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Abstract

The human brain is constantly subjected to a multimodal stream of probabilistic sen-

sory inputs. Electroencephalography (EEG) signatures, such as the mismatch negativ-

ity (MMN) and the P3, can give valuable insight into neuronal probabilistic inference.

Although reported for different modalities, mismatch responses have largely been

studied in isolation, with a strong focus on the auditory MMN. To investigate the

extent to which early and late mismatch responses across modalities represent com-

parable signatures of uni- and cross-modal probabilistic inference in the hierarchically

structured cortex, we recorded EEG from 32 participants undergoing a novel tri-

modal roving stimulus paradigm. The employed sequences consisted of high and low

intensity stimuli in the auditory, somatosensory and visual modalities and were gov-

erned by unimodal transition probabilities and cross-modal conditional dependencies.

We found modality specific signatures of MMN (�100–200 ms) in all three modali-

ties, which were source localized to the respective sensory cortices and shared right

lateralized prefrontal sources. Additionally, we identified a cross-modal signature of

mismatch processing in the P3a time range (�300–350 ms), for which a common net-

work with frontal dominance was found. Across modalities, the mismatch responses

showed highly comparable parametric effects of stimulus train length, which were

driven by standard and deviant response modulations in opposite directions. Strik-

ingly, P3a responses across modalities were increased for mispredicted stimuli with

low cross-modal conditional probability, suggesting sensitivity to multimodal (global)

predictive sequence properties. Finally, model comparisons indicated that the

observed single trial dynamics were best captured by Bayesian learning models track-

ing unimodal stimulus transitions as well as cross-modal conditional dependencies.
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1 | INTRODUCTION

Humans inhabit a highly structured environment governed by com-

plex regularities. The brain is subjected to such environmental regular-

ities by a multimodal stream of sensory inputs ultimately constructing

a perceptual representation of the world. The sensory system is

thought to capitalize on statistical regularities to efficiently guide

interaction with the world enabling anticipation and rapid detection of

sensory changes (Bregman, 1994; Dehaene et al., 2015;

Friston, 2005; Frost et al., 2015; Gregory, 1980; Winkler et al., 2009).

Neuronal responses to deviations from sensory regularities can

be valuable windows into the brain's processing of statistical proper-

ties of the environment and corresponding sensory predictions. The

presentation of rare deviant sounds within a sequence of repeating

standard sounds induces well known mismatch responses (MMRs)

that can be recorded with electroencephalography (EEG), such as the

mismatch negativity (MMN; Naatanen et al., 1978; Naatanen

et al., 2007) and the P3 (or P300; Polich, 2007; Squires et al., 1975;

Sutton et al., 1965). The MMN is defined as a negative EEG compo-

nent resulting from subtraction of standard from deviant trials

between �100 and 200 ms poststimulus. Although the MMN has pri-

marily been researched in the auditory modality, similar early mis-

match components have been reported for other sensory modalities,

including the visual (Kimura et al., 2011; Pazo-Alvarez et al., 2003;

Stefanics et al., 2014) and, to a lesser extent, the somatosensory

modality (Andersen & Lundqvist, 2019; Hu et al., 2013; Kekoni

et al., 1997). The P3 is a later positive going component in response

to novelty between 200 and 600 ms around central electrodes, which

has been described for the auditory, somatosensory, and visual modal-

ities and is known for its modality independent characteristics (Escera

et al., 2000; Friedman et al., 2001; Knight & Scabini, 1998;

Polich, 2007; Schroger, 1996).

Despite being one of the most well-studied EEG components, the

neuronal generation of the MMN remains subject of ongoing debate

(Garrido, Kilner, Stephan, & Friston, 2009; May & Tiitinen, 2010;

Naatanen et al., 2005). Two prominent but opposing accounts cast

the MMN as adaptation-based or memory-based, respectively.

Adaptation-based accounts argue that the observed differences

between standard and deviant responses primarily result from neuro-

nal attenuation leading to stimulus specific adaptation (SSA;

Jaaskelainen et al., 2004; May et al., 1999). In animals, SSA has been

shown to result in response patterns similar to the MMN (Ulanovsky

et al., 2003; Ulanovsky et al., 2004) and simulation work suggests that

different types of MMN-like responses can be reproduced by pure

adaptation models (May & Tiitinen, 2010). However, it remains

unclear if the full range of MMN characteristics can be explained by

adaptation alone (Fitzgerald & Todd, 2020; Garrido, Kilner, Stephan, &

Friston, 2009; Wacongne et al., 2012). The memory-based view, on

the other hand, suggests that the MMN is a marker of change detec-

tion based on sensory memory trace formation (Näätänen, 1990;

Naatanen et al., 2005; Naatanen & Näätänen, 1992). The memory

trace stores local information on stimulus regularity and compares it

to incoming sensory inputs that may signal changes in the current sen-

sory stream.

While largely neglected by previous interpretations of the MMN,

it is becoming increasingly clear that key empirical features of MMRs

concern stimulus predictability rather than stimulus change per

se. The MMN has been reported in response to abstract rule viola-

tions (Paavilainen, 2013), unexpected stimulus repetitions (Alain

et al., 1994; Horvath & Winkler, 2004; Macdonald & Campbell, 2011)

and unexpected stimulus omissions (Heilbron & Chait, 2018; Hughes

et al., 2001; Salisbury, 2012; Wacongne et al., 2011; Yabe

et al., 1997). Similar characteristics have been reported for P3 MMRs

(Duncan et al., 2009; Prete et al., 2022) and both MMN and P3

responses have been shown to increase for unexpected compared to

expected deviants (Schroger et al., 2015; Sussman, 2005; Sussman

et al., 1998). Insights concerning the predictive nature of MMRs have

led to further development of the memory-based account of MMN

generation into the model-adjustment hypothesis (Winkler, 2007).

This view assumes a perceptual model that is informed by previous

stimulus exposure and continually predicts incoming sensory inputs.

The model is updated whenever inputs diverge from current predic-

tions, and the MMN is hypothesized to constitute a marker of such

divergence.

The model-adjustment hypothesis is in line with the increasingly

influential view that the brain is engaging in perceptual inference to

anticipate future sensory inputs (Friston, 2005; Gregory, 1980; Von

Helmholtz, 1867). Related theories regard the brain as an inference

engine and come with neuronal implementation schemes that accom-

plish probabilistic (Bayesian) inference in a neurologically plausible

manner (Bastos et al., 2012; Friston, 2005, 2010). Process theories

such as predictive coding assume that the brain maintains a generative

model of its environment which is continuously updated by comparing

incoming sensory information with model predictions on different

levels of hierarchical cortical organization (Friston, 2005, 2010; Rao &

Ballard, 1999; Winkler & Czigler, 2012). Differential influences of SSA

and change detection on the MMN are proposed to result from the

same underlying process of prediction error minimization, mediated

by different post-synaptic changes to (predicted) sensory inputs

(Auksztulewicz & Friston, 2016; Garrido et al., 2008; Garrido, Kilner,

Kiebel, & Friston, 2009). As such, the theory has the potential to unify

previously opposing theories of MMN generation (Garrido

et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009; Garrido, Kilner,

Stephan, & Friston, 2009) while accounting for its key empirical fea-

tures (Heilbron & Chait, 2018; Wacongne et al., 2012).

With regard to the proposed universal nature of predictive

accounts of brain function, reports of comparable MMRs across dif-

ferent modalities are of particular interest. So far, mismatch signals

have been primarily studied in isolation, with a strong focus on the

auditory system. However, key properties of the auditory MMN, such

as omission responses and modulations by predictability, have also

been reported for the visual (Czigler et al., 2006; Kok et al., 2014) and

the somatosensory MMN (Andersen & Lundqvist, 2019; Naeije

et al., 2018), and modeling studies in all three modalities suggest that

GRUNDEI ET AL. 3645



MMRs may reflect signatures of Bayesian learning (BL; Gijsen

et al., 2021; Lieder et al., 2013; Maheu et al., 2019; Ostwald

et al., 2012; Stefanics et al., 2018). While studies directly investigating

mismatch signals in response to multimodal sensory inputs are rare,

previous research indicates a ubiquitous role for cross-modal probabi-

listic learning. The brain tends to automatically integrate auditory,

somatosensory, and visual stimuli during sequence processing

(Bresciani et al., 2006, 2008; Frost et al., 2015) and cross-modal per-

ceptual associations can influence statistical learning of sequence reg-

ularities (Andric et al., 2017; Parmentier et al., 2011), modulate MMRs

(Besle et al., 2005; Butler et al., 2012; Friedel et al., 2020; Kiat, 2018;

Zhao et al., 2015) and influence subsequent unimodal processing in

various ways (Shams et al., 2011). Recent advances in modeling

Bayesian causal inference suggest that the main computational stages

of multimodal inference evolve along a multisensory hierarchy involv-

ing early sensory segregation followed by mid-latency sensory fusion

and late Bayesian causal inference (Cao et al., 2019; Rohe et al., 2019;

Rohe & Noppeney, 2015). However, the extent to which the MMN

and P3 reflect these stages and should be considered sensory specific

signatures of regularity violation or the result of modality independent

computations in an underlying predictive network is not fully

understood.

The current study aimed to investigate the commonalities and dif-

ferences between MMRs in different modalities in a single experiment

and to elucidate in how far they reflect local, unimodal or global,

cross-modal computations. To this end, we employed a roving stimu-

lus paradigm, in which auditory, somatosensory, and visual stimuli

were simultaneously presented in a probabilistic tri-modal stimulus

stream.

Typically, MMRs are studied with the oddball paradigm, in which

rarely presented “oddball” stimuli deviate from frequently presented

standard stimuli in some physical feature, such as sound pitch or

stimulus intensity. The roving stimulus paradigm, on the other hand,

defines deviants and standards in terms of their local sequence posi-

tion, while the frequency of occurrence of their stimulus features

across the sequence is equal (Baldeweg et al., 2004; Cowan

et al., 1993). The deviant is defined as the first stimulus that breaks a

train of repeating (standard) stimuli. With repetition, the deviant sub-

sequently becomes the new standard, defining a train of stimulus

repetitions. Thus, the roving stimulus paradigm is an excellent tool to

experimentally induce MMRs, while controlling for differences in

physical stimulus features.

Based on a probabilistic model, we generated sequences of high

and low intensity stimuli that were governed by unimodal transition

probabilities as well as cross-modal conditional dependencies. This

allowed us to test to what extent early and late MMRs are sensitive

to local and global violations of statistical regularities and to draw con-

clusions regarding their potential role in cross-modal hierarchical

inference. Specifically, we extracted the MMN and P3 MMRs for each

modality and investigated their modality specific and modality general

response properties regarding stimulus repetition and change, as well

as their sensitivity to cross-modal predictive information. Further, we

used source localization to investigate modality specific and modality

general neuronal generators of MMRs. Finally, we complemented our

average-based analyses with single-trial modeling to investigate if sig-

natures of unimodal and cross-modal Bayesian inference can account

for trial-to-trial fluctuations in the MMN and P3 amplitudes.

2 | MATERIALS AND METHODS

Participants underwent a novel multimodal version of the roving stim-

ulus paradigm. Our paradigm, depicted in Figure 1, consisted of simul-

taneously presented auditory (A), somatosensory (S), and visual

(V) stimuli, which each alternated between two different intensity

levels (“low” and “high”). The tri-modal stimulus sequences originated

from a single probabilistic model (described in Section 2.3), resulting

in different combinations of low and high stimuli across the three

modalities in each trial.

2.1 | Participants

Thirty-four healthy volunteers (19–43 years old, mean age:

26, 22 females, all right-handed), recruited from the student body of

the Freie Universität Berlin and the general public, participated for

monetary compensation or an equivalent in course credit. The study

was approved by the local ethics committee of the Freie Universität

Berlin and written informed consent was obtained from all partici-

pants prior to the experiment.

2.2 | Experimental setup

Each trial consisted of three bilateral stimuli (A, S, and V) that were

presented simultaneously by triggering three instantaneous outputs

of a data acquisition card (National Instruments Corporation, Austin,

Texas, USA) every 1150 ms (inter-stimulus interval).

Auditory stimuli were presented via in-ear headphones (JBL, Los

Angeles, California, USA) to both ears and consisted of sinusoidal

waves of 500 Hz and 100 ms duration that were modulated by two

different amplitudes. The amplitudes were individually adjusted with

the participants to obtain two clearly distinguishable intensities (mean

of the low intensity stimulus: 81:43�1:22dB; mean of the high inten-

sity stimulus: 93:02�0:98dB).

Somatosensory stimuli were administered with two DS5 isolated

bipolar constant current stimulators (Digitimer Limited, Welwyn Gar-

den City, Hertfordshire, UK) via adhesive electrodes (GVB-geliMED

GmbH, Bad Segeberg, Germany) attached to the wrists of both arms.

The stimuli consisted of electrical rectangular pulses of 0.2 ms dura-

tion. To account for interpersonal differences in sensory thresholds,

the two intensity levels used in the experiment were determined on

an individual basis. The low intensity level (mean: 3:97�0:84mA) was

set in proximity to the detection threshold yet high enough to be

clearly perceivable (and judged to be the same intensity on both

sides). The high intensity level (mean: 6:47�1:33mA) was determined
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for each participant to be easily distinguishable from the low intensity

level yet remaining non-painful and below the motor threshold.

Visual stimuli were presented via light emitting diodes (LEDs) and

transmitted through optical fiber cables mounted vertically centered

to both sides of a monitor. The visual flashes consisted of rectangular

waves of 100 ms duration that were modulated by two different

amplitudes (low intensity stimulus: 2:65V; high intensity stimulus:

10V) that were determined to be clearly perceivable and distinguish-

able prior to the experiment. Participants were seated at a distance of

about 60 cm to the screen such that the LED's were placed within the

visual field at a visual angle of about 67�.

In each of six experimental runs of 11.5 min, a sequence of

600 stimulus combinations was presented. To ensure that participants

maintained attention throughout the experiment and to encourage

monitoring of all three stimulation modalities, participants were

instructed to respond to occasional catch trials (target questions) via

foot pedals. In six trials randomly placed within each run the fixation

cross changed to one of the letters A, T, or V followed by a question

mark. This prompted participants to report if the most recent stimulus

(directly before appearance of the letter) in the auditory (letter A),

somatosensory (letter T for “tactile”), or visual (letter V) modality was

presented with low or high intensity. The right foot was used to press

either a left or a right pedal, and the pedal assignment (left = low/

right = high or left = high/right = low) was counterbalanced across

participants.

It should be noted that our MMR paradigm in form of an attended

roving stimulus sequence with relatively long ISI (1.15 s) differs from

the classic oddball protocol for MMN elicitation in which participants

are engaged in a primary task, often attending a separate modality.

Since this is not easily possible with our paradigm (containing audi-

tory, somatosensory, and visual stimuli), we used catch-trials in each

modality to ensure that attentional resources were distributed largely

equally across the simultaneous stimulus streams. The ISI at the upper

end of the range used for MMN elicitation was set during piloting

such that the perceptually demanding tri-modal bilateral stimulation

was deemed not to be overwhelming in terms of sensory overload.

2.3 | Probabilistic sequence generation

Each of the three sensory modalities (A, S, V) were presented as

binary (low/high) stimulus sequences originating from a common

probabilistic model. The model consists of a state s at time t

evolving according to a Markov chain p stjst�1ð Þð Þ with each state

deterministically emitting a combination of three binary observations

conditional on the preceding observation combination

p oA,t,oS,t,oV,tjoA,t�1,oS,t�1,oV,t�1ð Þð Þ. For example, a transition

expressed as [100j000] indicates a unimodal auditory change

oA,t ¼1,oA,t�1 ¼0ð Þ with repeating somatosensory and visual modali-

ties oS,t ¼ oS,t�1 ¼0ð and oV,t ¼ oV,t�1 ¼0Þ. For each stimulus modality,

in each state, the other two modalities form either congruent observa-

tions ([00] and [11]), or incongruent observations ([01] and [10]),

which was used to manipulate the predictability of transitions in the

sequences in different runs of the experiment.

Three types of stimulus sequences, depicted in Figure 2 were

generated with different probability settings. The settings determine

the transition probabilities within each modality given the arrange-

ment of the other two modalities (i.e., either congruent or

F IGURE 1 Experimental paradigm. Participants were seated in front of a screen and received sequences of simultaneously presented bilateral
auditory beep stimuli (green), somatosensory electrical pulse stimuli (purple) and visual flash stimuli (orange) each at either low or high intensity.
On consecutive trials, stimuli within each modality either repeated the previous stimulus intensity of that modality (standard) or alternated to the
other intensity (deviant). This created tri-modal roving stimulus sequences, where the repetition/alternation probability in each modality was
determined by a single probabilistic model (see Section 2.3). In 1% of trials (catch trials) the fixation cross changed to one of the three letters A, T,
or V, interrupting the stimulus sequence. The letter prompted participants to indicate whether the last auditory (letter A), somatosensory (letter T
for “tactile”) or visual (letter V) stimulus, respectively, was of high or low intensity. Responses were given with a left or right foot pedal press
using the right foot.
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incongruent). One setting defines lower change probability if the

other two modalities are congruent (e.g., for any change in modality A

from t�1 to t, S and V were congruent with p 100j000ð Þ¼
p 000j100ð Þ¼ p 111j011ð Þ¼ p 011j111ð Þ¼0:025 and S and V were

incongruent with p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010jð
110Þ¼0:15). The second setting defines lower change probability if

the other two modalities are incongruent (e.g., for any change in

modality A from t�1 to t, S and V were incongruent with

p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010j110ð Þ¼0:025 and S

and V were congruent with p 100j000ð Þ¼ p 000j100ð Þ¼ p 111ð
j011Þ¼ p 011j111ð Þ¼0:15). The third setting defines equal change

probability if the other two modalities are congruent or incongruent

(e.g., for any change in modality A from t�1 to t, S and V were con-

gruent with p 100j000ð Þ¼ p 000j100ð Þ¼ p 111j011ð Þ ¼ p 011j111ð Þ¼
0:0875 and S and V were incongruent with

p 101j001ð Þ¼ p 001j101ð Þ¼ p 110j010ð Þ¼ p 010jð 110Þ¼0:0875).

In each of six experimental runs, the stimulus sequence was

defined by one of the three different probability settings. Each

F IGURE 2 Probabilistic sequence generation. (a) Schematic of state transition matrix (left). Light color shading depicts transitions in the
respective modality which were assigned specific transition probabilities: Green = auditory change, purple = somatosensory change,
orange = visual change, gray diagonal = tri-modal repetition, white = multimodal change (set to zero). States 0–7 correspond to a specific
stimulus combination (right), that is, eight permutations of low (0) and high (1) stimuli across three modalities (A = auditory; S = somatosensory;
V = visual) as described in the main text. (b) Visualization of states (s) evolving according to a Markov chain emitting tri-modal binary outcomes.
(c) Probability settings of stimulus sequences. Left column: Sequences. Right column: Averaged empirical change probabilities across all
sequences. Top: Transition probabilities determine that for each modality a change is unlikely (p = .025) if the other two modalities are congruent
(and likely if they are incongruent; p = .15). Middle: Transition probabilities determine that for each modality a change is likely (p = .15) if the

other two modalities are congruent (and unlikely if they are incongruent; p = .025). Bottom: Transition probabilities determine that for each
modality a change is equally likely (p = .0875) if the other two modalities are congruent or incongruent. (d) Averaged empirical change
probabilities for predictability conditions.
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probability setting was used twice during the experiment and the

order of the six different sequences was randomized. Participants

were unaware of the sequence probabilities and any learning of

sequence probabilities was considered to be implicit and task

irrelevant.

Following the nomenclature suggested by Arnal and Giraud

(2012), the resulting stimulus transitions for each modality within the

different sequences can be defined as being either predicted (here

higher change probability conditional on congruency/incongruency),

mispredicted (here lower change probability conditional on congru-

ency/incongruency) or unpredictable (here equal change probability).

For each modality, repetitions are more likely p¼ :825ð Þ than changes

p¼ :175ð Þ regardless of the type of probability setting and stimulus,

resulting in classic roving standard sequences for each modality (mean

stimulus train length: 5, mean range of train length: 2–34 stimuli).

2.4 | EEG data collection and preprocessing

Data were collected using a 64-channel active electrode EEG system

(ActiveTwo, BioSemi, Amsterdam, Netherlands) at a sampling rate of

2048 Hz, with head electrodes placed in accordance with the extended

10–20 system. Individual electrode positions were recorded using an

electrode positioning system (zebris Medical GmbH, Isny, Germany).

Preprocessing of the EEG data was performed using SPM12

(Wellcome Trust Centre for Neuroimaging, Institute for Neurology,

University College London, London, UK) and in-house MATLAB

scripts (MathWorks, Natick, MA). First, the data were referenced

against the average reference, high-pass filtered (0.01 Hz), and down-

sampled to 512 Hz. Subsequently, eye-blinks were corrected using a

topographical confound approach (Berg & Scherg, 1994; Ille

et al., 2002). The Data were epoched using a peri-stimulus time inter-

val of �100 to 1050 ms and all trials were visually inspected and arti-

factual data removed. Likewise, catch trials were omitted for all

further analyses. Furthermore, the EEG data of two consecutive par-

ticipants were found to contain excessive noise due to hardware

issues, resulting in their exclusion from further analyses and leaving

data of 32 participants. Finally, a low-pass filter was applied (45 Hz)

and the preprocessed EEG data were baseline corrected with respect

to the pre-stimulus interval of �100 to �5 ms. To use the general lin-

ear model (GLM) implementation of SPM, the electrode data of each

participant were linearly interpolated into a 32 � 32 grid for each time

point, resulting in one three-dimensional image (with dimensions

32 � 32 � 590) per trial. These images were then spatially smoothed

with a 12 � 12mm full-width half-maximum Gaussian kernel to meet

the requirements of random field theory, which the SPM software

uses to control the family wise error rate.

2.5 | Event-related responses and statistical
analysis

First, to extract basic MMR signals of each modality from the EEG

data, we contrasted standard and deviant trials of each modality with

paired t-tests corrected for multiple comparisons by using cluster-

based permutation tests implemented in fieldtrip (Maris &

Oostenveld, 2007). Two time windows of interest were defined based

on the literature (Duncan et al., 2009) to search for earlier negative

clusters between 50 and 300 ms, corresponding to the MMN, and

later positive clusters between 200 and 600 ms, corresponding to the

P3. Clusters were defined as adjacent electrodes with a cluster defin-

ing threshold of pfwe < :05.

For further analyses, GLMs were set up as implemented in

SPM12, which allows defining conditions on the single trial level. To

test for effects of stimulus repetitions on standards, deviants, and

MMRs (deviants minus standards), a TrainLength model was defined

that consisted of 45 regressors: an intercept regressor, 36 regressors

coding for the repetition train length (trials binned into 1, 2, 3, 4–5, 6–

8, >8 repetitions) for standards (i.e., the position of the standard in the

current train) and deviants (i.e., the number of standards preceding

the deviant) in each modality, as well as four global standard and four

global deviant regressors. The binning was chosen such that trials

were roughly balanced across the bins, corresponding to, on average,

around 100 deviant trials and around 500 standard trials in each cate-

gory for each modality The global regressors captured the train length

(1, 2, 3, >3 repetitions) of standards and deviants regardless of their

modality, meaning that trials in which standards occurred in all three

modalities were coded as global standards, whereas trials in which a

deviant occurred in any of the three modalities were coded as global

deviants.

To test for the implicit effect of cross-modal predictability based

on the different conditional probability setting in the sequence, a Pre-

dictability model was defined that consisted of 37 regressors: an inter-

cept regressor and 18 regressors coding standards and deviants of

each modality for each of the three conditions described above:

unpredictable (trials originate from sequences with no conditional

dependence between modalities), predicted (trials originate from

sequences with conditional dependence; trials defined by change

being likely), mispredicted (trials originate from sequences with condi-

tional dependence; trials defined by change being unlikely). On the

single-participant level, these were coded for congruent and incongru-

ent trials separately resulting in 36 regressors. By definition, the num-

ber of trials in regressors with mispredicted trials was lowest, on

average corresponding to around 60 deviant trials and 800 standard

trials per modality.

Finally, a P3-Conjunction model was specified that consisted of

seven regressors: an intercept regressor and six regressors coding all

standards and deviants for each of the three modalities. This model

was used to apply SPM's second level conjunction analysis, contrast-

ing standards and deviants across modalities in search of common P3

effects across modalities.

Each GLM was estimated on the single-trial data of each partici-

pant using restricted maximum likelihood estimation. This yielded

β-parameter estimates for each model regressor over (scalp-) space

and time, which were subsequently analyzed at the group level. Sec-

ond level analyses consisted of a mass-univariate multiple regression

analysis of the individual β scalp-time images with a design matrix

specifying regressors for each condition of interest as well as a subject
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factor. Second level beta estimates were contrasted for statistical

inference and multiple comparison correction was achieved with

SPM's random field theory-based FWE correction (Kilner et al., 2005).

2.6 | Source localization

To investigate the most likely underlying neuronal sources for the

MMN and P3 MMR we applied distributed source reconstruction as

implemented in SPM12 to the ERP data. For each participant, the

MMN of each modality (auditory, somatosensory, visual) was source

localized within a time window of 100–200 ms. For the P3, the aver-

age MMR at 330 ms was chosen for source localization as this time

point showed the strongest overlap of P3 responses between modali-

ties (based on the results of the P3 conjunction contrast).

Participant-specific forward models were created using an

8196-vertex template cortical mesh co-registered with the individual

electrode positions via fiducial markers. An EEG head model based on

the boundary element method was used to construct the forward

model's lead field. For the participant-specific source estimates, multi-

ple sparse priors under group constraints were applied. The source

estimates were subsequently analyzed at the group level using the

GLM implemented in SPM12. Second-level contrasts consisted of

one-sample t tests for each modality as well as (global) conjunction

contrasts across modalities. The resulting statistical parametric maps

were thresholded at the peak level with p < .05 after FWE correction.

The anatomical correspondence of the MNI coordinates of the cluster

peaks were identified via cytoarchitectonic references using the SPM

Anatomy toolbox (Eickhoff et al., 2005).

2.7 | Single-trial modeling of EEG data

In addition to the analysis of event-related potentials, the study aimed

to compare different computational strategies of sequence processing

potentially underlying neuronal generation of MMRs. To this end, we

generated regressors from different BL models as well as a train

length dependent change detection (TLCD) model making different

predictions for the single-trial EEG data.

Theories on MMN generation hypothesize adaptation and

memory-trace dependent change detection to contribute to the

MMN. With prior repetition of stimuli, the response to standard stim-

uli tends to decrease while the response to deviant stimuli tends to

increase. We defined the TLCD model to reflect such reciprocal

dynamics of responses to stimulus repetition and change without

invoking assumptions of probabilistic inference. The model is defined

for each modality separately and tracks the stimulus train lengths c for

a given modality by counting stimulus repetitions: ct ¼ dt ct�1þdtð ),

where dt ¼1ot¼ot�1 takes on the value 1 whenever the current obser-

vation ot is a repetition of the previous observation ot�1 and dt ¼0

resets the current train length to zero. To form single-trial predictors

of the EEG data, the model outputs values that increase linearly with

train length and have opposite signs for standards and deviants:

TLCD otð Þ¼ �ct ifdt ¼1

ct�1 ifdt ¼0

�

In addition to the TLCD model, different BL models were created

to contrast the static train length based TLCD model with dynamic

generative models tracking transition probabilities. The BL models

consist of conjugate Dirichlet-Categorical models estimating probabili-

ties of observations read out by three different surprise functions:

Bayesian surprise (BS), predictive surprise (PS), and confidence-

corrected surprise (CS).

BS quantifies the degree to which an observer adapts their gener-

ative model to incorporate new observations (Baldi & Itti, 2010; Itti &

Baldi, 2009) and is defined as the Kullback–Leibler (KL) divergence

between the belief distribution prior and posterior to the update:

BS ytð Þ¼KL p st�1jyt�1,…,y1ð Þ
���p stjyt,…,y1ð Þ

� �
. PS is based on

(Shannon, 1948) definition of information and defined as the negative

logarithm of the posterior predictive distribution, assigning high sur-

prise to observed events yt with low estimated probability of occur-

rence: PS ytð Þ¼�lnp ytjstð Þ¼�ln p ytjyt�1,…,y1ð Þ. CS additionally

considers the commitment of the generative model and scales with

the negative entropy of the prior distribution (Faraji et al., 2018). It is

defined as the KL divergence between the (informed) prior distribu-

tion at the current time step and a flat prior distribution bp stð Þ updated
with the most recent event yt: CS ytð Þ¼KL p stð Þjbp stjytð Þð Þ.

Following Faraji et al. (2018) surprise quantifications can be

categorized as puzzlement or enlightenment surprise. While puzzle-

ment refers to the mismatch between sensory input and internal

model belief, closely related to the concept of prediction error,

enlightenment refers to the update of beliefs to incorporate new

sensory input. In the current study, we were interested in a quanti-

fication of the model inadequacy by means of an unsigned predic-

tion error as reflected by surprise. As such, throughout the

manuscript, with prediction error we do not refer to the specific

term of (signed) reward prediction error as used for example in

reinforcement learning but rather use it to refer to the signaling of

prediction mismatch. While both PS and CS are instances of puz-

zlement surprise, CS is additionally scaled by belief commitment

and quantifies the concept that a low-probability event is more sur-

prising if commitment to the belief (of this estimate) is high. BS, on

the other hand, is an instance of enlightenment surprise and is con-

sidered a measure of the update to the generative model resulting

from new incoming observations.

A detailed description of the Bayesian observer, its transition

probability version as well as the surprise read-out functions can be

found in our previous work on somatosensory MMRs (Gijsen

et al., 2021). Here, we will primarily provide a brief description of the

specifics of two implementations of Dirichlet-Categorical observer

models, a unimodal and a cross-modal model. Both observer models

receive stimulus sequences (of one respective modality) as input and

iteratively update a set of parameters with each new incoming obser-

vation. In each iteration, the estimated parameters are read out by the

surprise functions (BS, PS, and CS) to produce an output which is sub-

sequently used as a predictor for the EEG data.
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For each modality, the unimodal Dirichlet-Categorical model con-

siders a binary sequence with two possible stimulus identities (low

and high) estimating transition probabilities with yt ¼ ot for t¼1,…,T

with a set of hidden parameters s ið Þ for each possible transition from

ot�1 ¼ i. This unimodal model does not capture any cross-modal

dependencies in the sequence (i.e., the alternation and repetition

probabilities conditional on the tri-modal stimulus configuration).

Therefore, we defined a cross-modal Dirichlet-Categorical model to

address the question whether the conditional dependencies were

used by the brain during sequence processing for prediction of stimu-

lus change. The dependencies in the sequence were independent of

stimulus identity but provide information about the probability of rep-

etition or alternation dtð ) conditional on the congruency of the other

modalities. The cross-modal model thus estimates alternation proba-

bilities yt ¼ dtð for t¼2,…,TÞ with a set of hidden parameters s ið Þ when

other modalities are incongruent and s cð Þ when other modalities are

congruent. Therefore, while the unimodal model learns the probability

of stimulus transitions within modality, the cross-modal model learns

the probability of stimulus alternations within modality conditional on

the congruency of the other modalities. As such, the cross-modal

model provides a minimal implementation of a Bayesian observer that

captures the cross-modal dependencies in the sequences.

2.7.1 | Model fitting procedure

The technical details of the model fitting and subsequent Bayesian

model selection (BMS) procedures are identical to Gijsen et al. (2021)

where the interested reader is kindly referred to for further informa-

tion. First, the stimulus sequence-specific regressor of each model

was obtained for each participant. After z-score normalization, the

regressors were fitted to the single-trial, event-related electrode data

using a free-form variational inference algorithm for multiple linear

regression (Flandin & Penny, 2007; Penny et al., 2003; Penny

et al., 2005). The obtained model-evidence maps were subsequently

subjected to the BMS procedure implemented in SPM12 (Stephan

et al., 2009) to draw inferences across participants with well-

established handling of the accuracy-complexity trade-off

(Woolrich, 2012).

In total, eight regression models were fit: A null model (offset

only), a TLCD regression model and, for each of the three surprise

read-out functions, one regression model including only the unimodal

regressors and one additionally including the cross-modal regressors.

The purely unimodal regression model will be called UM and the

regression model including unimodal and, additionally, cross-modal

regressors will be called UCM. The design matrix of the TLCD regres-

sion model consisted of four regressors, an offset and the predicted

parametric change responses for each of the three modality

sequences (auditory, somatosensory, visual). Similarly, the design

matrix of the UM regression model consisted of four regressors, an

offset and the surprise responses of the unimodal model for each of

the three modalities. The UCM regression model was identical to the

UM regression model but with an additional three regressors

containing the cross-modal surprise responses for each modality.

Therefore, the UCM regression model is more complex and gets

assigned higher model evidence than the reduced UM regression

model only if the additional regressors contribute significantly to a

better model fit (Stephan et al., 2009).

To allow for the possibility of different timescales of stimulus

integration (Maheu et al., 2019; Ossmy et al., 2013; Runyan

et al., 2017), the integration parameter τ of the Dirichlet-Categorical

model was optimised for each model, participant and peri-stimulus

time-bin before model selection. To this end, model regressors were

fit for a range of 11 tau parameter configurations ([0, 0.001, 0.0015,

0.002, 0.003, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2]) corresponding to inte-

gration windows with a 0.5 stimulus weighting at (half-life of) [600,

462, 346, 231, 138, 69, 34, 13, 6, 3] stimuli, of which the parameter

with the best model evidence was chosen.

2.7.2 | Bayesian model comparison

The estimated model-evidence maps were used to evaluate the

models' relative performance across participants via family-wise BMS

(Penny et al., 2010). The model space was partitioned into three types

of families to draw inference on different aspects of the involved

models. Given that the literature provides some evidence for each of

the three surprise read-out functions (BS, PS, CS) to capture some

aspect of EEG MMRs, we included all of them in the family wise com-

parisons to avoid biasing the comparison of different BL models.

The first model comparison considered the full space of BL

models as a single family (BL family) and compared it to the TLCD

model (TLCD family) and the null model (NULL family). Since the BL

models had their tau parameter optimized, which was not possible for

the TLCD model, we applied the same penalization method used in

our previous study (Gijsen et al., 2021). The degree to which the opti-

mization on average inflated model evidence was subtracted from the

BL models prior to BMS. Specifically, for all parameter values, the dif-

ference between the average model evidence and that of the opti-

mized parameter was computed and averaged across poststimulus

time bins, electrodes and participants.

Subsequent analyses grouped the different BL models into sepa-

rate families: The second comparison grouped the BL models into two

families of UM and UCM models, as well as the null model, to test

which electrodes and time points showed influences of unimodal ver-

sus cross-modal processing. The third comparison grouped the BL

models into three surprise families and the null model, to test whether

the observed MMRs were best captured by PS, BS, or CS.

3 | RESULTS

3.1 | Behavioral results

Participants showed consistent performance in responding to the

catch trials during each experimental run, indicating their ability to
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globally maintain their attention to the tri-modal stimulus stream. Of

the 85.5% responses made in time, 75.3% were correct with an aver-

age reaction time of 1:4�0:25s.

3.2 | Event-related potentials

3.2.1 | Unimodal MMRs

Cluster-based permutation tests confirmed the presence of early

modality specific MMN components as well as later P3 MMRs for all

three modalities. Both early and late MMRs showed a modulation by

the number of stimulus repetitions, the details of which will be

described in the following sections.

3.2.2 | Auditory MMRs

The MMN, as the classic MMR, has originally been studied in the audi-

tory modality and is commonly described as the ERP difference wave

calculated by subtraction of standard trials from deviant trials (devi-

ants-standards). This difference wave typically shows a negative

deflection at fronto-central electrodes and corresponding positivity at

temporo-parietal sites, ranging from around 100 to 250 ms (Naatanen

et al., 1978; Naatanen et al., 2007). Correspondingly, we find a signifi-

cant negative fronto-central auditory MMN cluster between 80 and

200 ms (Figure 3a). Within the MMN cluster, deviants appear to

deflect from the standard ERP around the peak of the auditory N1

component and reach their maximum difference around the peak of

the subsequent P2 component. In the later time window, we observe

positive MMRs at central electrodes between 200 and 400 ms, corre-

sponding to a P3 modulation, as well as beyond 400 ms at progres-

sively more posterior electrodes.

Within early and late auditory MMR clusters, the response to

both standards and deviants was modulated by the number of stan-

dard repetitions. The auditory system is known to be sensitive to

stimulus repetitions, particularly within the roving standard paradigm

(Baldeweg et al., 2004; Cowan et al., 1993; Ulanovsky et al., 2003;

Ulanovsky et al., 2004). Therefore, we hypothesized a gradual

increase of the auditory response to standard stimuli around the time

of the MMN, known as repetition positivity (Baldeweg, 2006;

Baldeweg et al., 2004; Haenschel et al., 2005) as well as reciprocal

negative modulation of the corresponding deviant response (Bendixen

et al., 2007; Naatanen et al., 2007). Together, these effects should

result in a gradual increase of the MMN amplitude with stimulus repe-

tition. Indeed, linear contrasts applied to the GLM beta parameter

estimates of the TrainLength model revealed that the MMN increases

with the repetition of standards before a deviant was presented (94–

200 ms, cluster pfwe < :001). This effect was driven by a negative linear

modulation of the deviant response (98–200ms, cluster pfwe < :001) as

well as a repetition positivity effect on the standards (111–172ms,

cluster pfwe < :001). Similarly, the later P3MMR increased with stan-

dard repetitions (200–600ms, cluster pfwe < :001) and this effect was

driven by an increase of deviant responses (200–600ms, cluster

pfwe < :001) and a decrease of standard responses (205–359ms, clus-

ter pfwe < :001). Given the temporal difference between standard

(around 200–350ms) and deviant (200–600ms) train length effects,

the parametric modulation of the late MMR beyond 350ms seems to

be primarily driven by the increase in deviant responses.

3.2.3 | Somatosensory MMRs

We hypothesized somatosensory MMRs to consist of early bilateral

(fronto-) temporal negativities, resulting primarily from increased

N140 components (Kekoni et al., 1997), with a corresponding central

positivity extending into a later central P3 component.

After an early mismatch effect starting at �50 ms at fronto-

central electrodes, a more pronounced bilateral temporal cluster

emerged that extended from �90 to 190 ms and can be considered

the somatosensory equivalent of the auditory MMN (Figure 3b). A

reversed positive central component can be observed at the time of

the somatosensory MMN (sMMN) and throughout the entire later

time window (200–600 ms) at which point it can be considered a

putative P3 MMR.

Early and late somatosensory MMRs were significantly modulated

by stimulus repetition. Bilateral electrodes within the sMMN cluster

show an increase of the sMMN amplitude with repetition (123–

166 ms, cluster pfwe < :05). This effect was driven by an increase of

deviant negativity (135–188ms, cluster pfwe < :05) in combination with

a positivization of the standard (86–188ms, cluster pfwe < :05). Simi-

larly, the later P3MMR increases with repetition of standards (200–

600ms, cluster pfwe < :05), mutually driven by increasing deviant

responses (221–600ms, cluster pfwe < :05) and decreasing standard

responses (200–600ms, cluster pfwe < :05).

3.2.4 | Visual MMRs

We hypothesized visual MMRs to present as an early MMN at occipi-

tal to parieto-temporal electrodes and a later P3 component at central

electrodes. Although less pronounced than its auditory and somato-

sensory counterparts, we indeed observed a negative visual mismatch

component that developed from occipital to parieto-temporal elec-

trodes between �130 and 200 ms (Figure 3c). In the later time win-

dow, we found a central positive component between �300 and

600 ms, corresponding to a P3 MMR.

Within the significant visual MMN (vMMN) cluster, the linear

contrast testing for repetition effects did not reach significance when

correcting clusters for multiple comparisons (pfwe > :05). However, it is

worth noting that some electrodes in this cluster seemed to show a

similar pattern of response increases and decreases as in the auditory

and somatosensory modality, which became apparent at more lenient

thresholds. The vMMN tended to become more negative with repeti-

tion of standards (143–148ms, peak puncorr < :005), with opposite ten-

dencies of deviant negative increase (143–148ms, peak puncorr < :05)
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F IGURE 3 Mismatch responses. Panels (a–c) show mismatch responses (MMRs) of auditory (a), somatosensory (b), and visual (c) modalities.
Within panels: Left: mismatch negativity (MMN). Right: P3 MMR. Gray dots (top) and gray boxes (bottom) indicate significant MMR electrodes
and time points with pfwe < :05. Top row: MMR scalp topographies (deviants-standards). Bottom row: Grand average ERPs (left panels) and beta
parameter estimates of significant linear contrast clusters (right panels). Colored bars depict six beta parameter estimates of the TrainLength GLM
(1, 2, 3, 4–5, 6–8, >8 repetitions) averaged across electrodes within linear contrast clusters. Asterisks indicate significance of the linear
contrast (pfwe < :05).

GRUNDEI ET AL. 3653



and standard decrease (193–215ms, peak pfwe < :05). Thus, although

we cannot conclude a modulation by standard repetition of the

vMMN with any certainty, the observed beta parameters are in princi-

ple compatible with the effects observed in the auditory and somato-

sensory modalities (please see the discussion for potential reasons for

the reduced vMMN in our data).

Within the P3 MMR cluster, on the other hand, we find signifi-

cant clusters of linear increase of the MMR (375–600 ms, cluster

pfwe < :05), again constituted by an increase in deviant responses

(410–549ms, cluster pfwe < :05) and concomitant decrease in standard

responses (316–600ms, cluster pfwe < :05).

3.2.5 | Cross-modal P3 effects

In search of a common P3 effect to deviant stimuli, we created con-

junctions of the deviants > standards contrasts across the auditory,

somatosensory, and visual modalities. The conjunction revealed a

common significant cluster starting at �300 ms (cluster pfwe < :05) that

comprised anterior central effects around 300–350ms followed by

more posterior effects from 400 to 600ms (Figure 4a).

To investigate the modulation of the P3 MMR by predictability,

we used two-way ANOVAs with the three-level factor modality

(auditory, somatosensory, visual) and the three-level factor predictabil-

ity condition (predicted, mispredicted, unpredictable). Separate ANO-

VAs were applied to deviants and standards. We hypothesized that

the cross-modal P3 MMR might be sensitive to multisensory predic-

tive information in the sequence, as the P3 has been shown to be

sensitive to global sequence statistics (Bekinschtein et al., 2009;

Wacongne et al., 2011) and to be modulated by stimulus predict-

ability (Horvath et al., 2008; Horvath & Bendixen, 2012; Max

et al., 2015; Prete et al., 2022; Ritter et al., 1999; Sussman

et al., 2003). Indeed, within the common P3 cluster, both deviants

(299–313 ms, peak pfwe < :05) and standards (316–332ms, peak

pfwe < :05) show significant differences between predictability condi-

tions. No significant interaction of predictability condition with modal-

ity was observed.

Post hoc t tests were applied to the peak beta estimates to inves-

tigate the differences between the three pairs of conditions. For the

ANOVA concerning the deviant trials, post hoc t tests show a signifi-

cant difference for mispredicted > predicted (t = 14.667; p < .001,

Bonferroni corrected), mispredicted > unpredictable (t = 14.76;

p < .001, Bonferroni corrected) and no significant difference between

unpredictable > predicted conditions (t = 0.01; p > .05). Similarly, for

the ANOVA concerning the standard trials, post hoc t tests show that

there is a significant difference for mispredicted > predicted (t = 10.67;

F IGURE 4 Cross-modal P3
effects. (a) T-Maps of the
conjunction of
deviant > standard contrasts
across the auditory,
somatosensory, and visual
modalities. (b) Beta estimates
averaged across electrodes
within significant clusters with

peak pfwe<0.05, resulting from
two-way ANOVAs testing for
differences between
unpredictable, predicted, and
mispredicted deviants (red) and
standards (blue).
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p < .001, Bonferroni corrected), mispredicted > unpredictable (t = 6.87;

p < .001, Bonferroni corrected) and unpredictable > predicted condi-

tions (t = 3.83; p < .001, Bonferroni corrected).

Taken together, this result suggests that stimuli which were mis-

predicted based on the predictive multisensory configuration resulted

in increased responses within the common P3 cluster compared to

predicted or unpredictable stimuli, regardless of their role as standards

or deviants in the current stimulus train.

For completeness, we also tested the effect of predictability in

the earlier MMN cluster, but we did not observe any significant mod-

ulations here (results not shown).

3.3 | Source localization

The source reconstruction analysis resulted in significant clusters of

activation for each modality's MMN as well as the P3 MMR. The

results are depicted in Figure 5 and cytoarchitectonic references are

described in Table 1.

For each modality, the MMN was localized to source activations

in the respective modality's sensory cortex and frontal cortex. Source

localization of the auditory MMN shows the strongest activation in

bilateral superior temporal areas (pfwe < :05; left cluster: peak t=6.20;

right cluster: peak t=7.64) corresponding to auditory cortex and in

inferior temporal areas (pfwe < :05; left cluster: peak t=5.63; right

cluster: peak t=5.60). The somatosensory MMN shows highest

source activation in postcentral gyrus (pfwe < :05; left cluster: peak

t=5.22; right cluster: peak t=4.92) corresponding to primary

somatosensory cortex. Similarly, the vMMN shows highest source

activation in the occipital cortex (pfwe < :05; left cluster: peak t=6.18;

right cluster: peak t=5.17), around the occipital pole, corresponding

to visual areas (V1–V4). Lowering the threshold to puncorr < :001 (only

shown in Table 1) suggests additional activation of hierarchically

higher sensory areas such as secondary somatosensory cortex for the

sMMN (puncorr < :001; left cluster: peak t=4.21; right cluster: peak

t=5.01) and lateral occipital cortex (fusiform gyrus) for vMMN (part

of the primary visual cluster). In addition to the sensory regions, com-

mon frontal sources with dominance on the right hemisphere were

identified using a conjunction analysis for the MMN of all three

modalities. In particular, significant common source activations were

found in the right inferior frontal gyrus (IFG; pfwe < :05; cluster: peak

t=3.15) and right middle frontal gyrus (MFG; pfwe < :05; cluster: peak

t=2.89). Additional significant common sources include frontal pole

(pfwe < :05; left cluster: peak t=2.56; right cluster: peak t=2.28), left

inferior temporal gyrus (pfwe < :05; cluster: peak t=2.52) and right

inferior parietal lobe (pfwe < :05; cluster: peak t=2.85).

F IGURE 5 Source
localization. Top row: significant
sources (pfwe < :05) for the
auditory (green), somatosensory
(purple), and visual (orange)
mismatch negativity (MMN) as
well as their conjunction (yellow).
Bottom row: significant sources
(pfwe < :05) for the conjunction

(yellow) of the P3 mismatch
response (MMR) in the auditory,
somatosensory, and visual
modalities.
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TABLE 1 Source localization and cytoarchitectonic reference

Contrast Hemisphere Cytoarchitecture (probability) MNI coord. at cytoarch. t-Statistics at cytoarch. (p-value)

aMMN Left Auditory areas:

TE 4 (67.3%) �52 �26 0 6.2 (pfwe < :05)

TE 3 (15.1%) �59.8 �17.6 5.4 4.81 (pfwe < :05)

TE 1 (50.7%) �50.3 �19.2 5.8 4.05 (puncorr < :001)

aMMN Right Auditory areas:

TE 4 (54.1%) �56 �26 0 7.64 (pfwe < :05)

TE 3 (33.6%) �64.2 �16.4 5 5.85 (pfwe < :05)

TE 1 (61.9%) 53 �10.1 3.8 3.53 (puncorr < :001)

sMMN Left Somatosensory areas:

3b [S1] (31.4%) �15.7 �33.7 68.6 4.8 (pfwe < :05)

OP4 [S2] (38.6%) �65 �14.8 20.1 3.72 (puncorr < :001)

OP1 [S2] (16%)

sMMN Right Somatosensory areas:

3b [S1] (40.3%) 13.3 �33.7 68.2 4.76 (pfwe < :05)

OP4 [S2] (prob. 46.9%) 66.5 �10.6 20.9 3.51 (puncorr < :001)

OP1 [S2] (prob. 9.1%)

vMMN Left Visual areas:

hOc1 [V1] (84.6%) �10 �100 0 6.18 (pfwe < :05)

hOc2 [V2] (11.1%)

hOc4v [V4] (51%) �30 �87.9 -11.7 5.51 (pfwe < :05)

hOc3v [V3] (24.6%)

FG4 (89.5%) �43.5 �49.4 �13.3 3.83 (puncorr < :001)

vMMN Right Visual areas:

hOc1 [V1] (86.4%) 20 �100 �4 5.17 (pfwe < :05)

hOc2 [V2] (11%)

hOc3 [V3] (43.7%) 34.4 �88.7 �7.7 4.7 (pfwe < :05)

hOc4 [V4] (23.8%)

FG4 (59.8%) 50.3 �42.5 �18.8 3.82 (puncorr < :001)

MMN conjunction Left Frontal pole (28%) �14 62 8 2.56 (pfwe < :05)

Inferior temporal gyrus (49%) �50 �24 �28 2.52 (pfwe < :05)

MMN conjunction Right Middle frontal gyrus (36%) 42 28 30 2.89 (pfwe < :05)

Inferior frontal gyrus (53%) 53 27.6 17.3 2.96 (pfwe < :05)

Frontal pole (65%) 30 42 32 2.28 (pfwe < :05)

Inferior parietal lobe (46.8%) 62 �14 24 2.85 (pfwe < :05)

P3 con-junction (Left) Anterior cingulate gyrus (51%) �6 14 36 4.34 (pfwe < :05)

P3 conjunction Left Frontal pole (74%) �34 44 20 3.31 (pfwe < :05)

Inferior frontal gyrus (35%) 52 26 18 2.74 (pfwe < :05)

Middle frontal gyrus (78%) �44 30 32 2.87 (pfwe < :05)

Superior frontal gyrus (43%) �22 12 60 3.13 (pfwe < :05)

Inferior temporal gyrus (34%) �48 �44 �24 3.21 (pfwe < :05)

Lateral occipital [hOc4la] (81%) �46 �80 �8 2.99 (pfwe < :05)

P3 conjunction Right Frontal pole (86%) 45 42 10 3.57 (pfwe < :05)

Inferior frontal gyrus (39.5%) 52 26 18 3.45 (pfwe < :05)

Middle frontal gyrus (38%) 36 2 54 3.0 (pfwe < :05)

Precentral gyrus [4a] (19%) 6 �32 64 2.64 (pfwe < :05)

Lateral occipital cortex [hOc5] (55%) 56 �62 0 3.45 (pfwe < :05)
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For the late P3 MMR, a wide range of sources was expected to

contribute to the EEG signal (Linden, 2005; Sabeti et al., 2016). To

identify those that underlie the P3 MMR common to all modalities,

we used a conjunction analysis. Significant clusters were found pri-

marily in anterior cingulate cortex (pfwe < :05; cluster: peak t=4.34)

and bilateral (pre-)frontal cortex (pfwe < :05; left IFG cluster: peak

t=3.57; left superior frontal gyrus cluster: peak t=3.13; left MFG

cluster: peak t=2.87; left frontal pole cluster: peak t=3.31; right IFG

cluster: peak t=3.45; right MFG cluster: peak t=3.0; right frontal

pole cluster: peak t=3.57). Additional significant sources were found

in left inferior temporal gyrus (pfwe < :05; cluster: peak t=3.21), left

and right lateral occipital cortex (pfwe < :05; left cluster: peak t=2.99;

right cluster: peak t=3.45) and right precentral gyrus (pfwe < :05; clus-

ter: peak t=2.64).

3.4 | Single-trial modeling

As described in the previous sections, the responses of standards and

deviants show specific sensitivity to (1) stimulus repetition and

(2) cross-modal conditional probability. To investigate the computa-

tional principles underlying these response profiles, eight different

models capturing various learning strategies were fit to the single-trial

EEG data and compared via family-wise BMS. A summary of the

modeling results is depicted in Figure 6.

The first model comparison aimed to further investigate observa-

tion (1) and the question whether the observed parametric modula-

tion of standard and deviant EEG responses merely reflects a

combination of neuronal adaptation and change detection dynamics

or if the observed response patterns are indicative of an underlying

generative model engaged in probabilistic inference. To this end, we

ran family wise BMS which is schematically depicted in Figure 6a. The

first comparison concerned the TLCD model, a model family contain-

ing all BL models, and a null model. In the fronto-central, temporal,

occipital, and central electrodes showing MMN and P3 effects, the

model comparison shows strong evidence in favor of the BL model

family with an exceedance probability φ>0:95 (corresponding to

expected posterior probability rh i> :7) from �70ms onward. On the

other hand, the TLCD model did not exceed φ>0:95 for any electrode

or time point. Therefore, the TLCD model was disregarded at this

F IGURE 6 Modeling results. (a) Schematic overview of models. Model comparison 1 (light-gray box, dashed contour): Null model family
(NULL), train length-dependent change detection model family (TLCD), and Bayesian learning model family (BL). Comparison 2 (gray box, dotted
contour): Unimodal regression model family (UM), cross-modal regression model family (UCM). Comparison 3 (dark-gray box, line contour): Read-
out model family comparison of predictive surprise family (PS), Bayesian surprise family (BS), and confidence-corrected surprise family (CS).
(b) Results of comparison 1 and 2 shown for all electrodes and poststimulus time points. Color depicts exceedance probability (EP) φ>0:95. Light-
blue=BL>TLCD, pink=UCM>UM. (c) Topography of modeling results at time windows of MMN (top row) and P3 (bottom row). Left column:
Results of comparison 1 (same colors as (B), depicting φ>0:95). Middle column: Results of comparison 3. EPs between 0.33 and 1 of the three
surprise functions are represented by a continuous three-dimensional RGB scale (red=predictive surprise [PS]; green=Bayesian surprise [BS];
blue= confidence-corrected surprise [CS]). Right column: Beta estimates of the model regressors of the UCM model (regressors: A= auditory;
S= somatosensory; V= visual; CM= cross-modal; UM=unimodal) for CS read-out models (top) and BS read-out models (bottom).
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point, and we focused further investigation on the different BL

models.

The second comparison set out to investigate observation (2) and

evaluate the contribution of stimulus alternation tracking conditional

on multimodal configurations beyond unimodal transition probability

inference. Within the electrodes and time-points with sufficient evi-

dence for BL signatures (as established by the first model comparison),

a comparison of a purely unimodal model family with a cross-modally

informed model family (UCM) was performed. Those electrodes and

time-points where the additional inclusion of cross-modal regressors

(UCM models) provided better model fits than purely unimodal

models are highlighted in Figure 6b,c. The UCM family outperforms

the UM family at central and fronto-central electrodes at �100–

400 ms (with φ>0:95, corresponding to rh i> :7).
Inspection of the beta estimates of auditory, somatosensory, and

visual regressors of the UCM regression models shows that the beta

maps of the unimodal predictors of the model resemble the ERP mis-

match topographies of the respective modalities (depicted in

Figure 6c). The cross-modal predictor, on the other hand, rather

shows (fronto-) central activations which appear to resemble frontal

aspects of the respective auditory, somatosensory, and visual MMRs.

The third comparison concerned the three surprise measures

used as read-out functions for the probabilistic models. Overall, the

family comparison does not show overwhelming evidence for any

specific surprise function as only few electrodes reach exceedance

probabilities of φ>0:95. Nevertheless, a tendency of the MMN and

the P3 to reflect different surprise dynamics can be observed.

Although around the time of the MMN, only some electrodes show

φ>0:95 in favour of CS, inspection of the topographies without φ

thresholding (as depicted in Figure 6c) shows CS to be dominant

throughout the spatio-temporal range of the MMN (as suggested by

higher EPs compared to BS and PS). On the other hand, at the time of

the P3, BS appears to be the dominant surprise computation with

multiple (fronto-) central electrodes showing φ> 0:95. Overall, the sur-

prise comparison provides some evidence for a reflection of CS

dynamics in the earlier mismatch signals around the time of the

MMNs and suggests a tendency of the P3 to reflect BS dynamics.

In a final analysis, the optimal observation integration parameter τ

was inspected. For each modality, the significant MMN clusters of the

ERP analyses were used to inspect the optimal integration window of

the regression models. For the UM regression model, highly similar opti-

mal integration parameters were found within the electrodes and time-

points of the different MMN clusters with no significant difference

between the modalities. The optimal integration parameters were found

to correspond to windows of stimulus integration with a half-life of (50%

weighting at) around 5 to 25 stimuli (mean�SD τ across participants

within the MMN clusters: UM-CS¼0:0608�0:0189 [8–16 stimuli],

UM-BS¼0:0887�0:0184 [6–9 stimuli], UCM-CS¼0:0550� 0:0179

[9–18 stimuli], UCM-BS¼0:0954�0:0194 [6–9 stimuli]; mean�SD τ

across participants within the P3 clusters: UM-CS¼0:0536�0:0214

[9–21 stimuli], UM-BS¼0:0811� 0:0191 [6–11 stimuli], UCM-CS ¼
0:0469�0:0196 [10–25 stimuli], UCM-BS¼0:0862�0:0215 [6–10

stimuli]). Overall, the same range of stimulus integration was found

for the UM and UCM regression models and CS models tended to

have higher integration windows (�10–20 stimuli) compared to

Bayesian surprise models (�5–10 stimuli).

4 | DISCUSSION

The present study set out to compare mismatch signals in response

to tri-modal sequence processing in the auditory, somatosensory,

and visual modalities and to investigate influences of predictive

cross-modal information. We found comparable but modality spe-

cific signatures of MMN-like early mismatch processing between

100 and 200 ms in all three modalities, which were source localized

to their respective sensory specific cortices and shared right latera-

lized frontal sources. An additional cross-modal signature of mis-

match processing was found in the P3 MMR for which a common

network with frontal dominance was identified. With exception of

the vMMN, both mismatch signals (MMN and P3) show parametric

modulation by stimulus train length driven by reciprocal tendencies

of standards and deviants across modalities. Strikingly, standard and

deviant responses within the cross-modal P3 cluster were sensitive

to predictive information carried by the tri-modal stimulus configu-

ration. Comparisons of computational models indicated that BL

models, tracking transitions between observations, captured the

observed dynamics of single-trial responses to the roving stimulus

sequences better than a static model reflecting TLCD. Moreover, a

BL model which additionally captured cross-modal conditional

dependence of stimulus alternation outperformed a purely unimodal

BL model primarily at central electrodes. The comparison of differ-

ent read-out functions for the BL models provides tentative evi-

dence that the early MMN may reflect dynamics of CS whereas

later P3 MMRs seem to reflect dynamics of BS.

4.1 | Modality specific mismatch signatures in
response to tri-modal roving stimuli

By using a novel tri-modal roving stimulus sequence originating from

an underlying Markov process of state transitions, we were able to

elicit and extract unique EEG signatures in each of the three sensory

modalities (auditory, somatosensory, and visual).

Of the EEG mismatch signatures, the auditory MMN is one of the

most widely researched responses to deviation from an established

stimulus regularity (Naatanen et al., 1978; Winkler et al., 2009). Con-

trasting responses to standard and deviant stimuli of the auditory

sequence in the current study resulted in the expected fronto-central

MMN signature with more negative responses to deviants compared

to standards. The extent of the MMN might suggest an underlying

negative mismatch component as proposed by Naatanen et al. (2005),

which drives a more negative going ERP around the N1, extending

beyond the P2 component. Such post-N1 effects of the MMN have

been suggested as markers of a “genuine” mismatch component in

contrast to confounds by stimulus properties modulating auditory
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ERP components (Naatanen et al., 2007) and might speak against pure

N1 adaptation (as suggested by Jaaskelainen et al., 2004; May

et al., 1999).

The somatosensory equivalent to the auditory MMN (sMMN)

reported in the current study shows negative polarity at bilateral tem-

poral electrodes and corresponding central positivity. The sMMN

likely reflects an enhanced N140 component, as suggested by Kekoni

et al. (1997). However, most previous sMMN studies used oddball

paradigms where some critical discussion revolves around the distinc-

tion of the sMMN from an N140 modulation by stimulus properties

alone. Here, we report an sMMN around the N140 which can be

assumed to be independent of stimulus confounds due to the

reversed roles of standard and deviant stimuli in the roving paradigm.

Although several previous studies have reported somatosensory mis-

match responses, conflicting evidence exists regarding the exact com-

ponents that may constitute an equivalent to the auditory MMN.

Some studies report a more fronto-centrally oriented negativity

(Kekoni et al., 1997; Shen et al., 2018; Spackman et al., 2007;

Spackman et al., 2010) or observed such pronounced central positivity

that they were led to conclude that it is in fact the central positivity

that should be considered the somatosensory equivalent of the

aMMN (Akatsuka et al., 2005; Shinozaki et al., 1998). However, some

evidence appears to converge on a temporally centered negativity

with corresponding central positivity as the primary sMMN around

140 ms (Gijsen et al., 2021; Ostwald et al., 2012).

While the auditory and somatosensory MMN's in the current

study were found to be highly comparable in their signal strength,

their hypothesized counterpart in the visual modality showed a com-

paratively weaker response. Nevertheless, we found a significant

vMMN at occipital electrodes extending to temporal electrodes within

a time window of 100–200 ms poststimulus, with corresponding

(fronto-) central positivity. This observation is in line with previous

research reporting posterior (Cleary et al., 2013; Kimura et al., 2010;

Urakawa et al., 2010) and temporal (Heslenfeld, 2003; Kuldkepp

et al., 2013) patterns of vMMN with corresponding central positivity

(Cleary et al., 2013; Czigler et al., 2006; File et al., 2017).

4.2 | Neuronal generators of MMN signatures

Source reconstruction analyses were used to identify underlying neu-

ronal generators of the modality specific MMN signatures. Interest-

ingly, for each sensory modality, we found generators in the primary

and higher order sensory cortices as well as additional frontal genera-

tors in IFG and MFG.

The sensory specific neuronal sources underlying the auditory

MMN were identified as bilateral auditory cortex with a dominance in

hierarchically higher auditory areas. With an additional modality inde-

pendent contribution of right lateralized frontal sources, this set of

neuronal generators identified for the aMMN is in line with previous

research suggesting primary auditory cortex and higher auditory areas

in superior temporal sulcus as well as right IFG as underlying the

aMMN (Garrido et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009;

Molholm et al., 2005; Naatanen et al., 2005; Opitz et al., 2002) with

consideration of an additional frontal generator in MFG

(Deouell, 2007).

The sources underlying the sMMN were identified in the current

study as primary (S1) and secondary (S2) somatosensory cortices with

additional frontal generators in right IFG and MFG. This finding is in

accordance with previous research showing a combined response of

S1 and S2 to underlie the sMMN (Akatsuka, Wasaka, Nakata, Kida,

Hoshiyama, et al., 2007; Akatsuka, Wasaka, Nakata, Kida, &

Kakigi, 2007; Andersen & Lundqvist, 2019; Butler et al., 2012; Gijsen

et al., 2021; Naeije et al., 2016, 2018; Ostwald et al., 2012; Spackman

et al., 2010) in combination with involvement of (inferior) frontal

regions (Allen et al., 2016; Downar et al., 2000; Fardo et al., 2017;

Huang et al., 2005; Ostwald et al., 2012).

For the visual modality, we identified sources in visual areas (V1–

V4) and additional frontal activations in IFG and MFG as the neuronal

generators underlying the vMMN. Previous studies have shown simi-

lar combinations of visual and prefrontal areas (Kimura et al., 2010;

Kimura et al., 2011; Kimura et al., 2012; Urakawa et al., 2010; Yucel

et al., 2007) and have particularly highlighted the IFG as a frontal gen-

erator of the vMMN (Downar et al., 2000; Hedge et al., 2015). Simi-

larly, an fMRI study of perceptual sequence learning in the visual

system has shown right lateralized prefrontal activation in addition to

activations in visual cortex in response to regularity violations

(Huettel et al., 2002). Yet another study has suggested a role for right

prefrontal areas in interaction with hierarchically lower visual areas

for the prediction of visual events (Kimura et al., 2012), all in line with

our results.

Overall, our finding of inferior and middle frontal sources for the

MMN in all three modalities provides further evidence for a modality

independent role for these generators as previously suggested by

Downar et al. (2000). As such, these modality-independent frontal

generators might reflect higher stages of a predictive hierarchy work-

ing across modalities in interaction with lower modality specific

regions, as previously suggested primarily for the auditory modality

(Garrido, Kilner, Stephan, & Friston, 2009).

4.3 | Modulation of the MMN by stimulus
repetition

An important feature of the MMN which theories of its generation

have aimed to account for is its sensitivity to stimulus repetition. The

MMN is known to increase with prior repetition of standards (Imada

et al., 1993; Javitt et al., 1998; Naatanen & Näätänen, 1992; Sams

et al., 1983). Correspondingly, in the current study, we find a signifi-

cant increase of auditory and somatosensory MMN with the length of

the preceding stimulus train as well as a comparable tendency for the

vMMN. Moreover, we show that this increase was driven by a recip-

rocal negative modulation of deviant and positive modulation of stan-

dard responses, suggesting a combined influence of repetition

dependent change detection and dynamics akin to stimulus

adaptation.

GRUNDEI ET AL. 3659



The observed positive modulation of standard responses, particu-

larly in the auditory modality, is in line with the repetition positivity

account of Baldeweg and colleagues (Baldeweg, 2006;

Baldeweg, 2007; Baldeweg et al., 2004; Haenschel et al., 2005). In the

auditory modality, repetition positivity has been isolated as a positive

slow wave that accounts for repetition-dependent increases of audi-

tory ERPs up to the P2 component (Haenschel et al., 2005). With

regard to its functional role, it has been argued to reflect auditory sen-

sory memory trace formation (Baldeweg et al., 2004; Costa-Faidella,

Baldeweg, et al., 2011; Costa-Faidella, Grimm, et al., 2011). Interest-

ingly, MMN studies using the oddball paradigm often report an

increasing MMN with standard repetition without further dissecting

the contributions from standard and deviant dynamics. A contribution

of the standard repetition positivity appears to be particularly domi-

nant in roving stimulus paradigms (Cooper et al., 2013), potentially

because a memory trace of the standard stimulus identity must be

reestablished after each change of roles for standard and deviant

stimuli. It has even been suggested that the memory trace dynamics

of the standard observed in response to roving oddball sequences

might in fact be the primary driver of train length effects on MMN

amplitudes (Baldeweg et al., 2004; Costa-Faidella, Baldeweg,

et al., 2011; Costa-Faidella, Grimm, et al., 2011; Haenschel

et al., 2005). Importantly, although some evidence exists to suggest an

additional role for train length dependent deviant modulation also in

roving paradigms (Cowan et al., 1993; Haenschel et al., 2005), a dis-

section of combined standard and deviant contributions as performed

here is rarely described.

Similar to the aMMN, we found the sMMN to be modulated by

stimulus repetition. An early repetition positivity effect in the

responses to standards was observed prior to 100 ms indicating com-

parable sensory adaptation dynamics as described for the aMMN.

Subsequently, the negative deviant and sMMN responses increase

with repetition around the N140 (i.e., around the sMMN peak). While

somatosensory deviant responses have previously been shown to

decrease with increasing stimulus probability (Akatsuka, Wasaka,

Nakata, Kida, & Kakigi, 2007), only few other studies have reported

sensitivity of the sMMN to stimulus repetition. Interestingly, in our

previous study on somatosensory MMRs (Gijsen et al., 2021) we

report the same reciprocal pattern found here: Negative modulation

of the deviant and positive modulation of the standard response

which result in an increase of the sMMN amplitude with stimulus train

length.

In the visual modality, a comparable train length effect to auditory

and somatosensory modalities was observed but did not reach statis-

tical significance in the vMMN time window. Given the overall weaker

response in the current study for vMMN this might not be surprising.

Moreover, discussions about the repetition modulation of vMMN

responses are often based on findings concerning the auditory system

rather than direct findings in the visual modality. While sensory adap-

tation to stimulus repetition is generally found throughout the visual

system (e.g., Clifford et al., 2007; Grill-Spector et al., 2006) it is rarely

directly reported in vMMN studies (but see Kremlacek et al., 2016).

Overall, the vMMN literature seems to suggest that the vMMN may

be a rather unstable phenomenon. In fact, by controlling for con-

founding effects, one study has called the existence of the vMMN for

low level features such as the ones used here into question entirely

(Male et al., 2020). The vMMN appears to show a much less pro-

nounced spatiotemporal pattern than auditory and somatosensory

equivalents, which is reflected in larger variance in the reported

topographies and time windows in studies investigating vMMN (but

see Section 11 for a discussion of alternative explanations regarding

the current study).

4.4 | MMN as a signature of predictive processing

Recent research supports the view that Bayesian perceptual learning

mechanisms underlie the generation of mismatch responses such as

the MMN (Friston, 2005, 2010; Garrido, Kilner, Stephan, &

Friston, 2009). Given the proposal of Bayesian inference and predic-

tive processing as universal principles of perception and perceptual

learning in the brain (Friston, 2005, 2010), comparable mismatch

responses are expected to be found across sensory modalities. Evi-

dence for the predictive nature of mismatch responses, akin to key

findings from the auditory modality, is for instance given by studies

showing somatosensory (Andersen & Lundqvist, 2019; Naeije

et al., 2018) and visual (Czigler et al., 2006; Kok et al., 2014) MMN in

response to predicted but omitted stimuli. Moreover, Ostwald et al.

(2012) and Gijsen et al. (2021) have shown that single trial somatosen-

sory MMN and P3 MMRs can be accounted for in terms of surprise

signatures of Bayesian inference models tracking stimulus transitions.

Similarly, the vMMN has been described as a signature of predictive

processing (Kimura et al., 2011; Stefanics et al., 2014), signaling pre-

diction error instead of basic change detection (Stefanics et al., 2018).

Correspondingly, we found comparable mismatch signatures in

auditory, somatosensory, and visual modalities. The train length

effects observed in our study across modalities have previously been

related to predictive processing. Repetition positivity in the auditory

modality has been interpreted as a reflection of repetition suppres-

sion, resulting from fulfilled prediction (Auksztulewicz &

Friston, 2016; Baldeweg, 2007; Costa-Faidella, Baldeweg, et al., 2011;

Costa-Faidella, Grimm, et al., 2011). A corresponding negative modu-

lation of deviant responses on the other hand, would signal a failure

to suppress prediction error after violation of the regularity estab-

lished by the current stimulus train. Under such a view, longer trains

of repetitions lead to higher precision in the probability estimate

which in turn results in a scaling of the prediction error in response to

prediction violation (Auksztulewicz & Friston, 2016; Friston, 2005;

Friston & Kiebel, 2009). In line with these hypotheses, Garrido and

colleagues (Garrido et al., 2008; Garrido, Kilner, Kiebel, &

Friston, 2009) used dynamic causal modeling (DCM) to show that the

MMN elicited in a roving stimulus paradigm is best explained by the

combined dynamics of auditory adaptation and model adjustment.

Their network, proposed to underlie MMN generation, was set up as

an implementation of hierarchical predictive processing involving

bottom-up signals from auditory cortex and top-down modulations by
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inferior frontal cortex. Similarly, another DCM study proposed a pre-

dictive coding model of pain processing in response to somatosensory

oddball sequences, highlighting the role of inferior frontal cortex in

top-down modulations of somatosensory potentials (Fardo

et al., 2017). As we find involvement of such modality specific sensory

and modality independent frontal areas for MMN responses across

modalities, our results suggest comparable roles for these sources in a

predictive hierarchy.

4.5 | P3 Mismatch responses reflect cross-modal
processing

In addition to the modality specific MMN responses, deviants in all

three modalities elicited a late positive mismatch component in the P3

time window. Despite differences in the exact latency and extent of

this response between modalities, we identified a common mismatch

cluster from 300 to 350 ms in central electrodes, followed by a

slightly more posterior cluster extending from 400 to 600 ms. Particu-

larly the earlier cluster may correspond to the well-known P3a

response, which peaks at around 300 ms after change-onset at

(fronto-) central electrodes and is thought to be elicited regardless of

sensory modality (Escera et al., 2000; Friedman et al., 2001; Knight &

Scabini, 1998; Polich, 2007; Schroger, 1996).

The P3a is closely related to the MMN as they are both elicited

during active and passive perception of repeated stimuli interrupted

by infrequent stimulus deviations (Polich, 2007; Schroger et al., 2015).

While the P3a has been initially related to attentional switches to

task-irrelevant but salient stimulus features (Escera et al., 2000;

Friedman et al., 2001; Polich, 2007), more recent accounts suggest

that the MMN and P3a might reflect two stages of a predictive hierar-

chy, each representing (potentially differentiable) prediction error

responses (Schroger et al., 2015; Wacongne et al., 2011). Similar to

the MMN, P3 responses are known to be modulated by stimulus

probability (Duncan-Johnson & Donchin, 1977) and can be elicited by

unexpected stimulus repetitions (Duncan et al., 2009; Squires

et al., 1975) and omissions of predicted sound stimuli (Prete et al.;

Sutton et al., 1967), which provides compelling evidence for a role of

the P3 in predictive processing. Similar to the MMN responses

described above, we found the individual P3 MMR responses in all

three modalities to show reciprocal modulations of standards and

deviants by stimulus repetition, which has previously only been

reported for the auditory modality (Bendixen et al., 2007). This sensi-

tivity to stimulus repetition of mismatch responses in early and late

time-windows has been interpreted in terms of regularity and rule

extraction in the auditory modality (Bendixen et al., 2007) and is in

line with an account of repetition suppression over and above early

sensory adaptation.

The MMN and P3 MMR have been shown to be differentially

modulated by higher order predictability. The P3 is reduced by the

presentation of visual cues preceding an auditory deviant, while the

MMN is not affected by the same top-down predictability (Horvath &

Bendixen, 2012; Ritter et al., 1999; Sussman et al., 2003). Similarly,

explicit top-down knowledge of sequence regularities has been shown

to reduce the P3, while leaving the MMN unaffected (Max

et al., 2015). It has thus been suggested that the P3 reflects a higher-

level deviance detection system concerned with the significance of

the stimulus in providing new information for the system (Horvath

et al., 2008). Interestingly, a recent study investigating mismatch

responses to different auditory features showed that while the MMN

response in an earlier (classical) time window was generally affected

by regularity violations, only the later response (P3 range) contained

information about the specific features that were violated (An

et al., 2021). Furthermore, computational studies indicate that P3

responses reflect specific quantities of unexpectedness as well as

updates to a prior belief (Jepma et al., 2016; Kolossa et al., 2015).

Overall, current research provides evidence for the view that the

MMN reflects prediction errors at earlier hierarchical stages, primarily

concerned with more local regularity extraction, whereas P3

responses reflect more global rule violations which require a certain

level of abstraction and information integration (Bekinschtein

et al., 2009; Wacongne et al., 2011; Winkler et al., 2005). Our findings

of a sensitivity of the P3 response to cross-modal predictive informa-

tion carried by the multimodal configuration of the stimulus sequence

further supports such a view. Across modalities, we found an

increased P3 response to mispredicted compared to predicted or

unpredictable stimuli, regardless of their role as standards or deviants.

Generally, the P3 deviant response in the current study likely reflects

a (unsigned) prediction error to a local regularity established by stimu-

lus repetition. However, increased P3 responses to mispredicted stim-

uli indicate additional violations of global, cross-modal predictions

which are extracted from multimodal context information.

The observed pattern suggests influences of precision weighting

on prediction errors (Friston & Kiebel, 2009). In case of both predicted

and mispredicted stimuli, the cross-modal predictive context allows

for more precise predictions (i.e., high prior precision) than in case of

the unpredictable stimuli (low prior precision). Under such an interpre-

tation, the precision for mispredicted deviants is high, resulting in a

pronounced prediction error response. Since the precision for pre-

dicted deviants is also high, the resulting prediction error response is

low because the stimulus was suppressed. Even though the size of

prediction error to unpredictable deviants could generally be expected

in between those of predicted and mispredicted deviants, the

observed response is low (similar to that of a predicted deviant),

because the prior precision in this context is low. This interpretation is

in line with the fact that no significant difference was found between

predicted and unpredictable deviants. A similar modulation of multi-

modal predictability is found for the P3 response to standards. How-

ever, interestingly, in case of the standards, the response to predicted

stimuli is significantly lower than to unpredictable stimuli. This differ-

ence between standards and deviants could be due to the fact that

deviants are generally surprising, even if they are more predictable in

terms of their cross-modal configuration. Standards, on the other

hand, are generally predicted to occur (high precision) which might

result in a pronounced suppression of prediction error in case they are

additionally cross-modally predicted.
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The interpretation of the common P3 cluster as a cross-modal

P3a response sensitive to multimodal predictive information is further

supported by our source localization results, which particularly indi-

cate prefrontal regions such as the medial frontal, inferior frontal and

anterior cingulate cortex as sources of the P3 MMR. Although notori-

ously diverse, previous research on P3 sources has identified a fronto-

parietal network of generators, particularly highlighting the role of

prefrontal and anterior cingulate regions in generating the P3 novelty

response (P3a; Linden, 2005; Polich, 2007), whereas parietal regions

are presumed to be more involved in task-related P3b responses. The

identified sources have been shown to be involved in a fronto-parietal

network relevant for the supramodal processing of stimulus transi-

tions and deviance detection (Downar et al., 2000; Huang

et al., 2005). Similarly, a fronto-parietal attention network (Corbetta &

Shulman, 2002) has been shown to be involved in oddball processing

in the auditory and visual modalities (Kim, 2014). The network con-

sists of two functionally and anatomically distinct parts which closely

interact (Vossel et al., 2014). While the dorsal part of the network is

believed to be involved in the allocation of top-down, endogenous

attention (e.g., triggered by predictive information), the ventral part is

involved in bottom-up, exogenous attention allocation and thus, pro-

cessing of unexpected stimuli. Importantly, it has been shown that this

network operates supramodally to facilitate processing of information

from multimodal events (Macaluso, 2010; Macaluso & Driver, 2005).

Thus, the predictive information in the multimodal sequences pre-

sented in the current study may be processed in such a fronto-parietal

network to aid the perception of multimodal stimulus streams. Future

research would benefit from studies further investigating such multi-

modal probabilistic sequences with higher spatial resolution to inform

these proposed interpretations.

4.6 | Modeling single-trial EEG responses as
signatures of bayesian inference

Given the results of the average- and GLM-based EEG analyses, we

aimed to test if the observed modulations of standards, deviants and

MMRs by local (train length) and global (cross-modal predictability)

sequence properties could be captured by signatures of Bayesian

inference. To this end, we compared a simple TLCD model to families

of BL models capturing different aspects of the sequence statistics. In

light of the literature discussed above, we hypothesized that BL

models would outperform the TLCD model in explaining the recorded

mismatch responses.

Overall, the BL models outperformed the static TLCD model in all

electrodes in the MMN and P3 clusters indicating that these

responses reflect dynamics beyond the basic repetition effects

observed in the ERP analyses. This result provides evidence to sug-

gest that the MMN and P3 MMR capture the trial-to-trial dynamics of

Bayesian inference and are thus markers of probabilistic sequence

processing in the brain.

Within the family of BL models, we found that a cross-modally

informed model (UCM), tracking cross-modal conditional

dependencies between modalities in addition to unimodal transitions,

outperformed a purely unimodal transition probability model (UM) at

central electrodes within an early and a late time-window. The cross-

modal effects in the late time-window are directly in line with the sen-

sitivity of the P3 cluster to cross-modal predictability discussed above

and support an interpretation of P3 mismatch responses to reflect sig-

natures of cross-modal Bayesian inference. Given that cross-modal

learning was not explicitly instructed or task-relevant, the results are

compatible with the view that the brain is sensitive to cross-modal

information by default (Driver & Noesselt, 2008; Ghazanfar &

Schroeder, 2006) and that processing multimodal information might

be appropriately captured by Bayesian inference (Kording et al., 2007;

Shams & Beierholm, 2022). Interestingly, however, an earlier cross-

modal effect was found prior to 300 ms which was not reflected in

the GLM results, suggesting that potential modulations of MMN sig-

natures by predictability manifest in the dynamics of single trial sur-

prise signals but not in significant mean differences between

predictability conditions. Since the earlier cross-modal effect observed

in the modeling results was primarily confined to central and fronto-

central electrodes it may be related to activity of the frontal genera-

tors of the MMN. As discussed above, the frontal cortex is assumed

to be involved in MMN generation (Deouell, 2007) in interaction with

hierarchically lower sensory sources and has been hypothesized to

form top-down predictions about incoming sensory stimuli (Garrido

et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009; Garrido, Kilner,

Stephan, & Friston, 2009). This assumption is further supported by

our source reconstruction results which show modality independent

frontal generators in addition to sensory specific regions to underlie

the MMN in auditory, somatosensory, and visual modalities.

Regarding the surprise read-out functions of the BL models, we

find a slight dominance of CS in earlier mismatch signatures prior to

200 ms, while the late clusters tend to reflect BS. This is well in line

with our previous study performed in the somatosensory modality

(Gijsen et al., 2021) and other studies have similarly reported a reflec-

tion of BS in P3 mismatch responses (Kolossa et al., 2015; Mars

et al., 2008; Ostwald et al., 2012; Seer et al., 2016). Given their differ-

ences in reading out the probability estimates of the Bayesian

observer, the different surprise signatures in the MMN and P3 MMR

might provide some insight into their respective computational roles.

CS has been categorized as an instantiation of puzzlement surprise

(Faraji et al., 2018) reflecting a mismatch between sensory input and

internal model belief which is additionally scaled by belief commit-

ment. Low-probability events are thus more surprising if commitment

to the belief (of this estimate) is high. BS reflects incorporation of new

information, quantifying an update to the generative model and has

been categorized as enlightenment surprise (Faraji et al., 2018).

Accordingly, the MMN may be considered a marker of prediction

error scaled by belief commitment, whereas the P3 may reflect the

subsequent update of the predictive model.

Given that the P3 shows sensitivity to cross-modal prediction vio-

lation (GLM results) and tends to carry signatures of multimodal infer-

ence and model updating (Bayesian modeling results), we suggest that

the P3 likely reflects model updates with respect to the multimodal
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context. Although unnoticed by participants, given that the statistical

regularities changed across experimental runs, the generative model

continuously required updating. As such, our results might be reflec-

tive of a volatile sensory environment and relate to previous findings

which indicate that later MMRs, such as the P3, reflect belief updates

about the volatility of the underlying (hidden) statistics governing sen-

sory observations (e.g., Weber et al., 2020; Weber et al., 2022). We

leave it for future research to design experiments which are better

suited to evaluate these speculations more specifically and more

thoroughly.

4.7 | Limitations

Although we gained valuable insights into the commonalities and dif-

ferences between mismatch responses in different modalities, our

study faces certain limitations in its implementation and scope. First,

although reports of weak vMMN responses can be found in the litera-

ture, an alternative explanation may lie in the stimulation protocol

used in the current study. Our visual stimuli consisted of bilateral flash

stimuli with two different intensities, which were presented in the

periphery of the visual field. Since, to our knowledge, no other study

has used visual flash stimuli to elicit vMMN, our results are not

directly comparable to previous research. Moreover, due to the reti-

notopic organization of the visual cortex (Horton & Hoyt, 1991;

Sereno et al., 1995), a “far peripheral” placement (i.e., >60�;

Strasburger et al., 2011) of the LED's results in the activation of (pri-

mary) visual areas folded deep inside the cortex, in the calcarine sulcus

between the hemispheres. It is therefore possible that the visual mis-

match responses were not weaker per se but were merely harder to

detect by means of EEG.

Further, our results concerning the comparison of the surprise

read-out functions provide some indications of the computational

roles for early and late MMRs, which are in line with previous

research. However, it should be noted that the current study was

not specifically designed to investigate their (nuanced) differences.

The inclusion of three read-out functions primarily served the pur-

pose of avoiding bias in the comparison of the BL models by prior

choice of the read-out. To this end, the most prominent surprise

read-out functions used in the literature were included. Research

would benefit from future studies specifically designed to compare

different surprise measures without the manipulation of other

aspects of the underlying models. A valuable overview and sug-

gested experiments for that purpose have been recently provided by

Modirshanechi et al. (2022).

5 | CONCLUSION

With the current study, we provide evidence for modality spe-

cific and modality independent aspects of mismatch responses

in audition, somatosensation, and vision resulting from a simul-

taneous stream of tri-modal roving stimulus sequences. Our

results suggest that responses to stimulus transitions in all three

modalities are based on an interaction of hierarchically lower,

modality specific areas with hierarchically higher, modality inde-

pendent frontal areas. We show that similar dynamics underlie

these mismatch responses which likely reflect predictive proces-

sing and Bayesian inference on unimodal and multimodal sen-

sory input streams.
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