 41.49 ± 3.07 (0.02) 41.69 ± 4.76 (0.10) 30.27 ± 4.73 (0.02) 32.02 ± 4.81 (0.10)

pH 6.58 ± 0.08 (0.06) 6.60 ± 0.07 (0.30) 6.34 ±0.08 (0.06) 6.50 ±0.06 (0.30)

Numbers in brackets are uncorrected p-values from Kruskal–Wallis test between the two conditions for the same sex. Numeric values in each cell represent themean ± SEM. pHwas unavailable for
one female subject, F35.
*Significantly different between female cases and controls (p-value < 0.05).
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meta-analyzed (21 versus 7 DEGs in the male dataset alone). The
decrease in number ofMDD-associatedDEGs inOPCswhen combining
the male and female cohorts indicates that gene expression differ-
ences in OPCs in MDD are dissimilar between the sexes. This agrees
with the discordance of depression-related transcriptomic changes
between sexes in OPCs in our RRHO2 analysis.

At the cluster level, we found that upregulated DEGs in Mic1 and
downregulated DEGs in ExN10_L46 stood out as the top findings in the
meta-analysis (Fig. 4, Supplementary Data 7). Once again, we found
more microglial DEGs (128 DEGs) via the meta-analysis compared to

the female data alone (68 DEGs) and more DEGs in ExN10_L46 (254
DEGs) than with the male data alone (238 DEGs).

Given the overall between-sex concordance in MDD-associated
gene expression changes detected in RRHO2, it is not surprising that
clusters with prominent differential expression from the individual
cohorts also stood out in the meta-analysis. Taken together these
results further support that the global patterns of change in gene
expressionwithin cell type are generally consistent betweenmales and
females, especially for excitatory neurons and microglia, with a few
notable exceptions such as OPCs.

Fig. 2 | Overall comparison of cell type specific MDD-associated gene expres-
sion changes in males and females. a Venn diagram showing the overlap of DEGs
between the male and female datasets at the broad cell type and cluster levels.
b RRHO2 plots for correspondence between differential expression results for
broad cell types in the female (x-axis) andmale (y-axis) datasets.Warmcolors in the
bottom left and top right quadrants reflect overlap in genes with increased
expression or decreased expression respectively, in cases versus controls between
the male and female datasets. Warm colors in the top left and bottom right
quadrants reflect overlaps in genes with the opposite direction of effects between

themale and female datasets. For each dataset, geneswere ranked according to the
value of the log of the fold change multiplied by the negative base 10 logarithm of
the uncorrected p-value from differential expression analysis. c RRHO2 plots
similar to (b) but for oligodendrocyte lineage clusters. For RRHO2 plots comparing
broad cell types the color scalemaximumwas set to a −log10(p-value) of 50, and for
RRHO2 plots comparing clusters the color scale maximum was set to a −log10(p-
value) of 25 for ease of comparison. RRHO2 uses one-sided hypergeometric tests,
the p-values plotted here are uncorrected. Source data are provided as a Source
Data file.
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Female cell type specific DEGs are enriched for previous MDD-
linked genes
The relevance of the DEGs we have identified to psychiatric disorders
was evaluated by referring to the PsyGeNET25 text-mining database.
Compared to other disorders, depressive disorders had the most
gene-disease associations with the female cell type specific DEGs
(>60; Fig. 5a). The next largest number of gene-disease associations

was for schizophrenia (<40). Statistically, the overlap of all DEGs at
the cluster level with disease-associated genes in PsyGeNET was
significant only for two disease categories, Depressive disorders
(hypergeometric test, p = 0.0378) and Alcohol use disorders
(hypergeometric test, p = 0.0141). Further, for the top 5 clusters with
highest numbers of DEGs in the female cluster-level analysis, gene-
disease associations for depression and related disorders in
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PsyGeNETwere identified for several DEGs (Fig. 5b, c). Therefore, our
cell type specific DEG findings in females recapitulated previously
reported gene-disease associations.

Disease-relevant biological pathways revealed by cell type spe-
cific transcriptomic changes in females with MDD
To explore the underlying pathways associated with the cell type
specific transcriptomic changes in females with MDD, we performed
pre-ranked gene set enrichment analysis (GSEA; Methods: Pre-ranked
gene set enrichment analysis). Female microglia from cases showed
significant negative enrichment scores for inflammation-related
Reactome pathway gene sets including “Interferon Gamma signal-
ing”, “Interleukin 4 and Interleukin 13 signaling”, “Interleukin 10 sig-
naling”, and “TNFR2 non-canonical NF-KB pathway” (Fig. 5d,
Supplementary Data 8). “Neuronal system” gene sets were positively
enrichedwith contributions from “Voltage-gatedpotassiumchannels”,
“Class C/3 metabotropic glutamate/pheromone receptors”, and
“Neurexins and neuroligins” among others (Fig. 5d). Interestingly both

pro- and anti-inflammatory immune signaling pathway gene sets were
downregulated which may indicate that MDD-associated dysregula-
tion of gene expression in microglia involves more than just a micro-
glial inflammatory response.

Further, both PV interneuron clusters showed a negative enrich-
ment of heat shock factor 1 (HSF1) related terms—“HSF1 activation” in
InN9_PV and “HSF1 dependent transactivation” in InN1_PV. Moreover,
both clusters showed an enrichment of the gene sets “Cellular
response to external stimuli” and “Metabolism of RNA”. The InN1_PV
cluster showed further enrichment of immune gene sets such as
“Innate immune system”, “Adaptive immune system”, and “Cytokine
signaling in immune system” and interestingly in the context of sex
differences in depression, “ESR mediated signaling”, pertaining to the
estrogen receptor.

Thus, our GSEA of the female microglia and PV interneuron dif-
ferential expression results revealed dysregulated Reactome pathway
gene sets which are functionally relevant in these cell types and plau-
sibly associated with sex differences.

Fig. 3 | Cell type specific differential gene expression inmales and femaleswith
MDD. a, b Distribution of differentially expressed genes in (a) broad cell types and
(b) clusters with increased and decreased expression in male cases compared to
controls. c, d Distribution of differentially expressed genes in (c) broad cell types
and (d) clusterswith increasedanddecreased expression in female cases compared
to controls. For a–d, points are colored by the corrected p-value for differential
expression, and upregulated genes are plotted to the right of the midline while
downregulated genes are plotted to the left. e Barplots showing proportions of up
and downregulated genes and unique and shared genes. Formales, the majority of
DEGsweredecreased in expression in cases compared to controlsboth at the broad
(110/151, 73%) and cluster levels (358/447, 80%) and most DEGs were cell type
specific both at the broad (145/151, 96% unique DEGs) and cluster (398/447, 89%

unique DEGs) level. For females, themajority of DEGswere upregulated both at the
broad (70/85, 82%) and the cluster level (140/180, 78%) and most DEGs were cell
type specific both at the broad (84/85, 99% unique DEGs) and cluster (166/180, 92%
unique DEGs) level. f, g Heatmaps showing the pseudobulk expression of differ-
entially expressed genes in top clusters with highest number of DEGs in the female
cluster level analysis—f microglia, g inhibitory neuronal clusters. For f, g, the
plotted values are pseudobulkCPMs (counts permillion) calculatedwith edgeRand
muscat and scaled per row (by gene). For all heatmaps (f, g), the annotation bar at
the top is colored orange for cases and purple for controls, and rows and columns
are not clustered. Statistical testing corresponding to Fig. 3a–d were performed
with the edgeR (glmQLFit, glmQLFtest), FDR (Benjamini & Hochberg) corrected
p-values are plotted. Source data are provided as a Source Data file.

Fig. 4 | p-value combination meta-analysis results. a, b Distribution of DEGs
across the (left) broad cell types and (right) clusters after p-value combination
meta-analysis. b Numbers of DEGs (y-axis) in each cluster for the male analysis,
female analysis, and meta-analysis. c, d Overlap of meta-analysis DEGs with the

individual analyses of the male and female datasets for (c) broad cell types and (d)
clusters. The statistical test performed is Fisher combination of p-values as imple-
mented in metaRNAseq, the test is one-sided, and the p-values were Benjamini
Hochberg corrected. Source data are provided as a Source Data file.
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Assessing the relationship between microglia and PV inter-
neuron dysregulation in females with MDD using
protein–protein interaction assessment
To further assess the functional relevance of striking gene expression
differences in microglia and PV interneurons in females with MDD,
we examined whether the protein products of DEGs in these clusters
belonged to interacting networks. STRING26 protein-protein

interaction (PPI) analysis (Methods: STRING analysis) revealed links
between the protein products of several DEGs in the microglia and
the PV interneurons. We focused on the top two interactions, based
on the STRING confidence score. These interactions were between
protein products of DEGs coming from microglia and PV inter-
neurons and with the same direction of change (Fig. 5e). The ROBO2
gene, which encodes a canonical cell migration guidance receptor27,

Fig. 5 | Characterization of cell type specific DEGs in females with MDD.
a PsyGeNET literature reported gene-disease association bar plot for all DEGs in the
female cluster level analysis. The y-axis shows the number of gene-disease asso-
ciations. “100% association” indicates all evidence is in support, “100% no asso-
ciation” indicates the opposite, while “Both” indicates mixed support. b, c Gene-
disease association heatmaps for 5 clusters with the highest numbers of DEGs in
females:bmicroglia, c inhibitory neuron clusters. Evidence indexof 1 indicates that
all literature supports the association, while 0 indicates that there is no support for
the association. Values inbetween indicate partial support.dNetworks showing the
relationship between main gene sets (yellow) and all gene sets (blue) with enrich-
ment inpre-rankedGSEAwithReactomepathways inMic1 (left) and InN9_PV (right)

in females. Controlling for the overlap between gene sets, the main gene sets are
independently enriched. e STRING network showing DEGs in female microglia and
PV interneurons whose protein products have reported interactions. The shape of
the node represents the cluster in which the DEG was detected, and the color
represents the direction of fold change in cases compared to controls. The num-
bers on the edges represent the confidence scores for the interactions. f (left) Bar
plots showing the number and strength of ligand-receptor communications within
and between PV interneurons and microglia in cases and controls. (right) Relative
strength of communication in different signaling pathways for cases and controls.
Source data are provided as a Source Data file.
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was increased in microglia whereas one of its corresponding ligands,
SLIT327 was increased in expression in the InN9_PV cluster. In addi-
tion, ADAMSTL1 and THSD4 (also known as ADAMTSL6), two mem-
bers of the ADAMTS-like family of proteins, which have extracellular
matrix (ECM) binding properties28, were upregulated in microglia
and in the InN1_PV cluster respectively. The PPI network analysis
results point to the intriguing possibility that changes in commu-
nication between microglia and PV interneurons through the ECM
and cell surfacemolecules contribute to depression-associated brain
pathology in females.

Assessing the relationship between microglia and PV inter-
neuron dysregulation in females with MDD using ligand-
receptor interaction assessment
Building upon the indications from PPI assessment we explored the
possible changes in ligand-receptor expression in microglia and PV
interneurons between female cases and controls with CellChat29

(Methods: CellChat analysis). CellChat identified more interacting
ligand-receptor pairs and estimated increased communication
strength overall within and between and within microglia and PV
interneurons in cases compared to controls (Fig. 5f). CellChat fur-
ther identified several signaling pathways (groups of related ligand-
receptor pairs) with decreased (top pathway: GAS) and increased
(top pathway: SPP1) communication in cases compared to controls
(Fig. 5f). Within these top signaling pathways, we specifically
identified a probable increase in SPP1 to integrin communication
and decrease in GAS6-MERTK communication from microglia
to PV interneurons and vice versa, respectively (Supplemen-
tary Fig. 13).

WGCNA confirms MDD dysregulated pathways in female
microglia and PV interneurons
Next, we performed weighted-gene co-expression network analysis
(WGCNA) using the pseudobulk gene expression profiles to identify
correlatedmodules of genes associated with MDD inmicroglia and PV
interneurons in females.

Inmicroglia, 8modules out of 44had a significant correlationwith
case-control status (p-value < 0.05; Fig. 6a). Further, the MEturquoise
module which is positively correlated with MDD-status (correlation
0.627, p = 7.26 × 10−5) showed a significant overlap (p = 5 × 10−56;
Methods: Weighted gene co-expression network analysis) with upre-
gulated DEGs in microglia in female cases (Fig. 6b). MEturquoise also
showed an enrichment of Reactome pathway gene sets related to ion
channels, neurotransmitter receptors, and the neuronal system
(Fig. 6c) similar to gene sets found upregulated in microglia in female
cases by GSEA.

In PV interneurons (including nuclei in the InN1_PV and InN9_PV
clusters), 16 of 55 modules were significantly associated with case-
control status (p < 0.05, Fig. 6d). In addition, downregulated DEGs
from InN1_PV and InN9_PV significantly overlapped (p = 3.24 × 10−7)
with the genes from the MEturquoise module (Fig. 6e). The
MEturquoise module which is negatively associated with MDD
(correlation −0.582, p = 0.00016), had over-representation of 489
Reactome pathway gene sets. Of these, 30 pathways overlapped
with the main downregulated pathways previously identified with
GSEA in InN1_PV or InN9_PV (Fig. 6f). The overlapping pathways
included “HSF1 activation”, “HSF1 dependent transactivation”, and
“ESRmediated signaling”. Further, upregulated DEGs in InN1_PV and
InN9_PV significantly overlapped with the genes of two modules
which had a positive association with MDD-status: MEred (correla-
tion 0.568, p = 0.0002) and MEgreenyellow (correlation 0.426,
p = 0.0085).

Overall, the female microglia and PV interneuron WGCNA results
further support our MDD-associated DEG and Reactome Pathway
findings in these clusters.

Discussion
Cell type specificity of depression-associated transcriptomic
changes
There is a sizablebodyof postmortem literaturedescribingdifferences
from cellular morphology to proteomic and transcriptomic profiles in
individuals with depression. Classic cytological experiments from the
turn of the century identified abnormalities in morphology and dis-
tribution of cell types, but also put into question cell number, size, and
neuropil density, particularly for neurons and astrocytes30–34. Tran-
scriptomic studies have to some extent implicated all broad cell
types35–37. Results from our present and previous study confirm this
implication of multiple cell types including excitatory and inhibitory
neurons, astrocytes, OPCs, and microglia.

Our study highlights potential cell type specific transcriptomic
targets for treatment and intervention inMDD.Given that different cell
types appear to be implicated in MDD in males and females, approa-
ches to treatment may need to be different as well. At the very least,
our findings strengthen the evidence in support of including female
subjects in pre-clinical and clinical research, which had been histori-
cally neglected and continues to be neglected in biomedical research.

Sex-specificity of depression-associated transcriptomic
differences
Only recently have postmortem transcriptomic studies of MDD begun
to incorporate sex as a biological factor7,10. These studies, which ana-
lyzed bulk tissue samples, reported distinct gene expression differ-
ences in males and females with very limited overlap of DEGs. Our
findings are consistent with these studies in that the cell types with
most prominent differences in gene expression—and the DEGs within
these cell types—were quite separate for males and females (Fig. 2a).
However, in contrast, we found that within each cluster and broad cell
type the threshold-free patterns of MDD-associated difference in gene
expression were highly concordant between the sexes in most cases,
except for most oligodendrocyte lineage clusters (Fig. 2b, c). This
overall agreement between the sexeswas confirmedbyameta-analysis
of the male and female data (Fig. 4a–c). Possibly, by using single-
nucleus methodology, our results provided better resolution for
threshold free analyses.

Notably, recent reviews on the sex specificity of transcriptomic
differences in MDD22,38 suggest that in females with MDD there is
reduced microglial activation and increased synaptic connectivity
while the opposite is true for males. This theory is supported by the
downregulation we observed in MDD females in microglial inflamma-
tory pathways such as interferon and NF-KB signaling.

Immune response is innately different across sexes leading to
inflammatory responses that varywith age and sex resulting in a bias in
susceptibility to the development of diseases from autoimmune to
infections to cancer39. Microglia, the resident immune cell of the brain,
showed the most significant difference in gene expression compared
to control subjects specifically in females and not males (Fig. 3a–d). It
has been hypothesized that these differences result from distinct
starting points between sexes6. Notably, many microglial immune
functions aremediatedbygonadal hormones including transcriptional
regulators suchas suppressor of cytokine signaling 3, SOCS340, which is
downregulated in our data and influences the expression of other
cytokines.

Microglial contributions to MDD in females
The salient implication ofmicroglia specifically in females is consistent
with differences in the distribution, structure, transcriptome, and
proteome of microglia between the sexes, in both health and
disease41–43. Furthermore, the number and phenotype of microglia
differ by sex in the rodent brain44–46, and several recent rodent studies
demonstrated sex-specificity ofmicroglial response to stress in various
brain regions47–49. These studies describe changes in genes involved in
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Fig. 6 |WGCNAresults formicroglia and PV interneurons in females. aHeatmap
showing the correlation and associated p-value, in parentheses, of Mic1 WGCNA
module eigengenes with case-control status and covariates (age, pH, PMI).
bHeatmap showing the test-statistic and FDRcorrectedp-value, in parentheses, for
one-sided Fisher tests of overlap between theMic1 WGCNAmodule member genes
and DEGs in females in Mic1. c Top Reactome pathway gene sets over-represented
in Mic1 WGCNA, in the MEturqouise module using one-tailed hypergeometric
testing. Uncorrected p-values are plotted. d Heatmap showing the correlation and
associated p-value, in parentheses, of InN_PV WGCNA module eigengenes with

case-control status and covariates. e Heatmap showing the test-statistic and FDR
correctedp-value, in parentheses, for one-sided Fisher tests of overlap between the
InN_PVWGCNAmodulemember genes andDEGs in females the InN1_PVor InN9_PV
clusters. f Venn diagram showing the overlap of Reactome pathway gene sets
enriched in the InN_PV WGCNA module MEturquoise (associated negatively with
case status) anddownregulatedviaGSEA in caseswithin InN1_PVor InN9_PV. For 6a,
6d the statistical test performed was a Pearson correlation as implemented in the
WGCNA package and p-values are one-sided and uncorrected. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-38530-5

Nature Communications |         (2023) 14:2912 10



cellular stress and immune function with brain-region and sex-specific
variation. This is roughly analogous to the female-specific pathway
dysregulation we observed in microglia and PV interneurons in MDD
(Fig. 5d, Supplementary Data 8).

Most studies examining peripheral markers report increased
inflammation in MDD50, but studies in brain tissue have reported
increases50, decreases51, or changes in both directions52 in the expres-
sion of pro-inflammatory molecules. Moreover, several depression-
linked genetic variants in pro-inflammatory genes, including in IL1B,
TNFA, and CRP, are associated with decreased expression53. Recently
the concept of a pro-inflammatory versus anti-inflammatory state of
microglia has been challenged54. In the brain, amidst close interactions
with multiple cell types, microglia adopt more diverse states with
varying levels of pro- and anti-inflammatory markers, and this is being
underscored by single-cell data54. Our results reflect altered microglial
transcription in MDD females versus controls, with pro-inflammatory
(interferon and NF-KB signaling) and anti-inflammatory (IL4, IL13, and
IL10 signaling) pathways simultaneously downregulated (Supplemen-
tary Data 8).

We observed evidence that further “neuronal” pathways—includ-
ing neurotransmitter signaling and ion channels—were upregulated in
female MDD microglia, in both differential expression and WGCNA
results (Supplementary Data 8, Fig. 6c). Microglia have long been
known to express neurotransmitter receptors and ion channels.
Mounting evidence suggests these canonically “neuronal” gene pro-
ducts regulate microglial activity55–58, and our results suggest that
changes in their expression may contribute to MDD pathophysiology,
at least in females.

PV interneuron and microglia crosstalk in females with MDD
Together with striking changes in microglial gene expression, we
observed dysregulation in PV interneurons. PV interneurons, among
other interneuron subtypes, are implicated in stress and depression
with evidence for sex-specific changes59,60. Most PV interneurons are
encapsulatedbyECMstructures calledperineuronalnets (PNNs)which
help protect them from cellular stress, and microglia are known to
regulate PNNs61. Oxidative and cellular stress relate to PV neuron and
PNN deficits in animal models62 and cellular stress may be part of the
molecular pathology in MDD63.

We found evidence of dysregulated cellular stress pathways, such
as heat-shock factor activation, in PV interneurons in MDD females via
differential expression analysis and WGCNA (Supplementary Data 8,
Fig. 6f). Moreover, both analyses pointed to dysregulation of estrogen
receptor mediated signaling. The expression of many genes is regu-
lated by the ligand-bound estrogen receptor and difference in estro-
gen levels are known to contribute to differences in brain physiology
between the sexes41.

Beyond effects in individual cell types, our results imply poten-
tially impaired communication between PV interneurons and micro-
glia in females with MDD (Fig. 5e, f). Microglial synaptic regulation
involves migration of microglia towards specific neurons and in glio-
blastomas this migration can be regulated by SLIT-ROBO signaling27.
The SLIT3 gene and its corresponding receptor gene ROBO2 were
upregulated in PV interneurons and microglia respectively in females
withMDD. Of note, genetic variation in SLIT3 has been associated with
depression64.

We observed that the ECM-binding protein genes ADAMTSL1 and
THSD4 were upregulated in microglia and PV interneurons, respec-
tively, in MDD females. These recently characterized ADAMTS-like
proteins lack the enzymatic domains through which ADAMTSs break
PNN components, but they have been proposed to protect these
components fromdegradation bymimicking ADAMTSbinding28,65. We
therefore conjecture that microglial migration cued by PV inter-
neurons, followed by concerted alterations of the ECM by these two
cell types stabilize PNNs in females with MDD. A recent study—

including males and females—reported increased PNN number in the
PFC of MDD subjects who experienced early life adversity66, and our
molecularfindingsmight underlie one sex-specificmechanism for PNN
alterations in MDD.

Our preliminary assessment also points to downregulation of PV
interneuron to microglia signaling via GAS6-MERTK and upregulation
of SPP1 to integrin signaling in the opposite direction in females with
MDD. Together,MERTK andGAS6 promote homeostasis and neuronal
survival and they are disrupted in several nervous system disorders67.
On the other hand, microglial osteopontin (SPP1), promotes remyeli-
nation in multiple sclerosis and is neuroprotective near infarcts in
stroke but in Alzheimer’s disease it is part of the “disease-associated
microglia” signature68. The role of these signaling molecules in
depression, if any, are yet to be determined.

Limitations
This study has limitations that should be considered. We could not
directly compare male and female cell type specific transcriptomes or
assess the interaction of sex and disease status given that we are using
data from two sex-specific datasets. Thus, the implication of different
cell types in MDD between males and females could be partly attri-
butable to differences in methodology (such as library preparation
chemistry, tissue collection approach, or nuclei isolation protocol,
among other factors) for generating the two datasets. However, we
attempted to mitigate this by applying a unified pre-processing pipe-
line and joint definition of cell types. Our findings are consistent with
previous evidence for sex-specificmechanisms for depression etiology
in animal models and human studies6,9,69,70.

Our permutation analysis indicated our DEGs at the cluster level
for females may not be as robust as for the male cluster level analysis
and the broad analysis for both sexes. However, our main findings in
females at the cluster level are inmicroglia, and 78%ofmicroglial DEGs
in the female cluster analysis are also present in the female broad
analysis, results that were robust, according to the permutation
approach. Further ourDEGs from the female cluster level analysiswere
supported by ourWGCNA results, partiallymitigating the concern that
the DEGs can be an artefact of the differential expression analysis
strategy.

Although our study included data from over 160,000 nuclei, the
number of subjects was small relative to the large number of genes
tested for associations with MDD. The relatively small number of
subjects included in this study limits our statistical power to detect cell
type specific disease-relevant genes and pathways. Further, our results
may not be generalizable to all populations and this work will need to
be extended with larger sample sizes from diverse populations.
However, the number of subjects included in our study compares
favorably to most published snRNA-seq studies of neuropsychiatric
conditions to date, which have included anywhere between 11 and
48 subjects11,12,15,71,72.

We did not identify a separate sub-population of disease-
associated microglia as observed in some neurological disorders73.
This may partly be due to the lack of cytoplasmic transcripts in
snRNA-seq limiting the information about microglial states74.
Nevertheless, a recent study highlighted similarities between cellular
and nuclear microglia RNA-seq data from mouse and human—fresh
and frozen— CNS samples75. Nuclear microglia transcriptomes are a
reliable proxy for cellular transcriptomes and are less affected by cell
isolation-based transcriptional artifacts75. We were able to detect
inflammatory pathway dysregulation in female microglia despite the
limitations.

Our CellChat and STRING results are speculative. We cannot draw
conclusions about the proximity ofmicroglia to PV interneurons or the
presenceof PNNs, as snRNA-seq involvesdissociation of the tissuewith
loss of spatial and structural information. Neither canweconclude that
protein expression is changed for our DEGs. Future studies using
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spatial transcriptomic techniques coupled with immunohistochem-
istry may better answer these questions.

Lastly, a few clusters may be of lower quality (biased by batch or
according toquality parameters, and inconsistencywith other datasets
or with cluster-enriched genes; ExN17, ExN5, andMix). However, given
that these clusters did not contribute substantially to our differential
expression results, their impact on ourmain conclusions is likely to be
limited.

Outcomes
We provide a cell type and sex-specific assessment of transcriptomic
changes in the dlPFC inMDD using snRNA-seq. Our dataset represents
a rich resource which will stimulate further fruitful investigations of
sex- and cell type specific molecular pathways in depression. While
most transcriptomic changes inmales with MDD are observed in deep
layer excitatory neurons, astrocytes, and OPCs, in females the changes
are concentrated in microglia and PV interneurons. Although major
dysregulated cell types and genes are distinct for each sex, within
broad cell types and clusters thepatterns of transcriptomicdifferences
in MDD are primarily concordant between males and females. Finally,
preliminary evidence hints that in females with MDD, impaired com-
munication between microglia and PV interneurons may be an
important feature of MDD molecular pathology.

Methods
Male snRNA-seq dataset
We used published snRNA-seq data from a cohort of male subjects
with or without MDD16. We started with the raw FASTQ files available
through GEO (GSE144136) and reprocessed the data, dropping two
runs from one subject (number 25) with low quality results based on
theprevious analysis.Allmale samples for the studyhadbeenobtained
from the Douglas Bell-Canada Brain Bank.

Post-mortem brain samples in the female cohort
This study was approved by the Douglas Institute IRB. Human post-
mortem dlPFC tissue was obtained from the Douglas- Bell-Canada
Brain Bank (www.douglasbrainbank.ca, all female case samples and
eight female control samples) and from the University of Miami Miller
School of Medicine Brain Endowment Bank (https://med.miami.edu/
programs/brain-endowment-bank, ten female control samples).
Informed consent from next of kin was obtained for each individual
included in this study. Frozen histological grade samples of gray and
white matter were dissected from the dlPFC (Brodmann Area 9) by
expert neuroanatomists and stored at –80 °C. Psychological autopsies
were performed using proxy-based interviews complemented by
medical charts, as previously described76. A summary of sample
demographic characteristics is provided in Table 1. All cases included
in this study died while affected by MDD or unspecified depressive
disorder, whereas controls were neurotypical individuals who died
suddenlywithout prolonged agonal periods anddid not have evidence
of axis I disorders. The post-mortem interval (PMI) represents the
delay between an individual’s death and collection and processing of
the brain. One female case subject and three female control subjects
wereHispanic, two female control subjectswereAfricanAmerican, and
race information was missing for one female case. All other female
subjects were Caucasian, as were all subjects in the male cohort.

Nuclei extraction, single-nuclei capture, and library preparation
for female cohort
Nuclei were extracted from coronal cryosections or tissue shavings
across the cortical layers and white matter, weighing between 40 and
65 mg, obtained using a cryostat at −20 °C with thickness set to 100
microns. Nucleiwere extracted aspreviously described77. Twoversions
of the iodixanol gradientwere used—aweaker gradient using 17.5% and
15% (w/v) concentrations of iodixanol (batches 3F, 7F, 2F) and a

stronger gradient using the 29% and 25% (w/v) concentrations of
iodixanol (batches 6F, 8F, 12F), as previously published78, andwe found
the stronger gradient to perform better. Nuclei were resuspended in
wash buffer and stained using Hoescht 33342 (1:2000). 10 uL of nuclei
were loaded onto EVE cell counting slides (MBI) and imaged using an
Olympus VS120 Slide Scanner (10X magnification) and counted using
the QuPath79 software (version 0.2.0) with the “Watershed cell detec-
tion” functionality.

We used the 10x Genomics Chromium controller for single-cell
gene expression to isolate single nuclei for downstream RNA library
preparation with 10x Genomics Chromium Single Cell 3’ reagents. For
samples processed with version 2 of the Chromium chemistry (Sup-
plementary Data 1), we followed the protocols as outlined by the user
guide (CG00052_SingleCell3_ReagentKitv2UserGuide_RevB; latest ver-
sion at https://bit.ly/3dUNOLZ), whereas for sample processed with
version 3 of the Chromium chemistry (Supplementary Data 1) we fol-
lowed the protocols as outlined by the user guide (CG000204_Chro-
miumNextGEMSingleCell3_v3.1_Rev_D, https://assets.ctfassets.net/an
68im79xiti/1eX2FPdpeCgnCJtw4fj9Hx/7cb84edaa9eca04b607f91931
62994de/CG000204_ChromiumNextGEMSingleCell3_v3.1_Rev_D.pdf).
The catalog numbers for the 10X Genomics single-cell RNA-seq kits for
the v2 chemistry and v3 chemistry were 120237 and 1000121, respec-
tively. The only modification was for loading concentration, which we
increasedby 30% aswe assessed the capture of nuclei to be slightly less
efficient than cell encapsulation. Nuclei were loaded to capture 3000
per sample, but because of a systematic error in counting the actual
number of nuclei captured per sample was variable (Supplemen-
tary Data 1).

Sequencing, alignment, and generation of count matrices
The majority of samples in the female cohort (36) were sequenced
using the Illumina NovaSeq 6000 but two samples were sequenced
using BGI DNB-seq technology. Sequencing metrics are provided in
Supplementary Data 1. All samples from the male cohort were rea-
ligned. Alignment was performed and count matrices were generated
with Cell Ranger version 5.0.1 against the GRCh38 reference available
on the 10X Genomics website (refdata-gex-GRCh38-2020-A,

https://support.10xgenomics.com/single-cell-gene-expression/
software/release-notes/build). We ran the “cellranger count” com-
mand using the “–include-introns” option and all other options set to
default.

An initial 174,178 nuclei were obtained with Cell Ranger default
cell filtering. The median value of mean reads per cell was 71,279, the
average mapping rate to the transcriptome was 68.8%, the average
fraction of reads in cells was 71%, and the average sequencing satura-
tion was 78.5% (Supplementary Data 1). There was higher intronic
mapping rate (Kruskal–Wallis test p-value 0.0029) and a lower exonic
mapping rate (Kruskal–Wallis test p-value 0.0048) for cases compared
to controls, but no significant differences in any other sequencing
quality control metrics (Supplementary Data 1).

The filtered gene barcode matrices were individually loaded into
R80 (versions 4.0.2 and 4.1.2) for downstream analysis and processed
with Seurat81 (4.0.3.9000 and 4.0.5). Percentage of reads from mito-
chondrially encoded genes were calculated before filtering, added as
metadata, and used as a quality control parameter for nuclei filtering,
after which the mitochondrial genes were removed for downstream
analysis. The parameters for filtering were as follows:

Male cohort: nCount_RNA < 35000, nFeature_RNA > 350, per-
cent.mt < 10

Female cohort v2 chemistry: nCount_RNA < 25000, nFeature_RNA
> 250, percent.mt < 10

Female cohort v3 chemistry: nCount_RNA < 120000, nFeature_-
RNA > 350, percent.mt < 10

After filtering, we obtained 79,058 nuclei in the male cohort
(43,347 from cases, 35,711 from controls) and 81,653 nuclei in the
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female cohort (49,926 from cases, 31,727 from controls). In the female
cohort, after filtering, the median across samples of the median
number of UMIs per cell and the median the number of genes per cell
were 2758.5 and 1711.5 respectively (Supplementary Data 1). In the
males, the corresponding numbers were 2530.5 and 1638.25 respec-
tively (Supplementary Data 1).

Dimensionality reduction and data integration
We performed SCTransform on each Seurat object individually and
used the SelectIntegrationFeatures function to set the variable genes
for downstreamanalysis.We scaled each cell to 10,000 counts and ran
lognormalization.We regressedout nCount_RNAandpercent.mt from
the counts to get scaled gene expression values for variable genes,
which was used as input for calculating 100 PCA components. We
corrected PCA components with Harmony17 to account for batch,
chemistry, and sample specific effects. This helped align the datasets
as seen in the UMAP projections produced before and after correction
(Supplementary Fig. 1a–d). All UMAPs in figures were created using
Seurat.

Clustering
We tested of a range of combinations of clustering parameters for the
Seurat package (FindClusters function) using the scclusteval18 sub-
sampling (80% of all cells, 100 times) and stability comparison work-
flow using Jaccard indices, with some customization. With each sub-
sampling, PCA andHarmonywere recalculated. The parameters tested
were: k-param: 20, 30; resolution: 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5;
number of Harmony corrected PCs to use: 70, 80.

We then set a threshold for theminimum stability with a chooseR-
like82 approach based on the bootstrapped medians of the median
Jaccard index across all the clusters and all the parameter sets tested.
We selected parameters that maximized the number of clusters while
passing the threshold of cluster stability: 70 Harmony corrected PCA
components, a k-nearest neighbors’ parameter of 30, and a resolution
of 0.7 (Supplementary Fig. 2a, b). Repeating the Harmony correction
with a seed set followed by clustering with the optimal parameters
produced 41 clusters. Final UMAPs were produced using all 100 Har-
mony corrected PCA components and all calculationparameters set to
default.

Cluster annotation
Genes enriched in clusters were calculated using the wilcoxauc func-
tion from presto83 with default parameters, and filtered with the fol-
lowing criteria: padj < 0.05, logFC > log(1.5), pct_in-pct_out > 10. For
annotation, the following known cell typemarker genes were assessed
in the cluster enriched genes:

Macrophage/microglia: SPI1, MRC1, TMEM119, CX3CR1; Endothe-
lial: CLDN5, VTN, VIM; Astrocytes: GLUL, SOX9, AQP4, GJA1, NDRG2,
GFAP, ALDH1A1, ALDH1L1; OPCs: PDGFRA, PCDH15, OLIG2, OLIG1; Oli-
godendrocytes: PLP1, MAG, MOG, MOBP, MBP; Neurons: SNAP25,
RBFOX3; Excitatory neurons: SATB2, SLC17A7, SLC17A6; Inhibitory
neurons: GAD1, GAD2, SLC32A1, Inhibitory neuronal subtypes: VIP,
PVALB, SST, ADARB2, LHX6, LAMP5, PAX6.

In addition, the expression of cell type specific genes from
BRETIGEA84 were assessed using the Seurat AddModuleScore function
(Supplementary Fig. 4).

Twenty clustersof excitatory cellswere identified (Supplementary
Fig. 5a) including four superficial cortical layer neuronal clusters
(ExN1_L24, ExN2_L23, ExN8_L24, ExN9_L23), ten deep cortical layer
neuronal clusters (ExN3_L46, ExN4_L35, ExN10_L46, ExN11_L56,
ExN12_L56, ExN13_L56, ExN15_L56, ExN16_L56, ExN19_L56, ExN20_L56)
and six excitatory neuronal clusters without an obvious pattern of
cortical layer specific marker expression (ExN5, ExN6, ExN7, ExN14,
ExN17, ExN18). The layer annotations of excitatory neuronal clusters
were supported by assessment of enrichment for genes known to be

specific to the different layers of the cortex using spatial tran-
scriptomics results from Maynard et al.85 (data in Supplementary
Table 4 of the cited publication).

We identified 10 inhibitory clusters (Supplementary Data 2, Sup-
plementary Fig. 5b), that can broadly be divided into cells likely
derived from themedial ganglionic eminence (MGE; InN1_PV, InN9_PV,
InN2_SST, InN5_SST) based on LHX6, SST, or PVALB enrichment, or the
caudal ganglionic eminence (CGE; InN3_VIP, InN4_VIP, InN6_LAMP5,
InN8_ADARB2, InN10_ADARB2) based on ADARB2 enrichment. The
InN2_SST cluster was enriched for SST andGAD1 expression but had no
LHX6 enrichment. The InN8_ADARB2 (also referred to interchangeably
as InN8_Mix) cluster also showed enrichment for SST. One inhibitory
neuron clusterwith enrichment for bothADARB2 and LHX6 (InN7_Mix),
which has been previously reported86.

Assessment of clustering quality
Contribution of batches, groups, brain banks, and subjects was rela-
tively uniform across clusters (Supplementary Fig. 3a–d, g). Endothe-
lial, microglial, and oligodendrocyte lineage cells showed a higher
percentage of contribution from the females compared to the males,
possibly due a different dissection strategy used for the two cohorts
such that for the female cohortmore white matter tissue was included
in the nuclei extractions. All but one cluster (number 34, later anno-
tated as ExN17) had contributions from both the male and female
cohorts and one cluster was primarily composed of cells from the
female cohort (number 11, ExN5). ExN17 also showed exceptionally
high numbers of UMIs detected per nucleus (Supplementary Fig. 3f).
Moreover, one cluster (number 17, which was later annotated as
showing a mixed expression profile—Mix) had relatively high percen-
tage ofmitochondrial reads (Supplementary Fig. 3f). These clusters are
likely driven by technical effects rather than representing biologically
driven cell subtypes or cell states, but they only represented < 6% of
our data.

Comparison to other datasets
MetaNeighbor. We used MetaNeighbor87 to compare the clusters in
ourdataset to several publisheddatasets16,19,20. For the Songet al., 2020
data we used the h5_a88, h789, h1090, and h1486 datasets which contain
adult human cortical cells or nuclei and were reprocessed by the
authors.We used our own dataset as a reference to train themodel, for
consistency of comparisons across the datasets and limited the ana-
lysis to the same variable genes we used for PCA and clustering.
MetaNeighbor best hits plots are shown in Fig. 1e and Supplemen-
tary Fig. 6.

Spatial label transfer. We used Seurat to transfer the labels for layer
annotation from a spatial transcriptomics dataset85 to our dataset
(Supplementary Fig. 5a). Each tissue section of the spatial tran-
scriptomicsdatawas treated separately andone section each from two
different subjects were assessed (data shown for one subject and
section—151673). Both the spatial and snRNA-seq data were pre-
processed with SCTransform and transfer anchors were identified
using the “canonical correlation analysis” option before transferring
the labels.

Pseudotime trajectory analysis
We used “slingshot”91 to build a pseudotime trajectory with our OL
nuclei (Supplementary Fig. 5c). We built the pseudotime trajectory
with the male and female datasets combined. OL nuclei were subset
and UMAP was rerun using the following parameters: dims = 1:10,
min.dist = 0.1, spread = 5, n.neighbors = 100, chosen to capture the
global patterns in the data. Slingshot was run with the resulting UMAP
as input and using the following parameters: extend = “n”, start.clus =
“OPC2”, end.clus = “Oli3”, stretch = 0.1, thresh =0.3, once again cho-
sen to capture the broad patterns in the data. The start and end
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clusters were chosen based on their position in the UMAP, and cluster
labels were provided. The oligodendrocyte lineage (OL) clusters were
arranged fromOPC2 at one end of the pseudotime trajectory, followed
by OPC1 and OPC3, a small cluster possibly corresponding to com-
mitted oligodendrocyte precursors (COPs). At the other end of the
pseudotime trajectoryOli2, Oli1, andOli3 were placed sequentially and
could represent the order of oligodendrocyte clusters from myeli-
nating to mature states.

We fit the expression of genes along pseudotime by splitting the
data for males and females before using tradeSeq92 (Supplementary
Fig. 5d).We ran fitGAMon theUMI counts for eachgene, with age, PMI,
pH, and batch as covariates, with conditions set to case and control
status, and nknots of 5, based on evaluation of a range of nknot values.
The fitted expression of OL marker genes was visualized using the
plotSmoothers function. The pseudotime trajectory analysis was per-
formed following the vignette available here: https://kstreet13.github.
io/bioc2020trajectories/articles/workshopTrajectories.html.

Cell type proportions comparison
The percentage of nuclei in each cluster and each broad cell type for
each sample was calculated and compared between cases and con-
trols withWilcoxon tests using rstatix93. To furthermitigate the effect
of outliers we obtained p-values for the Wilcoxon test using boot-
strapping with 10000 replicates (R package boot;94 Supplementary
Data 3) which supported the initial results. Lastly, we also examined
the distribution of p-values (Supplementary Data 3) from the Wil-
coxon test rerun after randomly sub-sampling 70% of the nuclei 100
times similar to a previous study11 and confirmed the pattern of
changes in proportion preserved after sub-sampling (Supplementary
Data 3). Wilcoxon tests were also repeated for the male and female
datasets separately (Supplementary Fig. 7) as described above. All
boxplots in Fig. 1 and Supplementary Fig. 7 are made using the
geom_boxplot function fromggplot2, and the detailed description of
the boxplot elements can be found, in the documentation for the
function which is linked here: https://ggplot2.tidyverse.org/
reference/geom_boxplot.html.

Differential expression analysis
We performed pseudobulk differential gene expression analysis using
muscat95 and edgeR96 at the broad cell type and cluster levels in males
and females separately. Pseudobulk expression profiles were obtained
by summing the raw UMI counts for each gene for each sample within
the broad cell type or cluster. Only one run of the male sample 24 was
included in these analyses (M24_2 excluded). In addition, subjectswere
only included if they had aminimumof 10 cells in the broadcell type or
5 cells minimum in the cluster. The covariates included age, pH, PMI,
and batch and muscat’s default gene and sample filtering were dis-
abled. Further, internal checks within muscat excluded clusters where
the number of samples with sufficient cells was not enough, given the
model being used. DEGs were selected using an FDR (Benjamini &
Hochberg) adjusted local (within cluster or broad cell type) p-value <
0.05 and logFC > log2(1.1) and non-zero expression value in at least
3 samples. The isOutlier function (nmads 5, log “FALSE”) from scater97

was used to flag potential outliers on the CPMs from edgeR, as an
additional assessment for genes that were called as differentially
expressed. Flagged outliers were not removed from analysis. For one
female subject with missing pH, F35, the average pH across all female
subjects was substituted.

Since the only difference between the broad and cluster level
microglial results lies in the exclusion criteria for subjects based on
number of cells contributed the input data and outcomes were similar
between these analyses, and we focused on the cluster level results in
females for follow-up analyses.

All Venn diagrams to show overlap of differentially expressed
genes were made with ggvenn (version 0.1.9). Heatmaps for

differentially expressed genes were made with ComplexHeatmap
(version 2.10.0).

Comparison of male differential expression results to previous
results. For the male differential expression results, using linear
regressionwe compared the log fold changes per gene for top clusters
with highest numbers of DEGs from the current analysis with the per
gene estimates for similar clusters with high numbers of DEGs in our
previous analysis16. Considering only the top 1000 genes in common
ranked by the p-values in the current analysis, we found moderate
positive relationships with R-squared values in the 0.13–0.32 range
(Supplementary Fig. 10i–l). Considering that the analysis approaches
were quite distinct at every upstream and downstream step, these
results support a similar pattern of changes in gene expression in the
male data as we had previously reported.

Sub-clustering of microglia for differential expression analysis in
females. A subset of microglia clustered next to oligodendrocytes
in the UMAP, which could reflect misclassified cells, doublets, or
even immune oligodendroglia98,99 or white matter microglia100. To
determine the robustness of our microglial results to the presence
of this subset of cells, we sub-clustered the microglial cluster. We
found variable features within the microglial population, reran PCA
and Harmony, and optimized clustering parameters (resolution
0.01, other parameters default) using silhouette scores. We exclu-
ded any subclusters which expressed oligodendrocyte lineage
markers (PLP1 and ZFPM2). Then we reran differential expression
analysis on female microglia using the same parameters as initially
used and found that new per gene logFCs showed a strong positive
association (linear regression) with the initial results (Supplemen-
tary Fig. 12i). Given that sub-setting microglia to most confident
nuclei did not substantially alter the results and for downstream
analysis, we proceeded with the DEGs obtained using the full
microglial cluster.

Comparison of male and female results
Rank-rank hypergeometric overlap. We performed a threshold free,
rank-rank hypergeometric overlap (RRHO) analysis with RRHO223.
Within each cluster or broad cell type, genes were scored using the
product of the logFC and the negative log base 10 uncorrected p-value
from differential expression analysis in the male and female datasets
separately. The scored gene lists were provided to RRHO2_initialize
function (method “hyper” and log10.ind “TRUE”) and the results were
plotted using the RRHO2_heatmap function.

Meta-analysis by Fisher combination of p-values. To meta-analyze
the male and female differential expression results per broad cell type
and per cluster, we used Fisher combination of p-values as imple-
mented in the metaRNASeq101 R package on the uncorrected p-values
after filtering out genes detected in <3 samples. We also used an FDR
(Benjamini & Hochberg) adjusted p-value threshold of 0.05 for genes
to be considered significantly changed in the meta-analysis and
removed any geneswith opposite direction of changebetween the two
datasets.

Permutation analysis. We permuted the cases versus control labels
100 times, within each batch, within the male and female datasets
separately, and re-ran our differential expression analysis to obtain a
distribution of the number of cell type specific unique DEGs
(counting once any DEGs repeated across multiple clusters or cell
types), at the broad and cluster level, for males and females, with
randomly permuted groups (Supplementary Fig. 9a–d). We also
calculated the Spearman correlation between the differential
expression gene scores (log fold change multiplied by the negative
log base 10 uncorrected p-value, as used in RRHO2 analysis) between
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male and female datasets per cell type and cluster. We plotted the
distribution of correlation coefficients obtained between the male
and female datasets using permuted case versus control labels for
broad cell types (Supplementary Fig. 9e–j). Further, we assessed for
each cluster what percentage of Spearman correlation coefficients
calculated using permuted results were less than the Spearman
correlation coefficient observed with the real labels (Supplementary
Data 4), with a higher percentage representing a correlation that is
less likely to appear by chance with random case versus control
labels.

Functional interpretation of female differential expression
results
Pre-ranked gene set enrichment analysis (GSEA). For the
microglial (Mic1) and PV interneuron (InN1_PV, InN9_PV) differ-
ential expression results we individually performed pre-ranked
Gene Set Enrichment Analysis102 with FGSEA103 using the same
ranking metric as used for RRHO2 (product of log fold change and
the negative log base 10 of the uncorrected p-value). We evaluated
the Reactome pathway104 gene sets obtained from msigdbr105. The
following parameters were used for the fgsea function: eps = 0.0,
minSize = 15, maxSize = 1000 and any pathways with Benjamini-
Hochberg adjusted p-value < 0.1 were considered to be significant.
Finally, we ran collapsedPathways with pval.threshold = 0.01 to get
the main pathways for each cluster.

PsyGeNET analysis. With the list of DEGs from the female dataset
across all clusters, we ran enrichedPD from psygenet2r106 with data-
base = “ALL” and other parameters set to default to find the psychiatric
disorders for which our DEGs showed an enrichment. Next, we ran
psygenetGene with database= “ALL” and other parameters set to
default, and created a geneAttrPlot for the evidence index for all DEGs
from all clusters in females to summarize the links between our DEGs
and psychiatric disorders reported in PsyGeNET25. In addition, we
similarly ran psygenetGene, individually on the DEGs from Mic1,
InN1_PV, InN2_SST, InN9_PV, InN8_ADARB2, and plotted the corre-
sponding gene-disease association heatmaps with plot type = “GDA
heatmap”.

STRING analysis. We used STRING DB26 (version 11.5) to assess the
relationships between the protein products of our DEGs in female
microglia and PV interneurons. The entire list of DEGs from
these clusters (Mic1, InN1_PV, and InN9_PV) were provided as input and
the confidence level was set to high (interaction score > 0.7). We then
exported the network to Cytoscape (3.9.1), colored genes by direction
of change in expression, shaped DEG nodes based on their cluster of
origin, and labeled the edges with the confidence scores for the
interactions.

CellChat analysis. We subset the relevant nuclei from females inMic1,
InN1_PV, and InN9_PV and performed CellChat29 analysis. We relabeled
all PV interneuron nuclei as InN_PV. For cases and controls indepen-
dently, we sequentially ran identifyOverExpressedGenes and identi-
fyOverExpressedInteractions with lenient default parameters to find
the ligand-receptor gene combinations overexpressed in these cell
types. Next, we ran computeCommunProb (with nboot = 1000) fol-
lowed by computeCommunProbPathway, netAnalysis_computeCen-
trality, and aggregateNet with default parameters to find the ligand-
receptor pathways present. Lastly, we merged the case and control
objects and ran computeNetSimilarityPairwise with type “functional”.
Finally, we used the compareInteractions, rankNet, and netVi-
sual_bubble to visualize the results. We used the following vignette for
CellChat analysis: https://github.com/sqjin/CellChat/blob/master/
tutorial/Comparison_analysis_of_multiple_datasets.html.

Weighted gene co-expression network analysis (WGCNA)
Weighted gene co-expression network analysis (WGCNA) was per-
formed to identify co-expression modules using the snRNA-seq
expression data107. First, the aggregated expression for each female
sample in microglia and PV interneuron clusters (InN1_PV and InN9_PV
combined) was calculated by summing the counts per gene across all
nuclei. We excluded subjects that did not have at least 5 microglial
nuclei or 5 PV interneuron nuclei (InN1_PV and InN9_PV combined). To
account for known external sample traits, the counts were corrected
for age, pH, PMI, and batch (same as covariates used for differential
gene expression analysis) using limma108. In addition, lowly expressed
genes with total counts of below 5 were removed. A soft thresholding
power of 10 and 12, respectively, with a minimum module size of 30
genes, were used for network construction and module detection for
microglia and PV interneurons. Each module was correlated with the
phenotype (healthy control vsMDD), and significance was determined
using a p-value < 0.05.

To further characterize modules correlated with MDD, Fisher
tests for overlap were performed to calculate the over-representation
of DEGs as described previously109. In addition, the functional anno-
tation of modules was determined using Reactome Pathway gene set
over-representation analysis provided by clusterprofiler110.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequencing data (FASTQ files) for the female cohort generated in
this study is available on GEO (accession number: GSE213982) along
with the processed gene-barcode matrix and metadata including both
male and female cohorts. The raw sequencing data for themale cohort
are also available on GEO (accession number: GSE144136). Addition-
ally, the processed data from this study are available on the UCSC Cell
Browser for easy visualization: https://dlpfc-mdd.cells.ucsc.edu.
Source data for all figures in this paper are provided on Zenodo:
https://doi.org/10.5281/zenodo.7884086. The reference genome ver-
sion used is available on the 10X Genomics website (refdata-gex-
GRCh38-2020-A, https://support.10xgenomics.com/single-cell-gene-
expression/software/release-notes/build). Allen Brain Institute motor
cortex data used for MetaNeighbor comparison are available for
download here: https://portal.brain-map.org/atlases-and-data/rnaseq/
human-m1-10x. STAB reprocessed data frompublished snRNA-seq and
scRNA-seq datasets used for MetaNeighbor comparison is available
here: https://mai.fudan.edu.cn/stab/help/. The spatial transcriptomics
data used here for label transfer is available using the spatialLIBD
(version 1.6.0) R package and through the AWS download links pro-
vided here: https://github.com/LieberInstitute/spatialLIBD.

Code availability
All scripts used to analyze data are provided in a Github repository
(https://github.com/MgssGroup/snRNASeq_public/). The DOI for the
version of the scripts used is: https://zenodo.org/badge/latestdoi/
634913347.
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