TABLE 4.
Performance comparison of the DRIVE dataset.
Method | Year | SE | SP | ACC | F1 | AUC |
---|---|---|---|---|---|---|
U-Net Ronneberger et al. (2015) | 2015 | 0.7776 | 0.9867 | 0.9681 | 0.8108 | 0.9766 |
R2UNet Alom et al. (2019) | 2018 | 0.7792 | 0.9813 | 0.9556 | 0.8171 | 0.9784 |
DUNet Jin et al. (2019) | 2019 | 0.7963 | 0.9800 | 0.9566 | 0.8237 | 0.9802 |
AG-Net Zhang et al. (2019) | 2019 | 0.8100 | 0.9848 | 0.9692 | — | 0.9856 |
IterNet Li et al. (2020) | 2019 | 0.7921 | 0.9874 | 0.9699 | 0.8244 | 0.9861 |
NFN+ Wu et al. (2020) | 2020 | 0.7796 | 0.9813 | 0.9582 | 0.8295 | 0.9830 |
RVSeg-Net Wang et al. (2020b) | 2020 | 0.8107 | 0.9845 | 0.9681 | — | 0.9817 |
SCS-Net Wu et al. (2021) | 2021 | 0.8289 | 0.9838 | 0.9697 | — | 0.9837 |
SA-UNet Guo et al. (2021b) | 2021 | 0.8264 | 0.9823 | 0.9687 | 0.8224 | 0.9861 |
CAR-UNet Guo et al. (2021a) | 2022 | 0.8135 | 0.9849 | 0.9699 | — | 0.9852 |
FR-UNet Liu et al. (2022) | 2022 | 0.8356 | 0.9837 | 0.9705 | 0.8316 | 0.9889 |
AGC-Net (Our) | 2023 | 0.8251 | 0.9844 | 0.9704 | 0.8301 | 0.9881 |
The value in bold is the highest value under that metric.