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Background: Successful weaning from mechanical ventilation is important for 
patients admitted to intensive care units. However, models for predicting real-
time weaning outcomes remain inadequate. Therefore, this study aimed to 
develop a machine-learning model for predicting successful extubation only 
using time-series ventilator-derived parameters with good accuracy.

Methods: Patients with mechanical ventilation admitted to the Yuanlin Christian 
Hospital in Taiwan between August 2015 and November 2020 were retrospectively 
included. A dataset with ventilator-derived parameters was obtained before 
extubation. Recursive feature elimination was applied to select the most important 
features. Machine-learning models of logistic regression, random forest (RF), 
and support vector machine were adopted to predict extubation outcomes. In 
addition, the synthetic minority oversampling technique (SMOTE) was employed 
to address the data imbalance problem. The area under the receiver operating 
characteristic (AUC), F1 score, and accuracy, along with the 10-fold cross-
validation, were used to evaluate prediction performance.

Results: In this study, 233 patients were included, of whom 28 (12.0%) failed 
extubation. The six ventilatory variables per 180 s dataset had optimal feature 
importance. RF exhibited better performance than the others, with an AUC value 
of 0.976 (95% confidence interval [CI], 0.975–0.976), accuracy of 94.0% (95% CI, 
93.8–94.3%), and an F1 score of 95.8% (95% CI, 95.7–96.0%). The difference in 
performance between the RF and the original and SMOTE datasets was small.

Conclusion: The RF model demonstrated a good performance in predicting 
successful extubation in mechanically ventilated patients. This algorithm made 
a precise real-time extubation outcome prediction for patients at different time 
points.
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Introduction

Although invasive mechanical ventilation is an important part of 
critical care, prolonged mechanical ventilation results in ventilator-
associated complications, morbidity, mortality, and increased 
hospitalization costs (1, 2). As soon as the initiating factors causing 
respiratory failure begin to improve, weaning and extubation are 
essential; thus, the ability to determine whether a patient is ready for 
extubation is crucial (3). However, extubation is sometimes 
unsuccessful, and approximately 5.2–20% of cases require reintubation 
(4–6). Extubation failure has consequences such as the need for a 
tracheotomy, the occurrence of pneumonia, and pulmonary damage 
induced by mechanical ventilation (7).

Discontinuation of ventilatory support can be challenging for 
physicians, mostly because the pathophysiology of weaning failure is 
complex and not fully understood. Clinicians can predict failed 
extubation with a sensitivity and specificity of 57 and 31%, respectively 
(8). Currently, the rapid shallow breathing index (RSBI; f/Vt) is the 
most commonly used predictor of ventilator weaning (8). However, 
the pooled sensitivity and specificity of an RSBI of less than 105 
breaths/min/L in predicting extubation success are 83 and 58%, 
respectively. This suggests that the RSBI has only a moderate ability to 
rule out extubation success and does not sufficiently predict successful 
extubation (9). Furthermore, numerous parameters have been 
reported as predictors of weaning outcomes, including cough strength, 
duration of mechanical ventilation, and diaphragmatic function (10–
12). However, none of these clinical parameters have a better, real-
time, and comprehensive ability to predict extubation outcomes.

Outcome prediction methods using machine-learning models 
have recently been developed in many areas of healthcare research 
(13–15). Traditional statistical methods mainly focus on relationships 
between variables. In contrast, machine learning can be applied to big 
data using different approaches and can make more accurate 
predictions (16). Recently, some studies have explored the ability of 
machine-learning models to accurately predict extubation outcomes 
(17–22). Most studies used demographic data (e.g., age, sex, duration 
of mechanical ventilation, and reasons for respiratory failure), 
physiological data (e.g., the Acute Physiology and Chronic Health 
Evaluation [APACHE] II score, respiratory rate [RR], blood pressure, 
heart rate, peripheral oxygen saturation, and temperature), and 
laboratory data (e.g., lymphocyte, hematocrit, glucose, and sodium 
levels) (17–22). Because these studies collected raw data during a 
certain period (i.e., 2 h (21), 4 h (20) or longer), their models perform 
only static and not dynamic predictions. In addition, these studies 
used numerous features [ranging from 8 to 78 features (23)] that are 
difficult to gather in clinical practice in their algorithms, which makes 
their widespread application in hospitals difficult and reduces 
their accessibility.

Therefore, this study aimed to develop a machine-learning model 
with good accuracy to predict successful extubation only using the 
time-series parameters obtained from mechanical ventilators that are 

measured every second. The model performed a time-phased and 
immediate prediction within minutes to hours before extubation and 
required no integration of data from multiple systems via an electronic 
health record (EHR) or similar. Additionally, the trend change in 
extubation outcome prediction for patients would be  provided to 
clinicians in future studies.

Methods

Study participants

This study was conducted in the mixed medical–surgical intensive 
care unit (ICU) of Yuanlin Christian Hospital, a 250 bed local 
community hospital with 20 ICU beds for adults, from August 1, 2015 
to November 30, 2020. The inclusion criteria were as follows: (1) patients 
aged ≥20 years, (2) those diagnosed with acute respiratory failure who 
received invasive mechanical ventilation for more than 24 h 
consecutively, and (3) those who underwent extubation during 
hospitalization in the ICU. The exclusion criteria were as follows: (1) 
patients who received mechanical ventilation with a tracheostomy or 
nasal endotracheal tube, (2) those who had undergone accidental 
extubation or self-extubation, and (3) those who were difficult to wean 
from mechanical ventilation for more than 21 days and were further 
transferred to the Respiratory Care Center. If a patient received multiple 
mechanical ventilation sessions during an ICU visit, every mechanical 
ventilation session was collected individually. Data were retrospectively 
collected and analyzed. Therefore, informed consent was waived, and 
the study was approved by the Institutional Review Board of Changhua 
Christian Hospital (approval no.: 210716). All procedures were 
performed in accordance with the Declaration of Helsinki.

Ventilator setup

We used Servo I  (Maquet, Solna, Sweden) ventilators. All 
ventilator settings (i.e., the modes, expiratory tidal volume (Vte), RR, 
positive end-expiratory pressure (PEEP), fraction of inspired oxygen 
(FiO2), rising time, and support pressure) and measurement 
parameters (i.e., the Vte, RR, peak airway pressure (Ppeak), mean 
airway pressure (Pmean), PEEP, and FiO2) were recorded from the 
patients every second through a data port on the back of the ventilator 
and were stored in the database. Respiratory therapists chose one data 
point every hour to prepare the medical records in the hospital 
information system.

Weaning procedure

The weaning procedure followed the protocol established on the 
basis of recommendations of the literature and medical guidelines 
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(24). Sedatives, hypnotics, and narcotics were discontinued at least 8 h 
before weaning. The patients were identified as ready for weaning 
based on clinical stability criteria. The weaning process was initiated 
in the pressure-support ventilation (PSV) mode, followed by a 
spontaneous breathing trial (SBT) in a T-piece for 30 min. The RSBI 
was calculated for patients who passed the SBT. The cuff leak test was 
performed before extubation.

Data collection

We collected patients’ clinical characteristics (i.e., 
demographics, the APACHE II score, reasons for intubation, and 
length of hospital stay) and weaning profiles from their medical 
records. The patients’ ventilation parameters (i.e., Vte, RR, Ppeak, 
Pmean, PEEP, and FiO2) were obtained from the ventilator as a 
time-series dataset in seconds before extubation. Extubation failure 
was defined as the need for reintubation within 48 h after 
extubation. Post-extubation respiratory failure was defined as the 
presence of two or more of the following parameters: RR of more 
than 35 min; arterial oxyhemoglobin saturation of less than 88% 
despite adequate additional oxygen; pH of less than 7.20, which was 
decreased from the onset; hypercapnia with PaCO2 of more than 
45 mmHg; a decreased level of consciousness; and abdominal 
paradox (25). In the extubation success cohort, 4 h time-series data 
before extubation were collected. Because of imbalanced datasets 
between the extubation success and failure cohorts, we hypothesized 
that early extubation would fail in the extubation failure cohort. 
However, this was not certain in the extubation success cohort. 
Therefore, we  used 12 h time-series data obtained from the 
ventilator before extubation in the extubation failure cohort and 
evenly divided it into 4 h segments. Using this process, we obtained 
a three-fold expansion in the extubation failure cohort 
(Supplementary Figure S1).

Data processing

For data processing, we  first used the averaging method to 
separate the patients’ ventilation parameters per 1, 30, 60, 120, 180, 
and 300 s. Subsequently, we  squared and calculated the degree of 
difference in the ventilation parameters to increase the dimensions.

Feature extraction

For feature extraction, we used the information gain method to 
calculate the entropy of the time-series dataset of ventilation 
parameters for extubation success or failure (26). The entropy value 
is expressed between 0 and 1, where 0 indicates that the field cannot 
be divided into extubation success or failure and 1 indicates that the 
field can be  effectively divided. We  obtained the raw data and 
calculated the degree of difference in the ventilation parameters to 
calculate the feature importance (FI) in the 1-, 30-, 60-, 120-, 180-, 
and 300 s datasets from the information gain algorithm results. 
Recursive feature elimination (RFE) was applied to select the most 
important features. It uses a classifier to rank the features and 
recursively removes the weakest features (27). The process of 

removing the weakest features continues until the required number 
of features is reached.

Modeling

The ventilator-derived parameter time-series dataset was divided 
into two parts: testing (30 min before extubation) and training (the 
remaining 210 min) (Figure 1). Python (version 3.7) was used for all 
analyses. In the training stage, we used 10-fold cross-validation to 
train the model. The 10-fold cross-validation was divided into 10 
datasets: one dataset was used as a validation set, and the remaining 
datasets were used as training sets. To develop the predictive models, 
we used the following supervised machine-learning methods, which 
are the most prominent and up-to-date methods for classification 
problems: logistic regression, random forest (RF), and support vector 
machine (SVM) (28–30). The logistic regression model accurately 
predicts the probability of the binary-dependent variable using 
maximum likelihood estimation to produce the regression coefficient. 
The decision tree approach is a tree-like model of decisions that can 
mathematically forecast the optimum option. A simple decision tree 
was created using an optimized version of the classification and 
regression tree algorithm (31). To determine the split point, we used 
the Gini index as a statistic. The Gini index measures the likelihood of 
erroneously classifying a dataset at random. Because the drawbacks of 
the simple decision tree are instability and the possibility of overfitting, 
the RF was used to improve the prediction performance (31). The RF 
is an ensemble classifier that uses majority voting to aggregate many 
decision trees. The SVM, a method for defining a high-dimensional 
boundary that clearly classifies data points, was also used. To address 
data imbalance, the synthetic minority oversampling technique 
(SMOTE), the method endorsed in the literature, was used (32). 
We evaluated the prediction performance using the area under the 
receiver operating characteristic curve (AUC), sensitivity, specificity, 
positive predictive value, negative predictive value, F1 score, and 
accuracy, along with the 10-fold cross-validation. The outcome 
variable was binary, with 1 indicating successful weaning, and 0 
indicating failed weaning. The predictive value of the machine 
learning models was between 0 and 1. A value closer to 1 indicated a 
greater probability of successful extubation, and a value closer to 0 
indicated a greater probability of extubation failure.

Statistical analyses

Continuous variables are expressed as medians and interquartile 
ranges (IQRs; the differences between the 25th and 75th percentiles), 
and categorical variables are presented as percentages. The chi-square 
test and Mann–Whitney U test were used to detect differences in the 
categorical and continuous variables. Differences with p-values of less 
than 0.05 were considered statistically significant. To interpret the 
model better, we employed the SHapley Additive exPlanations (SHAP) 
method to provide consistent and locally accurate attribution values 
for each feature within the prediction model (33). The probability 
density distribution was obtained to better discriminate between the 
extubation success and failure cohorts. All statistical analyses were 
performed using Python and MedCalc (version 20.027; MedCalc, 
Mariakerke, Belgium).
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Results

In this study, 233 patients met the inclusion criteria, of whom 28 
(12.0%) failed extubation (Figure  2). Demographic, clinical, and 
weaning profiles are shown in Table 1. The APACHE II scores and 
diagnoses at ICU admission were comparable between the extubation 
success and failure cohorts. The weaning profiles, including maximal 
inspiratory and expiratory pressures and mean RSBI values were not 
statistically different between the two cohorts. The duration of hospital 
stay was significantly longer in the extubation failure cohort than in 
the extubation success cohort (median: 18.3 vs. 14.7 days; p = 0.006).

The time-series dataset of the ventilation parameters is presented 
in Supplementary Table S1. The extubation failure cohort was more 
likely to have a lower Vte and higher Ppeak and Pmean than the 
extubation success cohort. The average IQR of PEEP and FiO2 
decreased in the extubation success cohort. The mean RR values were 
not statistically different between the two cohorts. No statistically 
significant differences were observed in the ventilator-derived 
parameters between the training and testing datasets.

Feature selection algorithms were applied to the training dataset 
containing the 12 variables (Figure 3). Based on the output of the 
feature selection algorithms and literature review, the accuracy 
plateaued after selecting six variables in the 1-, 30-, 60-, 120-, 180-, 
and 300 s datasets. The ventilatory variables had the highest 
importance of characteristics per 180 s. The six most important 

variables contributing to the extubation outcomes were FiO2 (FI: 
0.144) and Ppeak (FI: 0.142), PEEP (FI: 0.105), Pmean (FI: 0.066), RR 
(FI: 0.027), and Vte (FI: 0.025), in descending order (Table 2). The 
predictive effect was poor when the degree of difference was 
considered. We  used the raw data of the six ventilator-derived 
parameters as the input variables.

We used the machine-learning methods of logistic regression, RF 
with the original and SMOTE datasets, and SVM with all the variables 
per 180 s as input variables to predict extubation outcomes. To 
determine the optimal model, a grid search with the 10-fold cross-
validation for hyperparameter tuning (Supplementary Table S2) for 
each algorithm was conducted. The prediction performances of the 
four machine learning models are listed in Table  3. RF with the 
original dataset exhibited an AUC of 0.976 (95% confidence interval 
[CI], 0.975–0.976), accuracy of 94.0% (95% CI, 93.8–94.3%), and F1 
score of 95.8% (95% CI, 95.7–96.0%). Similarly, the RF with the 
SMOTE dataset showed an AUC of 0.979 (95% CI, 0.978–0.980), 
accuracy of 92.9% (95% CI, 92.7–93.1%), and F1 score of 94.9% (95% 
CI, 94.7–95.0%), indicating that the RF model performs better than 
the logistic regression and SVM models. Furthermore, the difference 
in the performance between the RF with the original and SMOTE 
datasets was small. This implies that the effect of the data imbalance 
is less important in our dataset.

The performance of the RF model with the training, validation, 
and testing datasets is presented in Supplementary Table S3. There was 

FIGURE 1

Architecture of the machine-learning model for predicting extubation outcomes.
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no obvious decrease in the AUC and accuracy of the RF model from 
the training to validation or testing datasets. In other words, the 
overfitting issue was limited in our RF model.

To identify the features that had the most influence on the 
prediction model, we constructed the SHAP summary plot of RF 
(Supplementary Figure S2A), which depicts how the high and low 
feature values relate to SHAP values in the training dataset. According 
to the prediction model, the higher the SHAP value of a feature, the 
more likely the extubation is successful. The most important predictive 
feature of successful extubation was the Ppeak value before extubation. 
For ventilatory characteristics, lower Ppeak and Pmean and higher Vte 
and RR in the last 30 min were predictive of extubation success. 
Supplementary Figure S2B shows an example of successful extubation 
with the SHAP value prediction result. With higher Ppeak and Vte, 
the output value of the probability of successful extubation was greater 
than 0.95. However, with lower Vte, Pmean, and Ppeak in the 
extubation failure cohort, the RF module presumed that the 
probability of successful extubation was 0 (Supplementary Figure S2C).

The distribution of the probability density of the RF predictive 
values is provided in Supplementary Figure S3. The predictive value 
of the successful extubation cohort using the RF model was higher 
than 0.7. In contrast, the predictive value of the extubation failure 
cohort was lower than 0.7. Therefore, the best cuff-off value to 
distinguish the prediction of the weaning outcome of the RF model 
was 0.7.

Discussion

In this study, we developed a machine-learning model using only 
ventilator-derived data for real-time prediction of successful 
extubation of mechanically ventilated patients in an ICU. The RF 
model demonstrated good prediction performance, with an AUC of 
0.976 (95% CI, 0.975–0.976) and accuracy rate of 94.0% (95% CI, 
93.8–94.3%). Considering that the input ventilatory variables are per 
180 s, this model can predict extubation outcomes for a single patient 

FIGURE 2

Flowchart of study participant enrollment.
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every 3 min. As the model uses only six ventilator-driven parameters, 
it can be  easily applied to improve intensivists’ clinical 
decision-making.

In this study, we selected the most common algorithms to use in 
machine learning applications, including logistic regression, RF, and 

SVM. Logistic regression was prioritized due to its high computational 
efficiency, fast prediction speed, and low storage space requirements. 
On the other hand, RF was an ensemble learning method that 
generates multiple tree structures to learn from features and uses a 
voting mechanism for the final prediction. SVM had an advantage in 

TABLE 1 Demographic characteristics and weaning profiles of the participants.

Characteristic All (n = 233) Success (n = 205) Failure (n = 28) p

Age, years 73.0 (61.8–81.3) 73.0 (61.0–82.0) 72.5 (64.5–80.5) 0.980

Gender (%)

Male 147 (63.1) 132 (64.4) 15 (53.6) 0.267

Female 86 (36.9) 73 (35.6) 13 (46.4)

APACHE II score 21.0 (16.0–26.0) 21.0 (16.0–26.0) 20.0 (16.0–25.5) 0.982

Hospital stay, days 15.2 (10.1–22.3) 14.7 (9.7–21.7) 18.3 (14.3–25.4) 0.006

Mechanical ventilation 

duration, days
3.8 (2.3–7.1) 3.8 (2.2–7.4) 5.4 (3.0–7.0) 0.311

Reasons for intubation (%)

Pneumonia 106 (45.5) 94 (45.9) 12 (42.9) 0.369

ICH 28 (12.0) 24 (11.7) 4 (14.3)

Post surgery 25 (10.7) 23 (11.2) 2 (7.1)

AMI 19 (8.2) 18 (8.8) 1 (3.6)

Septic shock 19 (8.2) 18 (8.8) 1 (3.6)

Medical emergency 19 (8.2) 16 (7.8) 23 (10.7)

Stroke 9 (3.9) 6 (2.9) 3 (10.7)

Others 8 (3.4) 6 (2.9) 3 (7.1)

Weaning profiles

Pimax 24.0 (−32.0–40.0) 24.0 (−32.0–40.0) −6.0 (−40.0–40.0) 0.281

Pemax 44.0 (32.0–60.0) 45.0 (34.0–60.0) 41.0 (24.0–60.0) 0.353

RSBI_average 56.2 (37.9–79.3) 57.4 (37.4–86.4) 50.0 (41.4–69.0) 0.543

RSBI_pass (%) 200 (85.8) 173 (84.4) 27 (96.4) 0.087

Cuff leak test_average 346 (160–500) 350 (162–500) 265 (139–476) 0.574

Cuff leak test_pass (%) 198 (85.0) 175 (85.4) 23 (82.1) 0.655

AMI, acute myocardial infarction; APACHE II score, acute physiology and chronic health evaluation II score; ICH, intracerebral hemorrhage; Pemax, maximal expiratory pressure; Pimax, 
maximal inspiratory pressure; RSBI, rapid shallow breathing index.

FIGURE 3

Feature selection using recursive feature elimination (RFE).
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processing high-dimensional data and generating hyperplane 
decisions from a portion of the data. Our study found that logistic 
regression and SVM suffered from overfitting issues during model 
training. These algorithms were primarily designed to find the best 
hyperplane, but the training data used in our study had little 
significant difference between the parameters of success and failure 
results. In contrast, the tree structure of RF allowed for exploration of 
different paths and parameters. However, the disadvantage of the RF 
model was that the tree structure might become too large to make the 
prediction results difficult to explain.

This study is unique in that it used a time-series dataset that included 
patients’ ventilatory parameters measured every second. Hagen et al. 
utilized a dataset of tidal volume measurements to develop a personalized 
clinical prediction model capable of predicting tidal volume behavior 
and providing alerts with 10% accuracy 1 hour ahead (34). The primary 

objective of their model was to prevent the occurrence of lung injury, 
rather than being used for extubation prediction. A recent study also 
used electronic medical records and ventilator variables to develop a 
machine-learning model to predict the successful weaning of patients in 
respiratory care centers (22). They used 26 feature variables and seven 
models—logistic regression, RF, SVM, k-nearest neighbors, extreme 
gradient boosting (XGBoost), light gradient boosting machine, and 
multilayer perceptron—to establish the prediction model. The XGBoost 
algorithm had the best performance in their study, with an AUC value 
of 0.868 and accuracy of 85.1%. However, the model could only provide 
prediction results every 24 h. Another study used historical ICU data 
extracted from MIMIC-III with a convolutional neural network to 
predict extubation readiness within the next hour for a given patient 
(35). However, the algorithm, which was developed by Jia et al., still used 
25 variables for an AUC and accuracy of 0.94 and 86%, respectively. Our 
study used only six time-series ventilator-derived variables to developed 
an RF model with an AUC of 0.976 (95% CI, 0.975–0.976) and accuracy 
of 94.0% (95% CI, 93.8–94.3%) that could dynamically provide the 
prediction result every 3 min. Thus, it can easily be employed in a clinical 
setting to improve treatment decision making by critical-care physicians.

Patterns of spontaneous breathing in mechanically ventilated 
patients are potential markers of weaning outcomes. Variability in 
breathing during weaning from mechanical ventilation may be useful 
in clinical decision making (36). In recent studies, low respiratory 
variability was associated with weaning failure during mechanical 
ventilation (37). According to Bien et  al., patients who required 
noninvasive or invasive mechanical ventilation within 48 h had a 
considerably reduced quantitative variability of tidal volume during a 
30 min SBT (38). Similarly, Sarlabous et al. developed an entropy-
based technique to accurately detect patient–ventilator asynchronies 
(39). Correspondingly, we used a machine-learning approach with 
ventilatory parameters derived from a time-series dataset to predict 
extubation success with an accuracy of 94.0% (95% CI, 93.8–94.3%).

Although artificial intelligence (AI) technologies have made 
remarkable advances in various fields, the use of AI algorithms with 
the black-box issue in healthcare remains rare because of physicians’ 
tendency to act only after understanding the rationale behind the 
results (40). Given the potentially catastrophic consequences of a bad 

TABLE 2 Feature importance of time-series ventilator-derived 
parameters with the mean of different intervals of seconds.

Ventilatory 
parameters

Per 
1 s

Per 
30 s

Per 
60 s

Per 
120 s

Per 
180 s

Per 
300 s

FiO2 0.108 0.127 0.133 0.140 0.144 0.128

Ppeak 0.083 0.121 0.131 0.139 0.142 0.140

PEEP 0.043 0.076 0.088 0.099 0.105 0.113

Pmean 0.034 0.057 0.066 0.071 0.066 0.065

RR 0.022 0.025 0.026 0.027 0.027 0.031

Vte 0.018 0.024 0.024 0.025 0.025 0.027

FiO2_DOD 0 0 0.002 0.002 0.004 0.005

Ppeak_DOD 0 0.004 0.038 0.002 0.003 0.004

PEEP_DOD 0 0.003 0.004 0 0.006 0

Pmean_DOD 0 0.004 0.003 0 0 0

RR_DOD 0.001 0.009 0.007 0.008 0.005 0.005

Vte_DOD 0.001 0.007 0.006 0.006 0.008 0.010

DOD, degree of difference; FiO2, fraction of inspiration oxygen; PEEP, positive end-
expiratory pressure; Pmean, mean airway pressure; Ppeak, peak airway pressure; RR, 
respiratory rate; sq, squared; Vte, expiratory tidal volume.

TABLE 3 Performance comparison among different machine-learning models.

Model AUC 
(95% CI)

Sensitivity (%) 
(95% CI)

Specificity (%) 
(95% CI)

PPV (%) 
(95% CI)

NPV (%) 
(95% CI)

F1 score 
(%) (95% 

CI)

Accuracy (%) 
(95% CI)

Logistic 

regression

original
0.730 (0.729–

0.730)
14.7 (14.3–15.0) 96.6 (96.5–96.6)

63.7 (63.2–

64.2)

73.4 (73.3–

73.5)

83.4 (83.4–

83.5)
72.8 (72.7–72.9)

SMOTE
0.728 (0.727–

0.728)
64.1 (63.7–64.4) 68.5 (68.1–68.9)

45.5 (45.2–

45.7)

82.3 (82.2–

82.4)

74.8 (74.5–

75.0)
67.2 (67.0–67.4)

Random forest

original
0.976 (0.975–

0.976)
87.5 (87.0–87.9) 96.7 (96.5–96.9)

91.6 (91.1–

92.1)

95.0 (94.8–

95.1)

95.8 (95.7–

96.0)
94.0 (93.8–94.3)

SMOTE
0.979 (0.978–

0.980)
92.5 (92.1–92.9) 93.0 (92.7–93.3)

84.4 (83.9–

85.0)

96.8 (96.6–

97.0)

94.9 (94.7–

95.0)
92.9 (92.7–93.1)

Support vector 

machine

original
0.860 (0.858–

0.861)
51.3 (51.0–51.6) 97.3 (97.2–97.4)

88.5 (88.2–

88.8)

83.0 (82.9–

83.1)

89.6 (89.5–

89.6)
83.9 (83.8–84.0)

SMOTE
0.871 (0.870–

0.872)
63.3 (62.9–63.7) 91.4 (91.3–91.6)

75.2 (74.9–

75.5)

85.9 (85.8–

86.0)

88.6 (88.5–

88.7)
83.3 (83.1–83.4)

AUC, area under receiver operating characteristic; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.
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medical decision, particularly in critical-care medicine, the black-box 
issue leads physicians to distrust AI models when no rationale is 
provided (41). However, owing to nonlinear relationships in the data, 
physicians find it difficult to interpret these multiple features 
simultaneously. We  believe that this study provides a satisfactory 
prediction of extubation outcomes in mechanically ventilated patients 
as the first step. Further work is urgently needed to interpret the major 
features and fluctuations of the parameters that the algorithm prioritizes.

The study had several advantages, including addressing a clinically 
important question, utilizing machine learning techniques to develop a 
model using only ventilator-derived parameters, employing a robust 
methodology with feature selection and cross-validation, and addressing 
the data imbalance problem with SMOTE. Nevertheless, this study had 
several limitations that must be  addressed. First, the definition of 
extubation failure remains controversial. The definition adopted in this 
study was reintubation within 48 h after extubation. Noninvasive 
ventilation or high-flow oxygen therapy with the potential to prevent 
reintubation were excluded. Further studies should be conducted to 
distinguish post-extubation management using different time intervals 
(e.g., 72 h after extubation). Second, PSV was the ventilator weaning 
mode used in this study. However, several weaning modes have been 
used in clinical practice. Further studies are needed on extubation failure 
prediction using other weaning modes. Third, because this was a single-
center study, external validation is required. However, the data used in 
this study were routinely collected in a real-world setting. Fear of 
generalizability should be alleviated to a large extent.

Conclusion

In summary, this study developed a machine-learning method to 
predict extubation success using only time-series ventilator-derived 
parameters in mechanically ventilated patients. Among the models 
examined in this study, the RF model had the highest accuracy. The 
algorithm demonstrated the capability of predicting extubation outcomes 
every 3 min for individual patients, while providing precise and real-time 
predictions of extubation outcomes at various time points. The precise 
predictions generated by the algorithm have the potential to mitigate 
complications related to mechanical ventilation and associated medical 
costs. More prospective studies of AI interventions in decision-making 
regarding mechanical-ventilator weaning are needed.
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