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The phyla Nitrospirota and Nitrospinota have received significant research attention due to their unique nitrogen metabolisms
important to biogeochemical and industrial processes. These phyla are common inhabitants of marine and terrestrial subsurface
environments and contain members capable of diverse physiologies in addition to nitrite oxidation and complete ammonia
oxidation. Here, we use phylogenomics and gene-based analysis with ancestral state reconstruction and gene-tree–species-tree
reconciliation methods to investigate the life histories of these two phyla. We find that basal clades of both phyla primarily inhabit
marine and terrestrial subsurface environments. The genomes of basal clades in both phyla appear smaller and more densely
coded than the later-branching clades. The extant basal clades of both phyla share many traits inferred to be present in their
respective common ancestors, including hydrogen, one-carbon, and sulfur-based metabolisms. Later-branching groups, namely the
more frequently studied classes Nitrospiria and Nitrospinia, are both characterized by genome expansions driven by either de novo
origination or laterally transferred genes that encode functions expanding their metabolic repertoire. These expansions include
gene clusters that perform the unique nitrogen metabolisms that both phyla are most well known for. Our analyses support
replicated evolutionary histories of these two bacterial phyla, with modern subsurface environments representing a genomic
repository for the coding potential of ancestral metabolic traits.
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INTRODUCTION
Approximately 13% of Earth’s biomass—and 80% of all bacterial
and archaeal biomass—is estimated to be located within the
subsurface [1, 2]. Recent advances in field technologies have
allowed for expansive sampling of this biomass in the terrestrial
and marine subsurface [3]. Many of these subsurface environ-
ments have been suggested as possible locations for the origins of
life or to retain signatures of early evolutionary history [4–9].
Analysis of nucleic acids from subsurface biomass has allowed for
a broader understanding of the characteristics of microorganisms
that inhabit these habitats [10–14]. Several groups of primarily
subsurface-inhabiting Bacteria and Archaea are presumed to have
retained ancient traits due to the environments being analogous
to early-Earth, in some cases isolated from the surface world on
geologic timescales [15, 16].
The phyla Nitrospirota and Nitrospinota both share nitrite-

oxidizing metabolisms and have long been considered to be sister
phyla [17–19]. Confirming this evolutionary relationship, recent
systematic reconstructions of the tree of life have placed these
two phyla as direct relatives [20–23]. Both phyla have cosmopo-
litan distributions and are present in a large variety of environ-
ments, including deep terrestrial and marine subsurface
environments. For example, the more well-studied groups of the
Nitrospirota (class Nitrospiria) and Nitrospinota (class Nitrospinia)

are commonly detected in marine environments, activated sludge,
soil, drinking-water, and waste-water treatment plants [24–33].
These taxa are known for their nitrite oxidization and complete
ammonia oxidation “comammox” metabolisms [24–33]. By con-
trast, the Thermodesulfovibrionia class of Nitrospirota is not
common in surface environments but have frequently been
sampled from in marine and terrestrial subsurface aquifers
[11, 12, 34–38]. Members of the Thermodesulfovibrionia class have
different physiologies than the Nitrospiria class, including hydro-
gen oxidation, sulfate reduction, nitrate reduction and sulfur
disproportionation [36–40].
Though the shared trait of nitrite oxidation has long been

known, a broader comparison of these sister phyla has not yet
been performed. Here we explore and compare the functional
characteristics of these phyla along their evolutionary histories in
order to fill that knowledge-gap. We use phylogenomic,
functional, and gene-tree-based methods to establish the
connection of basal clades subsurface environments and reveal
patterns of metabolic expansion driven by a combination of
vertical evolution and horizontal gene transfer. These analyses
document a partially replicated evolutionary history of these
sister phyla which demonstrates how multiple modes of
evolution can shape closely related phyla that occupy similar
niches.
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MATERIALS AND METHODS
Genomic dataset collection, curation, and quality control
This study used publicly available genome assemblies as well as newly
generated datasets (Supplemental Methods). Existing publicly available
genome assemblies were downloaded from the National Center for
Biotechnology Investigation (NCBI) and the Integrated Microbial Genomes
(IMG) database of the U.S. Department of Energy’s Joint Genome Institute
in June 2021. The Genome Taxonomy Database (GTDB) website (release
202) [41] was used to access lists of NCBI assembly accession numbers for
the following GTDB-assigned phyla: Nitrospinota, Nitrospinota_A (now
called Tectomicrobia), Nitrospinota_B, Nitrospirota, Nitrospirota_A (Leptospir-
illa). The IMG assemblies were found using the same GTDB taxonomy
classifier using the search function on the IMG website. IMG metagenome
assemblies that were designated as “public” and “published” were also
downloaded for these phyla. Duplicate entries between IMG and NCBI
were manually removed.
New single-cell amplified genomes (SAGs) from several field sites that

were recently made public were used. These include subsurface hydro-
thermal fluids in September 2018 from the marine serpentinizing Lost City
hydrothermal vent field (NCBI BioProject PRJNA779602, Supplemental
Table 1), collected in April 2021 from a continental fracture fluids of the
Death Valley Regional Flow System (Amaragosa Valley, USA), via the Inyo-
BLM1 well (NCBI BioProject PRJNA853307, Supplemental Table 2), and
deeper sequenced SAGs collected in 2015 from the of the Atlantis Massif
that hosts Lost City, originally described in reference [13] (NCBI BioProject
PRJNA825747, Supplemental Table 3). Detailed information on the
generation of these new SAGs is available in the Supplemental Methods file.
Quality control of the assemblies was performed using the CheckM qa

workflow (v 1.07) to remove genomes with <50% genome completion and
>10% sequence contamination, leaving genomes that fall within the MIMAG
categories “medium” (>50% completion, <10% contamination) and “high”
(>90% completion, <5% contamination) [42, 43]. These resulting genomes
were dereplicated with dRep, using default parameters, to remove nearly-
identical assemblies [44]. All genomes were then classified using the GTDB-tk
classifier tool (v1.5.0, r202) [41] (Supplemental File 1). In the methodology
described below, polyphyletic groups that were once considered a part of
Nitrospirota and Nitrospinota (i.e., Nitrospirota_A (Leptospirilla), Nitrospinota_A
(Tectomicrobia), and Nitrospinota_B) were included only in the phylogenomic
trees. These groups were not included in the gene cluster based functional
analyses. All code to recreate these processes are available at https://
github.com/ts-dangelo/bioinformatic_scripts_python and outlined in Sup-
plemental Fig. 1.

Phylogenomic analysis
Phylogenies of the individual phyla were constructed using the PhyloPhlan
pipeline with the Bac120 conserved marker-protein database R202)
[41, 45]. The PFAM and TIGRFAM protein files for the Bac120 database
contain 218–248 k sequences per file and are too large for the memory
requirements of Diamond [46]. Therefore, each protein family in the
Bac120 database was randomly subset to 1000 sequences per family. For
comparison, the default PhyloPhlan marker protein database contains
337–1344 sequences per protein family. The subsampled version of the
Bac120 database was used to create a custom PhyloPhlan database using
the command phylophlan_setup_database. The default PhyloPhlan pipe-
line was run with the -min_num_markers flag set to 12, using the default
parameters for the --diversity high and –accurate settings (additional details
in Supplemental Info) [45]. The alignments of individual marker genes were
concatenated into one file and used as input for IQ-TREE (v2.0.3) using the
parameters -m TEST -bb 1000, where ModelFinder was used to choose the
most appropriate model by the Bayesian Information Criteria (BIC) [47, 48].
Desulfobacterota_D (Dadabacteria) and class Thermodesulfobacteria (Phy-
lum Desulfobacterota) were used as outgroups. Polyphyletic phyla
(Nitrospirota_A; Leptospirilla, Nitrospinota_A (Tectomicrobia), and Nitrospi-
nota_B) were included in their respective phylogenies. Relative Evolu-
tionary Divergence (RED) scaling was used to display appearance of certain
metabolic traits in relative time along the phylogeny of the investigated
phyla [41].

Gene clustering, gene tree production, and gene
reconciliation
Open reading frames were identified in genome assemblies by Prodigal
(v2.6.3), using the default parameters of anvi-gen-contigs-database in the
Anvi’o analysis pipeline (v7) [49, 50]. The amino acid sequences for all

assemblies were clustered into gene clusters using Diamond and the
Markov Cluster Algorithm (MCL) with an inflation parameter of 1.2, after
blast-hits were filtered using the MINBIT parameter of 0.5 [46, 51, 52]. The
resulting gene clusters were exported from Anvi’o and assembly × gene
cluster count matrices for each phylum were created from the data using a
custom Python script. Matrices were pruned to only contain gene clusters
present in at least four genomes and then converted to presence/absence.
These matrices were used to hierarchically cluster genomes by gene
content using Ward’s linkage method. Gene clusters were annotated with
the eggNOG database (version 5.0) using the eggNOG emapper (version 2)
using default parameters [53]. In addition, KOFAMSCAN was used to
annotate gene clusters. The default thresholds of the “exec_annotation -f
mapper” command were used [54]. Consensus annotation for each gene
cluster was created by tallying the annotations assigned by eggNOG and
KOFAMSCAN for each sequence in a given gene cluster and choosing the
most frequent annotation as the consensus annotation, respectively
(Supplemental Files 2–7).
Gene trees were constructed for each gene cluster by aligning the gene

cluster amino-acid file with MAFFT (v7.490, options –retree 2), trimming
the alignments with TRIMAL (v1.2, -automated1 -resoverlap 0.55 -seqo-
verlap 0.6) and constructing trees with IQ-TREE (v2.0.3, using ModelFinder
to identify the most appropriate model via BIC and 1000 UltraFast non-
parametric bootstraps (UFboot)) [47, 48, 55, 56], similar to other recent
analyses [57, 58]. To calculate the location of the gene originations of
enriched gene clusters (described below), gene trees were reconciled
against the phylogenomic tree (species tree) using the standard workflow
of GeneRax [59]. Gene trees were constructed per phylum, as described
above, and were reconciled to the phylogenomic trees of the individual
phylum (the phylogenetic relationships of gene clusters of particular
interest were investigated in detail, described below). The phylogenomic
trees used for reconciliation methods were rooted using the Minimum
Ancestor Deviation method (MAD) [60]. This was done to circumvent
dataset size and complications of including an outgroup for this data
analysis. Testing showed that trees rooted with MAD have nearly identical
topologies as outgroup rooted trees, with minor differences only occurring
at nodes that were not bootstrap supported (UFboot >95%, Supplemental
Figs. 2, 3).
Broader relationships of gene cluster of interest (nxrA, dsrA) were

investigated. All GenBank amino acid sequences annotating to nxrA nitrite
oxidoreductase were downloaded and the gene cluster sequences
were aligned with the GenBank sequences using MAFFT (--auto) and the
alignments were trimmed using trimAL (-automated1) [55, 56]. A
phylogeny for dsrA was made using the RefSeq-quality Bacterial sequences
in TIGRFAM02064. Phylogenies were constructed using IQ-TREE as
described above. The nxrA tree was rooted with tetrathionate reductase
(ttrA) from Desulfobacterota and the dsrA was rooted on the Firmicutes
clade, as done elsewhere [61].

Statistical analyses
Gene clusters that were differentially distributed in the major delineations
identified by hierarchical clustering (mainly corresponding to the
taxonomic class) were identified using the proportional generalized linear
model incorporated into the Anvi’o package [50]. Enriched gene clusters
were filtered by the heuristics of: (1) being present in a given clade more
than expected by chance, (2) being above a significant q value threshold,
and (3) further filtered to the gene clusters occurring in less than 10% of
the genomes of the other clade besides the focal clade. These heuristics
were used to focus on genes that are highly prevalent in a given clade. To
determine statistical differences between genome properties (estimated
length and coding density) analysis of variance (ANOVA) was performed
using the f_oneway command in the SciPy Python library [62].
Ancestral state reconstruction (ASR) facilitated by MrBayes (v3.2.7a) was

used to reconstruct the approximate traits of the respective ancestors of
the phyla Nitrospirota and Nitrospinota. The gene clusters in the given
phyla were prevalence filtered to only include clusters present in >10% of
the genomes. The presence or absence of a gene cluster was treated as a
binary state variable and the MAD-rooted phylogeny of the phyla was used
to estimate the probability of the state of a given gene cluster at the
internal nodes of the tree using the MrBayes Markov Chain Monte Carlo
(MCMC) sampler with 500,000 MCMC samples [63, 64]. Gene clusters
having a greater than 0.5 posterior probability (pp) at the root node were
interpreted as potentially present in the ancestral relative of the given
phyla. These ancestral state reconstruction results were compared to the
gene-tree species-tree reconciliation results, with the assumption that
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gene clusters likely present at the root of the phylogenomic tree would
have their origination event deep within the tree, at or close to the root
node. The habitat-type where genomes were sampled were coded as
variables to infer the probability that the ancestral node of the given phyla
occupied a particular environment type using MrBayes (v3.2.7a). The NCBI
BioSamples that produced the given assemblies were aggregated in
sample-type groups using the “isolation source” metadata on the NCBI
website. The classifications are outlined in columns “P” and “Q” of
Supplemental Data 1.csv.

RESULTS
Phylogenetic and gene content clustering patterns
The quality-controlled public data and newly released SAG data
contained 367 and 57 assemblies belonging to the phyla
Nitrospirota and Nitrospinota, respectively (Supplemental Fig. 4).
Phylogenomic analysis of Nitrospirota shows that Thermodesulfovi-
brio, RBG-16-64-22, and UBA9217 are earlier branching, basal
classes while Nitrospiria is a later-branching class within the
Nitrospirota phylogeny (Fig. 1, Supplemental Figs. 2, 3). Likewise,
phylogenomic analysis of Nitrospinota shows classes UBA7883 and
UBA9942 as earlier branching basal groups, with Nitrospinia as a
later branching class. The earlier branching classes in both of these
phyla tend to have smaller genomes with higher coding density
(% of total base pairs contained within open reading frames)
(ANOVA P < 0.05 except for Nitrospinota, where early-branching
genome lengths had a smaller mean, but a non-significant p value;
Fig. 2).
Hierarchical clustering of these phyla by gene content also

shows distinct separation of the class Nitrospiria from the classes
Thermodesulfovibrio, RBG-16-64-22, and UBA9217 of the Nitrospir-
ota (Fig. 1, Supplemental Fig. 5). Similar gene content clustering is
apparent with class Nitrospinia distinct from basal classes
UBA7883/UBA9942 in Nitrospinota. The later-branching classes of
both phyla contain more enriched gene clusters than the basal
classes. In the Nitrospirota there are 1127 gene clusters enriched in
the Nitrospiria and 486 gene clusters enriched in Thermodesulfovi-
brio/UBA9217/RBG-16-64-22. In Nitrospinota there are 871 gene

clusters enriched in the Nitrospinia and 412 gene clusters enriched
in classes UBA7883 and UBA9942 (Fig. 1, Supplemental Fig. 5).
Classification of the sampling sites that produced these

assemblies using NCBI metadata shows that most members of
the earlier branching classes in both Nitrospirota and Nitrospinota
(i.e., Thermodesulfovibrio, RBG-16-64-22, UBA9217, UBA7883,
UBA9942) were sampled from marine or terrestrial subsurface
aquifers. The later-branching classes of Nitrospirota contain a
mixture of subsurface and surface inhabitants while later-
branching Nitrospinota (Nitrospinia) are comprised mainly of
assemblies sampled from marine environments, including deep
water layers (Supplemental File 1, Supplemental Figs. 6, 7, 8).
Ancestral state reconstruction (ASR) using broad environmental
categorization suggests that the ancestral nodes of both
Nitrospirota and Nitrospinota have high posterior probability of
resembling assemblies sampled from terrestrial subsurface
aquifers (99% pp, 87% pp, respectively; Supplementary File 1,
Supplemental Figs. 6, 7, 8).

Patterns of enriched gene clusters
In the Nitrospirota phylum, of the 4598 gene clusters present in
>10% of the assemblies, there were 823 gene clusters identified
by ancestral state reconstruction (ASR) to have >0.5 pp at the root
node. Gene-tree reconciliation methods show that the majority of
these gene clusters (84%) had their originations between the root
and the three deepest nodes of the tree (Fig. 3), indicating good
agreement between methods. Of these gene clusters identified by
ASR, 187 also belonged to the 485 gene clusters identified as
enriched in the early branching basal classes Thermodesulfovibrio/
RBG-16-64-22/UBA9217 by the proportional GLM test (38%). These
gene clusters have their origination events at basal nodes in the
phylogeny (Fig. 3). None of the 1127 gene clusters enriched in
the later branching Nitrospiria class were identified by ASR to have
>0.5 pp at the root node. Gene-tree species-tree reconciliation
shows that the gene clusters enriched in Nitrospiria do not
originate until early nodes in the class Nitrospiria and order
Nitrospirales (Fig. 3).

Nitrospirales
SBBL01

RBG-16-64-22 Thermodesulfovibrionia
UBA9217

NitrospiniaUBA7883UBA9942

NitrospinotaNitrospirota

HDB-SIOI813
 = > 95% UFBoot

 = > 95% UFBootSubs/Site: 0.1 Subs/Site: 0.1

Fig. 1 Phylogenomic trees and gene content of Nitrospirota and Nitrospinota phyla, showing distinct clades and gene clusters associated
with basal groups comprised mainly of subsurface organisms (purple bar at bottom) or later-branching groups (green bars at bottom).
The trees are oriented so the middle of the image contains the outgroups for both trees. Phylogenetic trees were produced used the Bac120
marker set (min 12 genes) using the PhyloPhlan pipeline to create the alignments and IQ-TREE using the LG+ F+ G4 model chosen by
ModelFinder using the Bayesian Information Criterion (BIC) and 1000 ultra-fast non-parametric bootstraps. Heatmaps of gene cluster absence
(empty) or present in at least 10% of the genomes in the given phyla (filled) are displayed below the trees. Rows of gene clusters are ordered
by hierarchical clustering using wards linkage. Blocks of genes enriched in the Nitrospinia or Nitrospiria are highlighted with the green boxes,
and purple used to highlight the enriched gene clusters in the basal classes of the given phyla. Hierarchical clustering of genomes solely by
gene content produced similar groupings as the phylogenies (Supplementary Figure 5).
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that had its initial origination event at the given node. Gene clusters enriched in basal clades of both phyla show overlap with gene clusters
of the Last Common Ancestor (LCA) identified by Ancestral State Reconstruction and have their originations at the root or in basal nodes close
to the root (purple, both sides). Gene clusters enriched in later-branching clades do not overlap with LCA gene clusters and have most of their
originations at the base of classes Nitrospiria and Nitrospinia, respectively (green, both sides).
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Fig. 2 Genome properties via CheckM of the major phylogenetic delineations (also corresponding to gene cluster content) in Nitrospirota
and Nitrospinota show that basal clades (purple) have smaller genome length and higher coding density than later brancing clades
(green). Estimated genome length y-axis scale is 106 base pairs, and coding density y-axis is as percent. Red asterics denote results that show
significant differences between metrics in the clades by a ANOVA (p value < 0.05). For Nitrospirota the p values for genome length and coding
density are 3.63e−20 and 3.25e−20, respectively. For Nitrospinota the p values for genome length and coding denisty are 0.13 and 0.0011,
respectively.
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In the Nitrospinota, of the 3901 gene clusters present in >10% of
the assemblies, there were 761 gene clusters with >0.5 pp at the
root node identified by ASR, and 88% of these gene clusters had
their origination event at the root or between the root and the
three deepest nodes of the tree (Fig. 3). Of these gene clusters,
212 also belonged to the 412 gene clusters enriched in the basal
Nitrospinota classes (51.4%). Reconciliation methods show these
gene clusters originated near the base of the phylogeny (Fig. 3). In
contrast, none of the ancestral gene clusters overlapped with
significantly enriched gene clusters in the class Nitrospinia, the
same pattern seen in Nitrospirota. Reconciliation methods indicate
that the majority of these gene clusters have their original
speciation event at one of the four deepest nodes in the class
Nitrospinia (Fig. 3).

Energy production and conversion traits inferred from LCA
gene clusters
The putative traits of the last common ancestor (LCA) of the
Nitrospirota depict an organism that uses one-carbon compounds
as electron sources (Fig. 4). Genes for formate oxidation (fdhA) and
carbon monoxide oxidation (cooS/acsA) are present as the only
genes indicative of an electron source in the dataset. The carbon
monoxide dehydrogenase complex cooS/acsA exists as part of the
Carbonyl branch of the Wood-Ljungdahl Pathway (WLP) with
other components of the methyl-transferase module of the WLP
(acsCD) [65]. The rnf complex is present, which allows for the
production of NADH and a proton gradient from reduced
ferredoxin produced from CO oxidation [65, 66]. The electron
bifurcating complex etfAB is also present, which participates in
FAD and ferredoxin recycling [67, 68]. All components of the
NADH dehydrogenase nuo operon and one subunit of the
cytochrome bc1 complex are present for proton-motive force
production. The majority of the dissimilatory sulfate reduction
pathway is observed (qmoAB/AprAB/dsrABMKOP). Additional
sources of proton-motive force may be produced by the

pyrophosphate-hydrolysis powered proton pump hppA. Energy
conservation is performed via an F-type ATPase. Gene clusters
annotating as the methyl branch of the WLP that contains the
enzymes to integrate Acetyl-CoA metabolism into Glycine/Serine
biosynthesis are present in the LCA dataset [69]. The oxygen
detoxification genes super-oxide dismutase sodA and rubredoxin
are present in the LCA gene clusters (Fig. 4).
The traits of the LCA of Nitrospinota depict an ancestor that uses

sulfur compounds and hydrogen as electron sources (Fig. 4). The
genes for subunits of subgroup 1b NiFe hydrogenase are present
(hyaABCD). The same gene clusters for dsrAB present in the LCA of
Nitrospirota are present in the LCA of Nitrospinota. A phylogenetic
analysis of this dsrA gene cluster with RefSeq representatives of
TIGRFAM02064 (dsrA) shows Nitrospinota and Nitrospirota RBG-16-
64-22 dsrA sequences forming a clade close to sequences from
sulfide oxidizing Alphaproteobacteria [61, 70] (Supplementary
Figure 9). The sulfide oxidation via reverse dissimilatory sulfate
reduction (rDSR) accessory protein dsrL is present in the LCA gene
clusters [71]. In addition, present are sulfur-metabolism gene
clusters annotated as the membrane-bound sulfite dehydrogen-
ase (soeA/dmsA) responsible for sulfite oxidation to sulfate with
oxygen [72, 73]. A proton-motive force is generated by NADH
dehydrogenase and an electron transport chain (Fig. 4). Oxygen is
used as a terminal electron acceptor via cytochrome c oxidase
(ctaCDE). Similar to the Nitrospirota LCA dataset, the same F-type
ATPase is present along with hppA. Core carbon anabolism/
catabolism is performed by the TCA cycle, which has been
described in representatives of this phylum [17].

Common and contrasting metabolic properties of early and
late branching clades
In both phyla, early branching clades have metabolic capabilities
that are absent in later branching clades (Figs. 3, 5). Gene clusters
with annotations as 2-oxoacid oxidoreductases (korABC/oorABC),
involved in the rTCA cycle and also playing roles in ferredoxin
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cycling, one and two-carbon compound metabolisms, and low-
potential electron transfers are only present in the basal clades of
Nitrospirota and Nitrospinota (Fig. 5) [74]. Gene clusters involved in
the WLP are present in the class Thermodesulfovibrio and absent
in class Nitrospiria of Nitrospirota and completely absent in
Nitrospinota (Fig. 5). Citrate-synthase (CS/gltA) and the other
components of the TCA/rTCA cycle are present in the class
Nitrospiria of the Nitrospirota and present throughout the
Nitrospinota (Fig. 5) [75, 76].
In both phyla, gene clusters involved in nitrogen fixing nif

operon are enriched in the early-branching classes, but absent in
the later branching classes (Fig. 6). Although they did not pass the
thresholds used for inclusion into the putative LCA gene cluster
dataset, many gene clusters involved in dissimilatory nitrate
reduction processes are present in Thermodesulfovibrio genomes
(Fig. 6) [39, 40]. Terminal oxidases are also sporadically present in
Thermodesulfovibrio (Supplementary Figure 10). Unique cyto-
chromes and other genes known to be involved in manganese
oxidation are present solely in order SBBL01 (also referred Ca.
Manganitrophaceae), which have been analyzed in detail recently
(Fig. 8, Supplementary Figure 10) [77, 78].
Gene clusters involved in nitrite-based metabolisms and

comammox metabolisms are absent in basal lineages of both
phyla but are present in both later branching Nitrospiria and
Nitrospinia classes (Fig. 6). Both phyla have the same enriched
gene clusters for nitrite oxidoreductase (nxrAB) (Fig. 7). The
phylogeny of the nxrA gene cluster is largely monophyletic
(Fig. 7A). Additional phylogenetic analysis of this gene cluster

with nxrA sequences from GenBank suggest that these
sequences from both phyla have transfer histories with the
Planctomycetota (Fig. 7B) [19]. Gene-tree reconciliation methods
indicate acquisition of these genes by the phyla early within the
later branching Nitrospiria/Nitrospinia classes (Fig. 8). Gene
clusters with annotations ammonia monooxygenase and hydro-
xylamine dehydrogenase (pmo-amoABC, hoa), involved in
comammox metabolism, originate at the base of the Nitrospir-
aceae family (Figs. 6, 8).

DISCUSSION
Shared evolutionary traits of Nitrospirota and Nitrospinota
Recent systematic reconstructions of Bacterial phylogeny and
evolution place the Nitrospirota and Nitrospinota as direct
relatives [20–23]. This relationship has long been considered
due to their shared nitrite-oxidizing metabolisms and the
observation that orthologous proteins from Nitrospina gracilis
of the Nitrospinota have Nitrospira of the Nitrospirota as a most
frequent neighbor [17]. Our analysis demonstrates that these
two sister phyla share several traits throughout their histories
besides nitrite oxidation. These include the primarily subsurface-
inhabitation of basal clades that use sulfur-based metabolisms,
followed by expanded metabolic capabilities in later branching
clades. These changes appear driven by genome expansion and
a combination of gene gain and loss. The phylum Nitrospirota
contains a more diverse set of metabolic capabilities than
Nitrospinota and the metabolic capabilities of the LCA gene
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Thermodesulfovibrio
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UBA9217
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SBBL01
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Wood-Ljungdahl Pathway Gene Clusters

Tricarboxylic Acid Cycle Gene Clusters

One-Carbon Reactions Ferredoxin Oxidoreductases

j g yjj gg yyjj gg yyj g yjj gg yy

Fig. 5 Presence/absence patterns of gene clusters with annotations involved in the Wood-Ljungdahl Pathway (WLP, KO Ids included in
KEGG Module M00377) and tricarboxylic acid cycle (TCA, KO Ids included in KEGG Modules M00009-11) in Nitrospirota and Nitrospinota.
The rows are ordered by hierarchical clustering of presence/absence patterns in Nitrospirota using Ward’s Linkage. Functional differences and
similarities between the two phyla can be noted, namely the use of WLP in early-branching Nitrospirota and the shared use of the rTCA cycle in
Nitrospirales and Nitrospinota. The purpled shaded boxes denote gene clusters with annotations involving C1 metabolisms, the red shaded
boxes denote kor/oor annotated gene clusters likely involved in low redox-potential ferredoxin cycling present in basal groups of both phyla.
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clusters of the two phyla suggest that Nitrospirota is older (i.e.,
Formate, CO oxidization, WLP) [7, 8].
Gene clusters identified as enriched in the basal clades overlap

with gene clusters likely to be present in the LCA (Figs. 3, 4). These
results suggest that the extant subsurface-inhabiting members
share many traits with the ancestors of these phyla. In contrast to
the basal clades, gene clusters identified as enriched in the later-
branching clades show no overlap with the LCA gene clusters.
Gene-tree reconciliation techniques show that these gene clusters
originated at the base of the later-branching classes (Fig. 3). The
genomes of these later branching classes are larger (Fig. 2),
suggesting these phyla have undergone genome expansion. This
is exemplified by the acquisition of notable nitrogen-cycling genes
from other phyla (Figs. 7, 8). It is interesting to note that
Dadabacteria (a relative to Nitrospirota and Nitrospinota [20, 21])
presents an opposing pattern, where early branching clades
contain many genomes from subsurface organisms that have
larger genomes than later-branching marine clades [79]. This
suggests that genome expansion and streamlining patterns are
influenced by the particular metabolisms and niche occupation of
a given group of organisms. This has been noted in Thaumarch-
aeota and Cyanobacteria, where lateral gene transfer and
duplication are associated with occupation of terrestrial niches
while gene loss is more prevalent in clades that live in marine
environments [57, 80, 81].

Ancestral metabolisms inferred from LCA gene clusters
Ancestral state reconstruction of the traits with a >0.5 pp at the
root of Nitrospirota depict a physiology very different from the
more well-studied order Nitrospirales [18, 19, 26, 28–30, 32, 33].
The gene cluster annotations suggest a C1-compound-based

metabolism that utilizes formate and CO and reduces sulfate as an
electron acceptor (Fig. 4). Formate and CO are used as electron
sources for deeply-branching bacteria and archaea [15, 16] and
they can be produced abiotically in the hydrothermal environ-
ments were many of these genomes were sampled from [4, 5]. A
representative of the class Thermodesulfovibrio which was isolated
from the terrestrial subsurface can perform sulfate reduction with
hydrogen [35]. Although hydrogen oxidation genes were not
present in the LCA dataset based above the >0.5 pp threshold
used, genes with these annotations are present in the subsurface-
enriched subset of gene clusters (Supplemental Data File 2). The
same is true of several gene clusters involved with dissimilatory
nitrate reduction, which has been documented in members of the
Thermodesulfovibrio (Fig. 6) [39, 40].
A phylogeny of the gene cluster that annotates as dsrA with

sequences from TIGR02064 has a similar topology to a study
concluding that some Nitrospirota and Nitrospinota use dsr genes
in reverse to oxidize hydrogen sulfide [61]. The presumed
oxidative dsrA sequences from Nitrospirota and Nitrospinota form
a clade, which contains sequences from Ca. Magnetaquicoccus
inordinatus, that is basal to most sulfide oxidizing Alphaproteo-
bacteria [70]. This topology suggests Nitrospirota/Nitrospinota
oxidative dsrA sequences share a history with sequences
belonging to a sulfide-oxidizing Proteobacterial ancestor (Supple-
mentary Figure 9). A gene cluster annotating as dsrL, which acts as
an accessory protein involved in rDSR in Allochomatium vinosu is
present in the Nitrospinota LCA and but only 7/367 (0.27%) of
Nitrospirota genomes [71]. Four of these Nitrospirota dsrL
sequences belong to genomes in the clade containing class
RBG-16-64-22 and one from an assembly from the early-branching
Nitrospiria order HDB-SIOI813. The assemblies in order HDB-SIOI813

Nitrospirota Nitrospinota
ThermodesulfovibrioRBG-16-64-22

UBA9217

HDB-SIOI813

Nitrospirales
Nitrospiraceae

SBBL01

UBA9942 UBA7883
Nitrospinia

Sulfur Cycling Gene Clusters

Nitrogen Cycling Gene Clusters

Comammox Nitrite Oxidation DSR/rDSR Nitrogen Fixation

Fig. 6 Presence/absence patterns of gene clusters with annotations involved in the Nitrogen cycling (KO Ids included in KEGG Map
M00910) and Sulfur cycling (KO Ids included in KEGG Map M00920) in Nitrospirota and Nitrospinota. The rows are ordered by hierarchical
clustering of presence/absence patterns in Nitrospirota using Ward’s Linkage. Functional differences and similarities between the two phyla
can be noted. The shaded boxes denote functions of interest that are discussed in the text.
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contain incomplete dsr operons and other sulfur-metabolism-
related genes such as aprAB and sat (Fig. 6). These gene content
patterns suggest these groups perform rDSR or metabolize other
sulfur-cycle intermediates, which has been observed in other
species with these genes, such as Desulfurivibrio alkaliphilus and
some Acidobacteria [82–84] (Figs. 6, 8).
Time-calibrated phylogenies of Bacterial evolution suggest the

basal node of the close relatives of Nitrospirota—Acidobacteria and
Desulfobacterota—originated just prior to, or around the time of
the great oxidation event (GOE) [22, 23, 85–87]. The time of origin
of these phyla closely coincides with a proliferation of oxygen-
utilizing enzymes on the Bacterial tree [87]. An analysis of the
Cyanobacteria, using Bayesian molecular clocks, calibrated with
microfossils, suggest that sodA did not appear in this phylum until
after the GOE [88]. Thus, the existence of sodA in the Nitrospirota
LCA gene cluster set suggests this phylum originated after there
was appreciable oxygen on Earth [87]. Gene clusters annotated as
terminal oxidases are sporadically present in the Thermodesulfovi-
brio (Supplementary Figure 10). None of these gene clusters
passed the thresholds for the enriched or LCA datasets used in this
analysis, but gene reconciliation methods place the origination of
one of these gene clusters at the root of the Nitrospirota tree
(GC_00005908 – cbb-3 type cytochrome oxidase) (Supplementary
Figure 10). Recently, the co-occurrence of the WLP and facultative
aerobic respiration in Thermodesulfovibrio assemblies sampled
from the terrestrial subsurface has been reported [38]. It appears
the co-occurrence of these metabolic strategies in this phylum
could be a widespread trait inherited from an ancestor which
evolved during the period of oxygen accumulation on Earth [87].

Metabolic expansion and progression
These analyses demonstrate that there is a metabolic progression
throughout the history of Nitrospirota that is partially replicated
in Nitrospinota (Fig. 6). The Thermodesulfovibrio and UBA9217
are primarily sulfate reducers that utilize C1 compounds and
hydrogen as electron sources, although other metabolisms such
as sulfur disproportionation, sulfur oxidation, and nitrate reduction
are documented (Figs. 4–6) [35, 37–40]. After these groups is the
class RBG 16-64-22 and Nitrospiria order HDB-SIOI813, which

contain the dsr genes for rDSR and other sulfur-intermediate
metabolisms [61, 71] (Fig. 6). Next is the Nitrospirota order SBBL01,
containing recently described manganese-oxidizers [77, 78].
Genomes in this clade contain unique cytochromes involved in
manganese oxidation that have been discussed in detail (Fig. 8,
Supplementary Figure 10) [78].
The nxr genes responsible for nitrite-based metabolisms,

originated early in the order Nitrospirales and were likely
transferred from the Planctomycetota (Figs. 3, 6–8) [19]. The genes
responsible for comammox (pmo-amoABC K10944-46, hoa
K10535) originated at the base of the family Nitrospiraceae and
are most closely related to order Nitrosomonadales (Nitrosomona-
dacea in GTDB) according to the taxonomy of the best eggNOG
seed ortholog, which has been previously reported [26, 30]. These
observations suggest Nitrospirota gained its comammox abilities
by multiple gene acquisitions from different bacterial phyla. These
patterns show Nitrospirota progressing from sulfate reduction to
other sulfur-compound metabolisms, and then manganese oxida-
tion, nitrite oxidation, and comammox (Figs. 6, 8).
The Nitrospinota show a partial replication of the metabolic

progression of the Nitrospirota (Fig. 8C). The basal Nitrospinota
classes UBA7883 and UBA9442 likely use rDSR and sulfur
intermediates as an electron source, the same as Nitrospirota
orders RBG-16-64-22 and HDB-SIOI813 (Figs. 4, 8) [61]. The
phylogeny of the dsrA gene cluster shows that Nitrospinota dsrA
sequences (and Nitrospirota class RBG-16-64-22) share a common
evolutionary origin that is different to the reductive dsrA
sequences in Thermodesulfovibrio (Supplementary Figure 10). In
addition, a gene cluster involved in sulfite oxidation (soeA) is
present in the LCA of Nitrospinota, and the soeB subunit is
enriched in the basal classes, indicating the metabolisms of sulfur-
cycle intermediates by basal Nitrospinota (Figs. 6, 8 Supplemental
Data Files 6, 8) [71–73]. The basal classes of Nitrospinota and
intermediate branching groups of Nitrospirota encode genes for
the use of oxygen as a terminal electron acceptor (Fig. 4,
Supplementary Figure 10). This is parsimonious with the
interpretation that Nitrospinota originated in a more oxygenated
environment than the basal groups of Nitrospirota. These shared
sulfur oxidation metabolisms among basal Nitrospinota groups
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Fig. 7 Phylogeny of gene cluster GC_00000823, annotated as K00373 Nitrite Oxidoreductase Subunit A. A Displays the phylogeny of the
gene cluster rooted at the branch separating the majority of the Nitrospirota sequences from the Nitrospinota sequences. The LG+ G4 model
was used, as chosen by the B.I.C by ModelFinder. A highly divergent sequence from GCA_016212295 (Nitrospinota) was removed from the left
panel for ease of visualization. This sequence can be seen as a diverged relative of Nitrotoga nxrA sequences on the right panel. B Displays
gene cluster GC_00000823 sequences with all nxrA from GenBank. Respiratory narG from Desulfobacterota was included as well as
tetrathionate reductase A (ttrA) from Desulfobacterota, that was used as an outgroup. The LG+ I+ G4 model was used, as chosen by the B.I.C
by ModelFinder. The sequence from Nitrospirota assembly GCA_003354025, which branches closer to the Nitrospinota in the left panel is within
the Planctomycetota on the right panel.
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and intermediate-branching Nitrospirota groups might suggest a
similar time of origin. This is supported by the dsrA phylogeny,
which shows oxidative Nitrospirota and Nitrospinota dsrA
sequences originating from the same common ancestor (Supple-
mentary Figure 10) [61].
Following these sulfur-cycling metabolisms, both phyla acquire

the nxrAB genes needed for nitrite oxidation (Figs. 6–8). The
phylogenetic analysis of the nxrA gene cluster GC_00000823 with
GenBank nxrA demonstrates that Nitrospinota nxrA sequences are
also closely related to nxrA sequence in Planctomycetota (Fig. 7)
[19]. Interestingly, the Nitrospirota sequences forms a bootstrap-
supported monophyletic clade branching next to the Planctomy-
cetota, while the Nitrospinota sequences form a second bootstrap
supported monophyletic clade branching after the initial split
between Nitrospirota/Planctomycetota (Fig. 7). This suggests that
the nxr genes in Nitrospirota and Nitrospinota were transferred
from Planctomycetota at two different times. These independent
acquisitions of nxrA suggests the order Nitrospirales existed prior
to the transfer of nxrA to order Nitrospinales. This scenario is similar
to multiple independent gene acquisitions that define the lineage
specific metabolisms of Thermoplasmatota order Lutacidiplasma-
tales [89]. The vertical relationship of oxidative dsrA sequences, the
independent horizontal acquisitions of nxrA and similar gene loss/
gain patterns depict an entangled and partially replicated
evolution in the staggered history of these sister phyla.

CONCLUSIONS
Here we demonstrate that the ancestral metabolisms of early
branching clades for the sister phyla Nitrospirota and Nitrospinota
are markedly different than the later branching groups that have
received much attention due to their ecological prominence,
especially in the marine environment, and unique nitrogen-based
metabolisms. Despite some differences in particular metabolic
functions, the similar evolutionary histories of Nitrospirota and
Nitrospinota demonstrate how multiple modes of evolution can
shape closely related phyla that occupy similar ecological niches.
These data demonstrate that gene loss, de novo origination, or
lateral acquisition of new genes is a replicated pattern in later-
branching clades of phyla whose extant subsurface-inhabiting
members resemble ancestral lineages that initially evolved in a
primordial habitat.

DATA AVAILABILITY
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Newly generated SAG data used in this study are available under NCBI BioProject IDs
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PRJNA853307 (BLM1 Inyo-1), and PRJNA842252 (Juan De Fuca). All data processing
scripts used to perform this analysis are available here: https://github.com/ts-
dangelo/bioinformatic_scripts_python.
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Fig. 8 Proposed scheme of metabolic progression throughout the histories of Nitrospirota and Nitrospinota. A The phylogeny of
Nitrospirota scaled with Relative Evolutionary Divergence (RED) (x axis), as used to denote particular taxonomic ranks by GTDB. The branches
are colored in the same fashion as Fig. 1. The taxonomic groups are colored by boxes denoting the main metabolisms of those groups as
defined in panel (C). B RED scaled phylogeny of Nitrospinota. Gene cluster originations, as determined by gene reconciliation with Generax, of
gene clusters of interest are denoted by colored asterisks and arrows. C Schematic interpretation of the data in panels (A) and (B). Sulfate
respiring Nitrospirota originate first. The second-branching groups of Nitrospirota perform reverse dissimilatory sulfate reduction (rDSR), while
Nitrospinota using this metabolism likely arises around the same time. After rDSR in Nitrospirota, groups performing manganese oxidation
form. The last acquired metabolisms in both phyla are the nitrogen-based metabolisms involving nitrite oxidation genes and comammox
genes.
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