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Abstract 

Autoimmune diseases develop due to self-tolerance failure in recognizing self and non-self-antigens. Several factors 
play a role in inducing autoimmunity, including genetic and environmental elements. Several studies demonstrated 
the causative role of viruses; however, some studies showed the preventive effect of viruses in the development of 
autoimmunity. Neurological autoimmune diseases are classified based on the targets of autoantibodies, which target 
intracellular or extracellular antigens rather than neurons. Several theories have been hypothesized to explain the role 
of viruses in the pathogenesis of neuroinflammation and autoimmune diseases. This study reviewed the current data 
on the immunopathogenesis of viruses in autoimmunity of the nervous system.
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Introduction
The immune system can identify and remove invad-
ing pathogens and prevent infection. Self-tolerance is 
described as a condition of the immune system that is not 
reactive to the self-antigen. A self-tolerance process is 
carried out throughout the immune system development, 

categorized as either central or peripheral tolerance 
[1]. The breakdown of self-tolerance and an abnormal 
immune response to self-antigen could result in autoim-
mune disorders. Many factors, including genetics, age, 
and environmental factors, have been found to trigger 
inflammation and autoimmune reactions [1]; however, 
the exact etiology of several autoimmune diseases is still 
unknown. Viruses have long been regarded as an impor-
tant environmental trigger for autoimmune diseases in 
genetically predisposed patients [2, 3]. They might acti-
vate some immunological responses through self-tol-
erance breakdown, which might overcome the immune 
regulating systems and induce autoimmune reactions. 
The most important known mechanisms in develop-
ing virus-induced autoimmunity are molecular mim-
icry between host self-antigens and microbial antigens, 
epitope spreading, bystander activation, and immortal-
izing infected B cells. Molecular mimicry plays a critical 
mechanism responsible for viruses-induced autoimmune 
disease. Conventionally, molecular mimicry applies to the 
similarity of antigens between viruses and self-antigens 
that can be recognized by immune systems and result 
in cross-reaction to self-antigens and viral antigens. The 
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epitope spreading is another main mechanism respon-
sible for the viruses-induced immune reaction in which 
viral infection results in more discharge of self-antigens 
and novel autoreactive cells that subsequently target 
spared self-antigens [4]. However, the exact contributing 
mechanism is poorly understood. In the recent COVID-
19 pandemic, many COVID-19-associated autoimmune 
disorder cases have drawn particular attention to the 
neuropathogenesis of viral infection.

Given the increasing evidence suggesting the associa-
tion between viral infection and autoimmune disorders, 
and controversial data on the role of viruses in dysregula-
tion of the immune response, herein, we aim to review 
the current data on the immunopathogenesis of the com-
mon viruses in developing nervous system autoimmune 
disorders.

Methods
PubMed/Medline electronic database was searched using 
the keywords “Guillain–Barre syndrome”, “Myasthe-
nia Gravis”, “autoimmune disease”, “Multiple sclerosis”, 
“experimental autoimmune encephalitis”, “central nerv-
ous system”, “COVID-19”, “HSV-1”, “Influenza”, “Epstein 
barre virus”, “EBV”, “CMV”, “Cytomegalovirus”, “Zika 
Virus”, and “varicella-zoster virus”. We reviewed the 
English articles with full-text available between January 
1, 2000, to March 1, 2022. A total of 1210 articles were 
retrieved, and 283 articles were included in this study. 
The inclusion criteria for this narrative review were stud-
ies on the role of selected viruses in developing the neu-
rological autoimmune diseases.

Autoimmune diseases of the nervous system
The incidence of autoimmune diseases is estimated to 
be more than 5 percent in the general population, with 
an increasing prevalence in recent years [5]. Up to date, 
About 80 autoimmune disorders have been identified, 
including nearly 30 neurological autoimmune diseases 
[6]. Neurological autoimmune diseases are classified 
based on the targets of autoantibodies, whereas autoanti-
bodies target intracellular or extracellular antigens of the 
neurons [7]. Antibody-associated autoimmune diseases 
against intracellular antigens are often associated with 
underlying malignancy and are defined as paraneoplastic 
disorders [7]. Mis-response of the immune system to the 
ectopic neural antigens, which are aberrantly expressed 
in malignant cells, direct the hypothetical mechanism 
of these disorders. Previous studies have shown that 
autoantibodies against intracellular antigens were not 
in relation to the target antigens and, therefore, are not 
responsible for disease development. As a result, these 
patients have an inadequate response to the treatment. In 
this regard, some studies investigated the mechanism of 

autoimmune diseases with intracellular antigens reveal-
ing that CD8 + T cells penetrated the neurons and 
induced granzyme B and perforin production, ultimately 
leading to neural degeneration [8].

Autoimmune diseases associated with the autoanti-
bodies against extracellular epitopes, including cell sur-
face and synaptic antigens, are less related to underlying 
malignancy. Moreover, in contrast to paraneoplastic CNS 
disorders, they are characterized by good responsiveness 
to immunosuppression. There is also a more complicated 
autoantibody expression pattern, mainly exposed during 
synaptic fusion and reuptake [8].

Viruses‑induced neurological autoimmunity
Some theories have been postulated to explain the 
role of viruses in the pathogenesis of autoimmune dis-
eases; however, the exact mechanism of viruses-induced 
neurological autoimmune disorders is still unknown. 
Altogether four main mechanisms were identified for 
viruses-induced neurological autoimmune disease: 
molecular mimicry, epitope spreading, bystander acti-
vation, and autoantibody production and immortaliza-
tion of effector B-cells. Molecular mimicry is defined by 
similar antigens of self-epitopes and pathogen’s antigens, 
resulting in a cross-reactive reaction of B and T cells to 
the self-antigen that caused autoimmune disease [9]. 
The innate immune system causes bystander activation. 
The immune reaction of the innate immune system pro-
vides a strong response against pathogens through the 
massive production of pro-inflammatory cytokines and 
chemokines. The overactivation of the immune system’s 
exaggerated response against viruses caused a cytokine 
storm that initiated additional damage to the neurologi-
cal tissues and produced more self-antigens. The novel 
self-antigens are further presented by antigen-presenting 
cells (APCs) to the autoreactive immune cells and thus 
trigger an in-process autoimmune reaction [10]. Epitope 
spreading is another possible mechanism involved in 
viral-induced neurological autoimmune diseases. Further 
self-antigens are presented upon ongoing damage to self-
tissue and infliction caused by viruses, and other immune 
reactions were induced by autoreactive T cells to the 
novel self-antigens [11]. Self-antigen autoantibodies and 
immortalized effector B cells are caused by memory 
and affect B cells. Alongside the typical autoantibodies, 
patients with neurological autoimmune disease can be 
presented with some other autoantibodies in the nervous 
system tissues. Additionally, immune system memory 
cells stimulate effector B cells trained against self-anti-
gens and cause continuous long-term autoantibody pro-
duction against nervous system antigens [12, 13].

In this study, we sought to review the immunopatho-
genesis of viruses playing a role in the induction of 
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autoimmunity of the nervous system, especially following 
the advent of the COVID-19 pandemic.

Cytomegalovirus
Cytomegalovirus (CMV), the linear double-stranded 
DNA virus, is a member of the Herpesviridae fam-
ily, introduced in 1904. The virus infects 60 − 100% of 
people in adulthood [14, 15]. The strong interaction 
between CMV and the immune system has highlighted 
its role in inducing autoimmune diseases. Increasing 
evidence has shown the association of CMV infection 
with rheumatologic diseases such as systemic lupus ery-
thematosus (SLE), systemic sclerosis (SSc), rheumatoid 
arthritis (RA), and some neurological disorders. In con-
trast, there are reports revealing the protective impact 
of CMV in some autoimmune diseases such as celiac 
disease [16]. Moreover, there are controversial reports 
on the association between CMV and MS. While some 
reports have suggested the association between reacti-
vation of CMV infection and the development or wors-
ening of pre-existing MS, other studies have shown a 
negative correlation between the development of MS 
and CMV seropositivity [17].

Following viral penetration, pattern recognition recep-
tors (PRRs) identify the pathogen-associated molecular 
pattern (PAMP) and the damage-associated molecular 
pattern (DAMP) of the virus, which induce the immune 
reaction to the virus [18]. Molecular mimicry is assumed 
as another responsible mechanism for CMV-induced 
autoimmunity. An animal model study demonstrated 
some degree of molecular mimicry between the myelin 
oligodendrocyte glycoprotein 35–55 (MOG35-55) and 
one of the CMV peptides [19]. Immunization of mice 
with MOG35-55 following murine CMV (mCMV) 
infection induced symptoms similar to the experimen-
tal autoimmune encephalomyelitis (EAE) and increased 
the influx of T cells (Th-1 and Th-17) into the CNS. In 
contrast, immunization with MOG35-55 without CMV 
infection was not able to induce EAE [20]. The cross-
reactivity of MOG peptide and CMV peptide has also 
been proven in a non-human model of primate since 
MOG34–56 specific T cells responded to the human 
CMV major capsid protein (UL86; 981–1003) [21].

There is also evidence suggesting the association 
between CMV and CD4 + CD28null T cells. Human 
studies have shown a direct relationship between the titer 
of CMV seropositivity and the number of CD4 + CD28 
null T cells [22]. In vitro studies have demonstrated that 
stimulation with CMV enhances the CD4 + CD28 null 
T cells population, which all contribute to aggravat-
ing the symptoms of EAE [22]. In addition, animal and 
human fetus studies have shown that CMV infection of 
the CNS induces CD8 + cells, interferon gamma (IFN-γ), 

and tumor necrosis factor α (TNFα) accumulation in the 
CNS, leading to CNS inflammation [19]. The mecha-
nism of CMV-induced multiple sclerosis (MS) is given in 
Fig. 1.

Zika virus
Zika virus is one of the members of the Flaviviridae fam-
ily, with a single-stranded positive-sense RNA genome, 
which can participate in the development of some central 
and peripheral nervous system disorders such as Guil-
lain-Barré syndrome (GBS), transverse myelitis (TM), 
and meningoencephalitis [23, 24]. Although it was shown 
that Zika virus infection can be presented wide range of 
neurological manifestations [25], few studies reported 
detection of Zika virus in patients with MS [26]. It is sug-
gested that zika virus can induce autoimmune reaction 
against neural cells that can mimic the presentation of 
MS [27].

Despite the effect of Zika virus in neurodevelopmen-
tal process and congenital pathologies are well under-
stood [4, 28], the impact of zika virus on neural process 
of adults are remained unknown and the mechanisms 
underlying ZIKV-induced neuropathogenesis are still 
poorly understood. It was shown that Zika virus can 
induce demyelinating process and also axonal injury 
of neuron related to the CNS that can underlie autoim-
mune disease of CNS [29]. However, murine studies have 
demonstrated that ZIKV can replicate and affect the CNS 
cells, stimulate the expression of inflammatory genes 
such as interleukin-1 (IL-1) and enhance the expression 
of NLR family pyrin domain containing 3 (NLRP3) and 
some other genes responsible for oxidative stress [30]. 
Other studies have shown that Toll-Like Receptor 3 
(TLR3), a part of the innate immune system, is involved 
in the ZIKV-induced neuropathogenesis since inhibition 
of the TLR3 function reduces the viral replication and 
decreases the secretion of inflammatory mediators such 
as IFN-β and IL-6 from immune cells [31]. Notably, IFN-I 
pathways are activated during viral infection, allowing 
the expression of hundreds of elements involved in the 
IFN-stimulated response. ZIKV non-structural protein 5 
(NS5) binds and destroys the Signal Transducer and Acti-
vator of Transcription 2 (STAT2) via proteasomal degra-
dation, conferring viral resistance to IFN in cell cultures. 
Inhibition of IFN is the first step of ZIKV pathogenesis. 
Following IFN hampering, transmembrane proteins acti-
vated by IFN are decreased, resulting in elevation of the 
ZIKV-caused cell death [32]. It should be noted that fol-
lowing viral invasion, the retinoic acid-inducible gene 1 
(RIG-I)-like receptors (RLRs) as viral RNA detectors are 
responsible for initiating the innate immune response, 
which the IFN-I mediates. While the ZIKV can inhibit 
the IFN-I, it can directly activate the RLRs inducing the 
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production of proinflammatory cytokines. Subsequently, 
different subsets of CD4 + T cells will be activated against 
ZIKV, leading to its neuropathogenesis [32]. In addition 
to the production of inflammatory cytokines, higher lev-
els of chemoattractive molecules produced by the ZIKV-
infected blood–brain barrier (BBB) cells such as CCL5, 
CCL2, and CXCL10 increase the influx of immune cells 
into the CNS, which eventually leads to an inflamma-
tory reaction in the CNS [33, 34]. Besides, ZIKV-induced 
CCL5 production could inversely affect the myelination 
process. Last but not least, ZIKV can affect other cells 
in the nervous system except for neurons. Some studies 
have shown that ZIKV induced morphological changes in 
astrocytes and fibroblasts, which might contribute to the 
neuropathogenesis of ZIKV [32].

Varicella‑zoster virus
Varicella-zoster virus (VZV), known to cause chicken-
pox infection in humans, is one of the most frequent 
viral infections, affecting about 95% of adults in devel-
oped countries. After the initial infection, it establishes 
latency in the dorsal ganglia of most healthy people, 

which then might reactivate in particular circumstances 
[35]. Some studies have confirmed a positive associa-
tion between VZV infection and the risk of developing 
autoimmune diseases such as MS [36–38]. A survey 
of a large population of MS patients and healthy indi-
viduals demonstrated that antibodies against VZV and 
CMV were significantly higher in MS patients than in 
healthy individuals [39]. Furthermore, unlike healthy 
individuals, the presence of VZV particles has been 
established in the urine of MS patients [40]. Likewise, 
CNS examination of MS patients has shown a higher 
percentage of VZV particles in the MS patients’ CNS 
than in healthy individuals [41]. Interestingly, several 
studies have revealed that the VZV viral load in the 
CNS and peripheral blood of MS patients in the relapse 
phase was significantly higher relative to the remission 
phase [42], highlighting the hypothesis that VZV might 
play a role in developing or exacerbating MS symp-
toms. However, others have failed to show the presence 
of VZV virions or DNA in the CSF in the acute plaques 
of MS patients, which calls into question the validity of 
this hypothesis.

Fig. 1  The mechanism of CMV-induced multiple sclerosis. Immune reaction against the CMV induces autoantibody productions. CMV infection is 
also associated with a T-cell influx to the CNS, resulting in inflammation. Created with BioRender.com
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Molecular mimicry, as an old hypothesis for explaining 
the possible role of viruses in inducing autoimmune dis-
eases also has been suggested for the relationship between 
VZV and MS development. Degrees of molecular mim-
icry exist between VZV glycoprotein E and Heterogene-
ous Nuclear Ribonucleoprotein A1 (HNRNPA1), which is 
present in the nucleoplasm as it shares > 62% amino acid 
sequence similarity with the prion-like domain (PrLD) of 
HNRNPA1, signifying the reason behind autoantibodies 
against M9 and PrLD of HNRNPA1. HNRNPA1 muta-
tion might stimulate the presence and enhancement of 
HNRNPA1 in the cytoplasm, along with the presentation 
of the protein by MHC-1, which all trigger a cascade of 
immune reactivation [43].

Bearing in mind all considerations, the evidence favors 
the contributing role of VZV in inducing MS. However, 
further studies with more rigorous methodologies are 
needed to support this hypothesis.

Epstein–Barr virus
Epstein–Barr virus (EBV) is a ubiquitous member of 
the gamma-herpesvirus subfamily that is common in 
humans. The silent infection and the life-long persis-
tence are the keys to the widespread infection of EBV in 
the human population. The virus is a linear DNA virus 
that encodes about 100 proteins and 44 micro RNAs 
(miRNAs). While many EBV miRNAs have no known 
function, there is evidence suggesting the role of viral 
miRNAs in innate immunity by regulating the inflam-
masome component NLRP3, the natural killer group 2D 
(NKG2D) ligand MICB, and the chemokine CXCL11 
[44–46].

Following initial infection, EBV crosses the Waldeyer’s 
ring to infect the naïve B cells. The activation of these 
naïve B cells to proliferating lymphoblasts is mediated via 
the Epstein-Barr nuclear antigen (EBNA). The activated 
lymphoblasts then migrate to germinal centers where 
they undergo a germinal center reaction to access their 
primary target (resting memory B cells) for latent per-
sistence. The signals from the EBV encoded latent mem-
brane proteins (LMPs) contribute to the survival of these 
infected lymphoblasts. It is noteworthy that given the 
type of latency, the virus expresses different sets of latent 
products including LMP1 and LMP2 [39, 40].

It is believed that EBV-associated pathologies result 
from the disruption of the virus-host immune system 
balance, and clinical manifestations of EBV infection 
emerge as a result of provoked immune response rather 
than EBV itself. In this regard, several studies have 
shown the immune response to EBV is disturbed in MS 
patients. Sumaya et al. were the first ones who described 
an increased frequency of antibodies to EBV in patients 
with MS compared to healthy controls. Since then, many 

studies have demonstrated increased antibodies against 
EBV antigens titer in MS patients [47–49]. Moreover, 
several studies have revealed evidence of EBV parti-
cles or EBV genomes in the brain tissue samples of MS 
patients [50]. Interestingly, in a recent issue of Science, 
Bjornevik and Cortese et al. utilized longitudinal evalua-
tion of over 10 million adults between 1993 and 2013 to 
demonstrate the association between EBV infection and 
MS development. They showed a 32-fold increase in the 
risk of MS following EBV infection, but the risk was not 
increased after other viral infections. Moreover, neuro-
filament light chain levels were increased only after EBV 
seroconversion.

Notably, many hypotheses have been proposed to 
express the role of EBV in developing MS. Molecular 
mimicry has repeatedly been suggested as a potential 
pathogenic mechanism. The LMP1 mimics CD40 recep-
tors, which play a role in B and T-cells interactions, and 
LMP2A mimics B-cell receptors. Moreover, an IL-10-like 
cytokine that EBV produces is crucial to B-cell activa-
tions [51]. In addition, patients with MS exhibit a more 
robust humoral response to EBNA-1, EBNA411–426, 
and EBNA1400–413, which can interact with some pep-
tides of the myelin essential proteins as glial cell adhesion 
molecule (GlialCAM) [52, 53]. Likewise, elevated anti-
bodies against the chloride-channel protein anoctamin 
2 are seen in MS patients, which could cross-react with 
one of the EBNA1 peptides [54]. The molecular mimicry 
between EBV antigens and MS autoantigens has been 
confirmed in animal models. Namely, stimulation of mice 
with EBNA411–426 has been shown to increase the por-
tion of T cells (IFN-γ producers) in response to MBP, 
leading to EAE [53].

Furthermore, it seems there is a relationship between 
EBV-infected B cells and the development of MS. Nota-
bly, EBV micro RNAs can protect EBV-infected B cells 
from CD8 + T cell response by reducing the EBV-spe-
cific CD8 + T cell proliferation and IFN-γ secretion [46]. 
Interestingly, it has been demonstrated that the number 
of T cells that recognize EBV-infected B cells decreases 
in MS subjects [55]. In addition, in contrast to healthy 
individuals, the latent-specific CD8 + T cells population 
is significantly greater than the lytic-specific CD8 + T 
cells [55, 56]. Moreover, IFN-γ secreted by CD8 + T 
cells hampers the EBV-infected B cell’s proliferation 
and decreases the function and number of EBV-specific 
CD8 + T-cells, which results in intact EBV-infected B 
cells [57]. Therefore, it can be concluded that in healthy 
people, EBV-specific CD8 + T cells with an appropriate 
ratio of the lytic and latent specific CD8 + T cells could 
kill the EBV-infected cells. However, the number of lytic-
specific CD8 + T cells is insufficient in MS patients, limit-
ing their ability to regulate the EBV infection effectively. 
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Moreover, while the number of EBV-latent CD8 + T cells 
is significantly higher in MS patients, it is insufficient to 
prevent the growth of infected memory B cells. What is 
more, after a while, they show exhaustion which leads to 
more inefficiency [55].

Interestingly, regarding the role of EBV in the devel-
opment of MS, particular attention has been paid to 
treatment strategies in this field. For the first time in 
2014, Pender et al. applied the vitro-expanded autolo-
gous EBV-specific CD8 ( +) T cells directed against viral 
latent proteins to treat a patient with secondary progres-
sive MS. Their results were promising with no adverse 
effects and evidence of clinical and MRI improvement. 
Since then, many efforts have been made in this regard. 
More ever, there is a possibility that currently available 
B cell depleting therapies might be regarded as anti-EBV 
therapies, which deplete circulating memory B cells, the 
primary site of latent EBV infection [58]. The mechanism 
of Epstein-Barr Virus-induced CNS damage is given in 
Fig. 2.

HTLV‑1
The human T-lymphotropic virus type 1 (HTLV1) is a 
single-stranded RNA virus that belongs to the Retroviri-
dae family, the Orthoretrovirinae subfamily, and the del-
taretrovirus  genus, preferentiallyinfects CD4+  T cells 
in  vivo [59]. The HTLV1 genome contains diversified 
structural genes such as Pol, Gag, and Env, encoding the 
proteins of enzyme and viral structure, regulating genes 
including Tax, Rex, and accessory genes including p12, 
p21, p30, p13, and HTLV-1 basic leucine zipper factor 
(HBZ). HTLV-1 possesses different strategies to evade 
host immune responses. Among viral genes, Tax and 
HBZ play an essential function in the pathogenesis of 
HTLV1-induced diseases.

HTLV1 affects approximately 5–10 million persons 
worldwide. Most infected individuals remain asympto-
matic; however, a portion of HTLV-1-positive individu-
als will develop HTLV-1-associated myelopathy/tropical 
spastic paraparesis (HAM/TSP), adult T-cell leukemia/
lymphoma (ATLL) disease, and HTLV-1-Associated 

Fig. 2  The mechanism of Epstein-Barr Virus-induced Nervous System damage. EBV life cycle has two phases, including latent phase which provided 
proliferated viruses without immune reactions. When the number of viruses increased, the immune system reacted against viruses. The EBV-infected 
B-cells activate which subsequently activate adaptive lymphocytes. The EBV-infected B-cells produce some microRNAs that decrease EBV-specific 
T-cells and IFN-γ production which resulted in sustained EBV-infected B-cells. Prolonged EBV infections cause changes in the neuroprotective state 
of microglia to the neurodegenerative state which include neurotoxin production and activation of immune cells. Created with BioRender.com
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Uveitis [60]. HAM / TSP is a progressive chronic inflam-
matory disease of the CNS, which mainly manifests with 
slowly progressive spastic paraparesis and significant 
sphincter impairment. Given the similarities with some 
forms of MS, HAM / TSP might be misdiagnosed with 
MS. Interestingly, there are few reports on the co-occur-
rence of MS and HTLV1 [61, 62].

In HAM/TSP patients, the Tax mRNA level is signifi-
cantly higher than in healthy people [63]. The Tax protein 
directs ATF/CREB pathway and expresses viral genes 
[64]. Moreover, Tax through NF-κB activation induces 
cellular gene transcription and alters HTLV-1-infected 
cells [64]. It also stimulates T cell activation and prolif-
eration in HAM / TSP patients by increasing the expres-
sion of IL-2 genes, IL-2 receptor domain an (IL-2Ra), 
IL-15, and IL-15Ra [65–69]. Tax-induced elevations in 
IL-2, IL-9, and IL-15 activate the Jak3/STAT5 axis, and 
Jak3 blockade has been found to reduce the immuno-
logical stimulation in PBMCs in HAM/TSP patients 
[70]. HBZ inhibits the NF-B pathway and decreases Tax 
activity via interacting with the CREB/ATF pathway 
[71]. Numerous studies have shown that in HAM / TSP 
patients, the activity of Treg cells and the expression of 
Foxp3 are significantly reduced, which is assumed to be 
the result of Tax overexpression [72–75]. In addition, 
recent studies have demonstrated that the Tax protein 
could inhibit the TGF-β gene expression through dis-
ruption of TGF-β signaling expression [76]. Decreased 
numbers of CD4 + CD25 + Foxp3 + Treg cells were 
seen in transgenic rodents expressing HTLV-1 Tax that 
expands an inflammatory arthropathy [77]. It has been 
revealed that the CD4+CCR4+  T cells that coexpressed 
the Th1 marker CXCR3 and produced T-bet and IFN-γ 
were present in the CSF and spinal cord lesions of HAM/
TSP patients [78]. Being activated by IFN-γ, astrocytes 
release CXCL10, attracting additional CXCR3 + T-cells to 
the CNS. This situation creates an inflammatory positive 
feedback loop, accompanied by subsequent fabric dam-
age [79].

HSV‑1
Herpes simplex virus type 1 (HSV-1) is a part of the her-
pes simplex family with a double-stranded DNA-encap-
sulated virus [80]. HSV-1 is a ubiquitous virus affecting 
more than 60% of people worldwide. However, only 20 
to 40% of infected people show clinical symptoms vary-
ing from mild skin involvement to severe peripheral 
and central nervous system infection [81]. The HSV-1 
has two infectious phases, which include the lytic and 
latent phases. In the latent phase, the infectious virus is 
produced, while the viral components are not detect-
able in the individual [82]. During the HSV-1 lytic 
phase, it expresses an orchestrated of viral genes in the 

virus-infected cells, including three main categories of 
gene expression: immediate early gene, early gene, and 
late gene [83]. On the other hand, HSV-1 encodes sev-
eral factors to escape the immune system, which causes 
the virus to persist for a long time. Notably, while during 
latency there is limited gene expression and no produc-
tion of viral particles, the viral genome still has potential 
for reactivation, leading to the production of infectious 
virions upon the appropriate stimulus [84].

The mechanisms leading to latency and reactivation 
and which are the viral and host factors controlling these 
processes are not completely understood. The Us6 gene 
encodes glycoprotein D, which is a part of HSV con-
struction is required for penetrating the host cells, and 
inhibiting the apoptosis by activating NF-κB and enhanc-
ing NF-κB-dependent anti-apoptotic genes such as FLIP 
and c-IAP2 [85, 86]. Glycoprotein E has been shown to 
act as an inhibitor of apoptosis in epithelial cells and is 
produced by activating ERK1/2, which is associated with 
the degradation of the Bim protein [87]. ICP22 is another 
HSV-1 protein that plays a negative role in apoptosis [88]; 
the deleted ICP22 recombinant HSV-1 induces more 
apoptosis compere to unmanipolated virus [89]. Another 
mechanism is disruption of the autophagy process, a pro-
cess that removes the damaged organs and prevents the 
accumulation of misfolded proteins, leading to the cellu-
lar hemostasis [90]. Animal studies have shown that Atg5 
and Atg7 are essential proteins for autophagy; therefore, 
mice with defects in the Atg5 [91] and Atg7 [92] proteins 
have provided evidence of neurodegenerative diseases In 
this regard, HSV1 inhibits the cellular protein synthesis, 
impeding the virus replication through eukaryotic initia-
tion factor 2a (eIF2a) phosphorylation, which is known to 
be involved in controlling HSV-1 in neurons [93].

In terms of neurotoxicity, herpes simplex encephalitis 
(HSE) is considered as the most devastating manifesta-
tion of HSV-1. It can occur either in primary infection or 
upon reactivation from latency. Cytolytic HSV-1 prolif-
eration and immune factors are involved in the develop-
ment of HSE [94–97]. The intrinsic and innate immune 
responses are key to protect against HSV-1 infection of 
the CNS and subsequent pathologies, including HSE. Toll 
like Receptors (TLRs) are parts of the innate immune 
system that provide the first line of defense against viral 
infection. HSV-1 infection in astrocytes activates TLR2 
and TLR4, which causes IFN-I expression and an increase 
in pro-inflammatory cytokines such as IL-6 [98]. TLR3 
also plays an important role in controlling HSV-1 infec-
tion. It detects viral double-stranded RNA which is pro-
duced during HSV-1 replication, inducing the production 
of type I IFNs [99]. HSV-1 neuro-infection induces the 
expression of cytokines and pro-inflammatory mol-
ecules such as TNF-a, IL-6, IL-8, CCL5, CXCL10, and 
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macrophage inflammatory protein 1a (MIP-1a) in the 
brain [100, 101]. During the acute phase of HSE, mac-
rophage and neutrophile cells enter the brain, trigger-
ing an immune response to eliminate the infection [102, 
103]. Penetrated macrophages secrete TNF-α, and micro-
glial cells express IL-1B [104]. Moreover, infiltrating CTL 
cells detect the HSV-1 glycoprotein B and promote the 
neural infected cells’ death [105]. T lymphocytes are the 
primary leukocytes in the brain 14  days after infection, 
and CD8 + T cells express IFN-γ, which cooperates with 
TNF-α and increases NO-induced neurodegeneration 
and demyelination [106]. Ideally, the immune response 
controls the virus. Otherwise, an uncontrolled and exces-
sive immune response might be detrimental.

Interestingly, there is evidence suggesting the potential 
link between HSV and Alzheimer’s disease (AD). HSV-1 
DNA has been shown to be co-located with amyloid B in 
the brain tissue samples of patients with AD. The asso-
ciation between HSV-1 and AD is stronger in individuals 
carrying the APOE4 allele, one of the strongest genetic 
risk factors for AD [107]. Moreover, HSV-1 causes the 
accumulation of AB1-40 and AB1-42 and reduces ABPP 
levels, hallmarks of AD pathology, which indicates a 
predisposing factor in AD [108]. There is also evidence 
of mitochondrial pathway disruption in virus neurotox-
icity. Several studies have shown that HSV-1 infection 
increases the Reactive Oxygen Species (ROS) levels, 
which have been demonstrated to play a role in develop-
ment of AD [61, 109]. TLR2.

Regarding the association of HSV1 and MS, the scope 
of article is inflammatory disorders.

Influenza
Influenza virus is an enveloped, negative-sense sin-
gle-stranded RNA virus that consists of 8 parts and 
is classified as the orthomyxoviridae family member-
ship [62]. Influenza virus known as three different sub-
types, including A‌, ‌B, and C, whereas influenza A and B 
are the primary pathogens in humans [110]. Currently, 
18 hemagglutinin (HA) subtypes and 11 neuramini-
dase (NA) subtypes were investigated [111]. HA binds 
the virus to the sialic acid receptor, which causes the 
membrane to fuse and enter the cell. NA is a receptor-
degrading enzyme that is required for virus release and 
virus spread [112]. Infections alone cannot induce auto-
immune diseases and other factors such as genetics, hor-
mones, and immunity are also involved [113]. However, 
there is evidence that the infections play a role to induce 
autoimmune diseases such as Guillain-Barré syndrome, 
Multiple Sclerosis, and Autism [94]. Influenza has been 
identified as a trigger for MS. One study found a positive 
association between the occurrence of influenza and MS 
[95]. A case–control study also showed that IgG against 

several viruses, including Influenza A, was higher in MS 
patients than in controls [96]. However, another study 
has shown that the Influenza vaccine does not affect the 
risk of developing MS [97]. Among the reported auto-
immune complications, GBS is the most commonly 
reported autoimmune disease caused by the Influenza 
vaccine [114]. Sivadan Tardy et  al. in France demon-
strated that there was a positive correlation between the 
monthly prevalence of GBS for unknown reasons and the 
number of Influenza patients. Although influenza serol-
ogy has low accuracy in diagnosing influenza, there has 
been a significant association between GBS patients and 
influenza A and B  [115]. In another study in the UK, 
Tam et  al. examined the risk of developing GBS after 
catching influenza and found that the risk of developing 
GBS increased within two months of catching the Influ-
enza [116].

The influenza virus genome is detected by TLR7, 
while during virus replication, double-stranded RNA 
is detected by TLR3. Activation of the corresponding 
TLRs by ssRNA or dsRNA activates the signal cascade. 
TLRs are not required to activate T cells against influ-
enza. However, they induce B cell responses directly and 
indirectly by INF-α [117], which stimulate B cells to pro-
liferate, switch to the IgG antibody class, and produce 
autoantibodies. Influenza-infected cells also produce 
‌IFN-α, which causes DC to mature and activate T cells. 
One possible response to autoimmune diseases follow-
ing influenza infection is to reduce the down-regulation 
of DC cells, which increases the number of activated cells 
[118]. Influenza virus can also stimulate pro-inflamma-
tory cytokines such as IL-8, which can cause autoimmune 
diseases [119]. Another response to autoimmune dis-
eases is "molecular mimicry," which is antigen-depend-
ent, and the immune system responds to similar antigens 
to microbial segments [120]. GBS is a peripheral nervous 
system (PNS) autoimmune disease, usually established 
following infection. GBS, Fisher syndrome (FS), and Bick-
erstaff brainstem encephalitis (BBE) are considered as 
GBS-related disease (GBSRD). Anti-glycolipid antibodies 
are raised in GBSRD and involved in the pathogenesis. 
The anti-GM1 antibody is found in GBS after infection 
with C.Jejuni, and the antibody against galactoserbro-
side is found in neurological diseases after infection 
with M.Pneumonia [121, 122]. The carbohydrate com-
ponent of neurons is similar to carbohydrates produced 
by infectious agents, recommending molecular mimicry 
is responsible for GBSRD [123, 124]. Although anti-gly-
colipid antibodies are more abundant in C.Jejuni-induced 
GBS (GBSRD-C) than influenza-induced GBS and anti-
GM1 antibodies are more abundant in Influenza-induced 
GBSs, anti-GQ1b is significantly higher in influenza-
induced GBSRDs [125]. Moreover, Anti-GT1a is also 
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moderately more common in Influenza -induced GBSRD 
patients [125]. Nachamkin et al. [126] studied the role of 
the A / NJ / 1976 influenza vaccine in causing an inap-
propriate immune response in mice. All vaccines against 
mice were able to induce the production of antibodies 
against HA, especially GM1. Studies showed that vac-
cine A / NJ / 1976 and subsequent vaccines had a Glycan 
layer that antibodies could immunohistochemically stain 
against GM1. Moreover, viral HA, which usually binds to 
sialic acid, can form the sialic acid-HA complex, which 
is destroyed by NA. Low NA levels because incomplete 
removal of sialic acid from viral HA can eventually mimic 
the structure of GM1 [126, 127].

SARS‑CoV2
SARS-CoV2 is an enveloped, positive-sense, single-
stranded RNA (ssRNA) of the coronaviridae family 
[128–130]. Coronaviruses are classified into four genera: 
Alphacoronavirus (αCoV), Beta coronavirus (βCoV), 
Gamma coronavirus (ϒCoV), and Delta coronavirus 
(δCoV). Human coronaviruses (HCoV) belong to α- and 
βCoVs [131, 132] and a newly emerged HCoV, SARS-
CoV2, was clustered with lineage βCoV [133, 134]. Studies 
in Covid-19 patients have shown that after the outbreak of 
SARS-CoV-2, reports of neurological complications such 
as GBS [135], AD [136], Parkinson disease(PD) [136], and 
MS have increased [103]. So far, the neurologic manifes-
tations related to SARS-CoV-2 infection were reported 
widely varied. The pandemic results from COVID-19 
revealed that the association between the incidence of 
Guillain–Barré syndrome (GBS) and previous SARS-
CoV-2 infection is not very clear [137]. It was reported 
that GBS numerate as one of the frequently manifested 
PNS complications for COVID-19 [138]. The first case of 
GBS has been reported in a 61-year-old COVID-19-posi-
tive woman [131]. Recently, numerous case reports have 
been reported around the world in COVID-19 patients 
[139, 140]. Possible association between SARS-CoV-2 
vaccination and GBS have been reported in several 
researches [98, 141]. In various epidemiological studies 
the association between GBS and SARS-CoV-2 infec-
tion have been investigated, as some of these studies 
finds no association between COVID-19 and GBS [142]. 
However, in some studies contradictory data have been 
reported. Palaiodimou L and et  al. reported that among 
136,746 COVID-19 patients the pooled GBSs prevalence 
was estimated 15 cases per 100,000. Also, they found that 
COVID-19 patients had increased odds for demyelinat-
ing GBSs subtypes [143]. In one retrospectively study, 
Restrepo-Vera JL and et  al. investigated the relationship 
between GBS and SARS-CoV-2 infection, as findings 
showed a clear increase in GBS cases at the expense of 
a significant number of GBS-S. It was reported that this 

contradictory findings may be explained by a decrease in 
the number of cases of GBS associated with other infec-
tions due to the wearing mask, hand hygiene, and social 
distancing [99, 144, 145]. In a retrospective cohort study, 
Wang L and et al. investigated whether SARS-CoV-2 viral 
infection is associated with increased risk for AD. Of the 
6,245,282 older adults (age ≥ 65  years) enrolled in the 
study, they found that people with COVID-19 were at sig-
nificantly increased risk for new diagnosis of AD within 
360 days after the initial COVID-19 diagnosis, especially 
in people age ≥ 85  years and in women [146]. Li  S and 
et  al. investigated ecological time-series analysis of AD 
and PD mortality during the COVID-19 pandemic in the 
USA. Findings revealed that from March 2020 to March 
2022, the number of 41,115 and 10,328 excess deaths have 
been reported for AD and PD, respectively. This excess 
mortalities for AD and PD were about 23 and 9 times 
higher than those aged 55–84 years, respectively. Also, it 
was reported that females had a three-time higher excess 
mortality of AD than males [100]. In a retrospective 
cross-sectional study, Gilstrap L and et al. investigated the 
association between mortality among older adults with 
Alzheimer disease and related dementias (ADRD). Find-
ings revealed that compared with 2019, adjusted mortal-
ity in 2020 was 12.4% higher among enrollees without 
ADRD and 25.7% higher among all enrollees with ADRD 
among 53 640 888 Medicare with 65 years of age or older 
[101]. Related to the MS, we did not find any retrospec-
tive cohort study with large size to validate the association 
between the increase of the MS at the age of COVID-19 
disease. Most of the studies focused on the prevalence of 
COVID-19 infection in patients with multiple sclerosis 
(MS), and did not clearly investigate the increase of the 
MS at the age of COVID-19 disease. Some data support 
that the hospitalization rate is higher among MS patients 
based on COVID-19 infection [102]. It was reported that 
CNS demyelination has occurred shortly after COVID-
19, suggesting that these symptoms could be the result of 
neurological damage following SARS-CoV-2 infection, or 
they could be coincidental, from causes such as secondary 
systemic complications or side effects of drug treatment 
[102, 103].

SARS-CoV-2 requires the angiotensin-converting 
enzyme 2 (ACE2) as a functional receptor to penetrate 
cells. The virus binds to the ACE2 receptor via the spike, 
although the virus has also been observed to use Basigin 
(CD147) and Neuropilin-1 (NRP1) as receptors [104]. 
After SARS-Cov-2 infecting the cells, PRRs identified 
PAMP and DAMP of viruses and induced inflammatory 
reaction [18]. Following SARS-COv-2 entrance, infected 
neural cell can kill directly or indirectly though using 
immune system. Moreover, neurodegenerative process 
was conducted as an acute and chronic phase. Indirect 
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damage proceeded in several mechanisms, including 
molecular mimicry, cytokine storm which induce self-
antigens productions, and autoantibodies production.

Molecular mimicry is the one of the main proposed 
mechanism involved in neurodegeneration which can 
cause the immune system to become overactive in auto-
immune diseases are similar to those of the immune 
response against SARS-CoV2 [105]. Molecular mimicry 
involves the structural similarity of SARS-CoV2 anti-
gens to their self-antigens, which activate the B cells and 
T cells against human-like proteins, which causes auto-
immune diseases [105]. Molecular mimicry is the most 
common cause considered for GBS. Anti-ganglioside 
antibodies were identified in the 50 to 85 percent of 
GBS patients. The rise in anti-ganglioside antibodies in 
GBS patients with Covid-19 remains unclear; however, 
Dufour, et  al. found the presence of anti-GM1 antibod-
ies in GBS patients infected with Covid-19 [106]. Fur-
thermore, among 58 Covid-19 patients with neurological 
symptoms, SARS-CoV-2 was identified in the CSF of only 
two patients [147] the inability to identify SARS-CoV-2 
genome in the CSF of most patients indicates that direct 
virus attack does not involved in the autoimmunity [104]. 
Another mechanism for autoimmune diseases in Covid-
19 patients is the aberrant immune system’s response to 
SARS-CoV2, which triggers the inflammatory cytokines 
and chemokines production, including IL-1B, IL-6, IL-8, 
TNF-a, IFN-γ, Granulocyte colony-stimulating factor 
(G-CSF), induced protein 10 (IP-10), monocyte chem-
oattractant protein 1 (MCP-1), and macrophage inflam-
matory protein 1a (MIP-1a) [18]. This aberrant immune 
reaction to the virus triggers the cytokine storm and 
production of inflammatory conditions which induce 
disruption of self-tissue and produced SARS-Cov-2 
antigens-mimicking which is involved in the patho-
genesis neurodegenerative disorders [148]. The patho-
genesis of MS is not fully understood; however, several 
studies demonstrated that immune response and inflam-
mation lead to MS. Studies have shown that inflamma-
tory cytokines such as IL-12, IL-17, IFN-γ, and TNF-a are 
significantly higher in the CSF of MS patients [149]. In 
Covid-19 patients, Th17 levels increase, which regulates 
inflammatory conditions by increasing IL-6 and IL-23, 
indicating the pivotal role of this cell in the production 
of Cytokines Storm, which provides the requirements for 
MS [150]. Following the production of these self-anti-
gens due to the cytokine storm, antigen presenting cells 
promote the T cells and induced autoreactive responses 
which results in further undertaken neurodegeneration. 
Moreover, upon self-tissue damaged, de novo new self-
epitopes are produced which further induce autoreactive 
T cell activation and sustained neurodegenerative pro-
cess. Additionally, memory process of immune system 

encourages production of further antibodies versus dif-
ferent nervous system tissue, such as blood–brain barrier 
and myelin sheet which results in prolonged and severe 
neurodegenerative process in the overed-Covid-19 state 
[151] (Fig. 3).

Following the emergence of covid-19, vaccination 
against SARS-Cov-2 is considered as an effective strat-
egy for preventing infected to covid-19 and decreas-
ing the severity and mortality of patients infected by 
SARS-Cov-2. However, some clinical studies reported 
the patients with novel neurological autoimmune dis-
eases who is diagnosed after receiving covid-19 vaccines. 
Rinaldi et al. reported the patients with CNS inflamma-
tory demyelinating events following covid-19 vaccine 
administration. They showed that covid-19 vaccine can 
induce acute transverse myelitis, MS, acute demyelinat-
ing encephalomyelitis (ADEM), and neuromyelitis optica 
spectrum disorder (NMOSD) [152]. Moreover, Abdel-
hady et al. reported 65 patients who developed enceph-
alitis following covid-19 vaccines [153]. Despite first 
presentation of MS after covid-19 vaccine was reported 
in some studies [154–157], Stefanou et  al. showed that 
Covid-19 vaccination is not associated with increasing 
the risk of relapse of patients with MS irrespective to the 
type of covid-19 vaccines [158], and therefore, most of 
the patients with MS are willing to receive covie-19 vac-
cine [159].

Conclusion
Autoimmune diseases are frequently developed based 
on the interaction between several factors, including 
genetic susceptibility, aberrant immune response, and 
environmental factors such as infections. The viral infec-
tion seems more critical to inducing autoimmune disease 
disorders. The exact level of involvement of these fac-
tors was not elucidated [160]; however, several studies 
revealed that viruses could caus [161] or exacerbate [162, 
163] autoimmune disease. In contrast, accumulating data 
suggest that viruses regulate the immune response and 
protect against the onset of autoimmune diseases [3]. 
Viruses can induce several immune pathways, resulting in 
an aberrant immune response. The mechanisms, includ-
ing bystander activation, cryptic antigens presentation, 
epitope spreading, and molecular mimicry, were con-
sidered the main pathways to induce autoimmune reac-
tions in general autoimmune diseases [160]. Based on the 
complex nature of the nervous system, it is expected that 
viruses cause autoimmune diseases of the nervous system 
in more complex ways. In this review, we summarized the 
investigated mechanisms of viruses-induced neurological 
autoimmunity. We showed that viruses promote different 
gene expressions and cause immune system over-acti-
vation and cytokine storms alongside previously known 
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mechanisms of general autoimmune disease induced 
by viruses, resulting in immune-mediated tissue injury. 
Conclusively interactions of Host (Genetic and Immune 
system) and viral factors can determine how the immune 
system induces effective or pathologic response.
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