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Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and 
fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several 
technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily 
components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, 
nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. 
Thus, intertwining nano- and bioremediation can lead to a suitable technology termed ‘nanobioremediation’ expected to 
nullify bioremediation’s drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that 
utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an 
efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines 
the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobiore-
mediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying 
crude petroleum oil-contaminated sites.
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Introduction

One of the prime factors of environmental pollution is the 
emancipation of crude petroleum oil into the environment. 
The rapid industrial development led to the growing demand 
for conventional fossil fuels, although the emphasis is given 
to the maximum possible utilization of non-conventional 
sources. Although due to economic instability due to the 
coronavirus pandemic, the global consumption of crude 
oil reduced to 91 million barrels per day from 99.7 million 
barrels, it increased to 96.5 million barrels in 2021 and is 
expected to rise further as the pandemic situation is gradu-
ally improving. Various activities related to the exploration 
of crude oil, its transportation, and refining processes lead 
to releasing hydrocarbon components into the environment 
(Patowary et al. 2018). Due to its low polarity and highly 
hydrophobic nature, crude oil remains confined to the soil 
particles. It is not readily available to the indigenous micro-
bial population, so they are not preferably subjected to bio-
degradation (Hu 2020). The oil in the soil can penetrate to a 
depth of more than 10–30 cm, which eventually induces the 
degeneration of soil properties, finally affecting the vegeta-
tion of the crude oil-impacted areas (Ofeogbu et al. 2015). In 
aquatic bodies, for example, ponds, rivers, and oceans, crude 
oil components hinder the light from penetrating the sur-
face of water bodies and reducing the amount of dissolved 
oxygen, thereby affecting the aquatic life forms (Inyinbor 
Adejumoke et al. 2018).

Specific components of crude oil, such as polyaromatic 
hydrocarbons (PAHs), are known to have mutagenic, terato-
genic, carcinogenic, and even immunosuppressive properties 
(Patel et al. 2020). By food chain transfer of such recalcitrant 
components, humans also become indirect victims of crude 
petroleum oil pollution. Consequently, remediating the oil-
polluted environment is of utmost necessity (Garcia-Villacis 
et al. 2021). Several conventional remediation technologies, 
such as precipitation, solvent washing, electrochemical tech-
niques, incineration, coagulation, flocculation, and adsorp-
tion, have been applied; however, such techniques release 
toxic products and gases that further pollute the environ-
ment (Ali et al. 2020). Therefore, the exploration of efficient, 
cost-effective, and green technology for proper remediation 
of petroleum oil-contaminated sites is warranted for a sus-
tainable future (Das and Mukherjee 2007; Mukherjee and 
Bordoloi 2011; Benjamin et al. 2019).

Bioremediation, employing the potential indigenous 
microorganisms or plants that can uptake and disintegrate 

crude petroleum oil components into nontoxic 
intermediates, is considered one of the major technologies 
for restoring crude oil-contaminated environment due to 
its environmentally friendly nature and cost-effectiveness. 
Furthermore, recent research emphasizing incorporating 
advanced technologies in bioremediation has gained 
significant momentum (Das and Mukherjee 2007; Mahjoubi 
et al. 2018; Sui et al. 2021; Gu 2021). Several bacterial genera 
such as Bacillus, Acinetobacter, Rhodococcus, Burkholderia, 
Pseudomonas, Mycobacterium, Kocuria, Enterobacter, 
Arthrobacter, Marinobacter, Streptococcus, Staphylococcus, 
Alteromonas, and Achromobacter are known to degrade 
hydrocarbon components from polluted sites (Heinaru 
et al. 2005; Das and Mukherjee 2007; Bordoloi et al. 2014; 
Varjani and Gnansounou 2017; Xu et al. 2018; El-Aziz et al. 
2021). Such bacteria possess enzymes capable of triggering 
chemical reaction cascades that lead to the degradation of 
the hydrocarbon compounds. However, the reaction pathways 
may vary according to the type of bacteria mediating the 
degradation and the specific enzymes expressed by them (Xu 
et al. 2018). As shown in Table 1, apart from bacteria, fungi, 
and algae, several plant species also exhibit the potential to 
degrade and remove oily components from the contaminated 
environment by accumulating hydrocarbon components 
from the soil/water and converting them into simpler forms, 
a process known as phytoremediation (Mukherjee and 
Bordoloi 2011; Bordoloi et al. 2012; Cheng et al. 2017; 
Ekperusi et al. 2020; Hou et al. 2021).

Although bioremediation is a clean and cost-effective 
method for remediation of contaminated sites, quite often, 
it has been observed that it requires a long time, and the 
efficiency of bioremediation reduces if the microbes or the 
plants cannot tolerate the harsh environmental conditions 
of the site (Ubani et al. 2013; Cecchin et al. 2017; Gao 
et al. 2021). Thus, considering the drawback of conven-
tional bioremediation processes, it is necessary to introduce 
advancements in the bioremediation techniques or employ 
a suitable combined approach to remove the hydrocarbon 
contaminants efficiently. In the present era, nanotechnol-
ogy has gained much attention due to its unique properties 
and higher efficiency (Guerra et al. 2018). Compared to its 
bulkier and larger counter molecules, nano-molecules offer 
better efficiency and enhanced reactivity due to their higher 
surface-to-volume ratio (Khan et al. 2019).

Crude oil’s components are highly hydrophobic and 
have low polarity; due to this, they remain tightly associ-
ated with soil particles and are not readily bioavailable to 
the microbial population, which carries the degradation 
process (Paria 2008). Nanotechnology, which implies the 
use of nanoparticles, is being used for cleaning up con-
taminated sites, including oil-polluted sites, and has been a 
newer approach in the last decade (Mahajan 2011; Younis 
et al. 2020). Global research has demonstrated that different 
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nanomaterials can remediate petroleum oil pollution (Younis 
et al. 2020; Xu et al. 2020; Mishra et al. 2022). The suit-
able properties of nanomaterials resulted in attractive con-
sequences. Thus, a combined approach of nanotechnology 
and bioremediation, termed nanobioremediation (NBR), can 
lead to a practical solution for the potential restoration of oil-
polluted sites. Notably, several attractive nanoparticle (NP) 
properties can minimize the limitation of the conventional 
bioremediation process and lead to better removal of waste 
from a contaminated site.

Although, over the past decades, NPs are gaining wide 
applications and becoming ‘wonder molecules’, however, 
most of them are chemically synthesized where different 
chemical compounds are used as reducing or capping agents 
during the process of NP synthesis, which can pose haz-
ardous effects on the environment (Verma 2018). Thus, the 
focus has been shifted towards the synthesis of green NPs, 
where biological components, including bio metabolite, 
plant parts, and microbes, are utilized for manufacturing 
the NPs for moving towards sustainable application of NPs 
(Aziz et al. 2015; Hussain et al. 2016; Al Zahrani et al. 2018; 
Singh et al. 2018; Fouda et al. 2020; Hassan et al. 2022).

Artificial intelligence (AI) is another tool that is gaining 
much importance in various fields due to its preciseness, 
high speed, and accuracy. Advanced machine learning tech-
niques such as artificial neural networks (ANN) and sup-
port vector methods (SVM) are promising tools that provide 
in-depth pieces of information and help interpret nonlinear 
data in environmental science (Shadrin et al. 2020). The cor-
relation between the origin and spatial distribution of con-
taminants, their concentration, and properties in a particular 
location can also be predicted by AI-based models, which 
aid the environmentalist in designing and executing the work 
appropriately (Ebrahimi et al. 2019; Fernandes et al. 2019; 
Kou et al. 2019).

In the past few years, limited studies on NBR have been 
conducted as a treatment regime for restoring crude oil-
contaminated sites. Comprehensive work in this area is 

crucial for correctly understanding the NBR process and 
exemplifying ways to upgrade the technology for better out-
comes. This review article attempts to provide insight into 
the adverse effects of crude oil and drawbacks of the con-
ventional bioremediation process and the illumination of the 
scope and application of nanotechnology in the remediation 
of petroleum oil-contaminated sites. It ultimately confers 
the benefit of amalgamation of nano- and bioremediation 
processes, termed NBR technology, to remediate petroleum 
oil spills and reviews the work performed on NBR over the 
past decade. Additionally, the review also throws light on 
the potential applicability of AI for achieving better accu-
racy and efficiency of bioremediation processes for remov-
ing hydrocarbons from petroleum oil-polluted sites. It dis-
cusses the various research works that have involved AI in 
crude oil remediation till-date as searched in internationally 
recognized scientific journal archives and databases such as 
PubMed Central, ScienceDirect, and Scopus.

Composition of crude petroleum oil 
and its adverse effect on the ecosystem 
and humans’ health

Crude petroleum oil is a complex of many individual com-
pounds, and its composition and properties vary based on 
the geographical origin of the fossil fuel (Table 2). Mainly 
hydrocarbons in different forms, predominantly straight-
chain alkanes, cycloalkanes, aromatic hydrocarbons such 
as benzene and its derivatives, and fused benzene ring 
compounds named polyaromatic hydrocarbons (PAHs), 
for example, anthracene, phenanthrene, and pyrene, are 
the dominating class of compounds present in crude oil 
(Han et al. 2009; Schobert 2013; Obi et al. 2020). Waxes 
are complex hydrocarbons consisting of paraffin and a low 
amount of naphthenic and aromatic compounds, creating 
three-dimensional networking systems that sequester the 
fluid components of the crude oil, thereby worsening the 

Table 2   Composition of crude petroleum oil (sources: Welte and Tissot (1984); Mello et al. (2012); Speight (2015); Shishkova et al. (2022))

Composition of crude oil

Elements (range in %) Hydrocarbon classification (range in %) Non-hydrocarbon components

Non-metals Paraffin (4–89%) Resin (0–66%)
Carbon (84–87) Alkane (CnH2n+2) Asphaltenes (0–43%)
Hydrogen (11–14) Olefin (formed during processing) None
Nitrogen (0–1) Alkene (CnH2n)
Oxygen (0–1) Naphthenes
Sulphur (0–5) Cycloalkanes
Metals and heavy metals Aromatic (benzene ring) (3–59%)
Copper, lead, iron, sodium, magnesium, vanadium, 

nickel, zinc, manganese
Polyaromatic hydrocarbons (PAHs) (have multiple fused 

benzene rings)
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fluidity of the crude oil. Focusing on developing efficient 
techniques to segregate the waxy components can enhance 
the properties of crude oil.

Apart from hydrocarbon compounds, non-hydrocarbon 
compounds, especially sulphur, nitrogen, and oxygen-con-
taining compounds, are also present in crude oil (Mello 
et al. 2012; Speight 2015; Shishkova et al. 2022). Even 
metallic compounds are found in traces in crude oil from 
different regions. The rheological properties of crude oil 
can also have an impact on the composition of the crude 
oil (Djemiat et al. 2015). However, an in-depth molecular-
level study on crude oil has not yet been reported. Thus, 
such an investigative study will help in detail understand 
the behaviour and properties of crude oil.

Crude oil contamination delivers adverse effects on life 
forms. Humans and animals come in contact with crude 
oil while drinking, bathing, and consuming fish collected 
from contaminated water bodies and crops cultivated in 
petroleum oil-polluted sites. Children, pregnant women, 
and older people are more susceptible to the adverse effect 
of crude oil (O’Callaghan-Gordo et al. 2016). Several stud-
ies have reported the negative impact of crude oil on the 
immune system. For example, Eyong et al. (2004) reported 
haematological changes in rat populations exposed to 
crude oil. They found that on being gavaged with 9-ml 
natural oil/kg body weight in rats, around 50% reduction 
of red blood cells (RBCs) was detected. In contrast, there 
was a significant increase in the population of white blood 
cells (WBCs), indicating that ingested petroleum oil leads 
to hemolysis or erythropoiesis, increasing susceptibility to 
various infectious diseases.

Similarly, in 2017, Bayha et al. reported the increased 
vulnerability of fish (southern flounder) towards bacterial 
challenge (Vibrio anguillarum) when exposed to crude 
oil. They observed a higher mortality rate (94.4%) of the 
fish exposed to crude oil before the bacterial encounter. 
A low mortality rate of < 10% was noted for the fish not 
exposed to the oil before the bacterial challenge. Occupa-
tional exposure to PAHs in crude oil accomplishes vari-
ous symptoms, such as nausea, skin irritation, vomiting, 
and confusion. However, the exact mechanism of how 
the PAHs trigger such health problems is not adequately 
known (Unwin et al. 2006; Rahman et al. 2022).

Furthermore, a few components of crude oil are also 
known to have carcinogenic effects on humans. The Inter-
national Agency for Research on Cancer, France, has 
declared that emissions from various petrochemical indus-
tries have carcinogenic properties (IARC 2018). There are 
reports where PAHs have been found to cause lung cancer. 
Studies were also conducted, where it was found that inci-
dences of cancer diagnosis were more common in the area 
closer to the oil exploration sites or refineries (Williams 
et al. 2020).

Hydrocarbon contamination also leads to changes in the 
physicochemical properties of soil, including permeability, 
pH, total organic carbon, and soil mineral nutrients, such 
as sodium, sulphate, nitrate, and phosphate content, which 
affect the growth of plants and microbial flora present in the 
soil (Cheema et al. 2015; Nyarko et al. 2019; Zahermand 
et al. 2020; Hu et al. 2020). Devatha et al. (2019) observed 
a significant decrease in soil pH in soil contaminated with 
crude petroleum oil. Similarly, Wang et  al. (2013) also 
reported changes in pH, total organic carbon, and phospho-
rus content in soil contaminated with crude petroleum oil. 
Hydrocarbons consist of ions that could also bond with ions 
in the soil. The entire organic carbon content also increases 
in the ground due to hydrocarbon contamination; thus, crude 
oil contamination severely affects the physicochemical prop-
erties of soil. Changes in soil porosity and enzyme activity 
(50% reduction in dehydrogenase and urease activity) due 
to oil contamination have also been reported (Polyak 2018; 
Ostovar et al. 2021). It was observed that the soil’s poros-
ity decreased and the soil’s water resistance increased due 
to oil contamination. Thus, the alteration of soil properties 
ultimately affects plant growth in oil-contaminated sites.

Skrypnik et al. (2021) studied the effect of crude oil 
on rye cereal crops. It culminated that the root and shoot 
weight, plant height, and water content of the rye crop 
decreased when cultivated in crude oil-contaminated soil. 
It was also observed that the increasing concentration of 
crude oil pronounced affected plant growth. The authors 
interpreted that crude petroleum oil contamination decreased 
the total chlorophyll and carotenoid contents of affected 
plants and induced oxidative stress by producing higher 
quantities of hydrogen peroxide, malondialdehyde, and 
lipid peroxidation products in such plants. In another study, 
Baruah et al. (2014) reported that crude oil contamination 
leads to decreased chlorophyll content in Cyperus brevifo-
lius (Rottb). It was also found that the plant biomass was 
significantly reduced, and structural deformation in leaves 
and tissues was observed due to crude oil contamination.

In one of our previous studies, it was corroborated that 
crude oil harmed the growth and yield of rice plant (Oryza 
sativa L.) which is considered as a staple crop of most Asian 
countries (Patowary et al. 2017). The rice plant parts, includ-
ing the grains, were found to accumulate hydrocarbon com-
pounds, and it can be assumed that consuming such con-
taminated cereals can lead to health issues. Our findings 
also suggest that it is necessary to investigate the soil quality 
before the land is utilized for other purposes, especially cul-
tivation or animal rearing.

Thus, considering the hazardous effects of crude oil con-
tamination, it is essential to develop sustainable and clean 
ways to remediate and restore the oil crude oil sites. Effec-
tive measures and technologies must be adopted to rehabili-
tate the polluted areas to be used for vegetation.
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Key issues of conventional bioremediation 
processes

Bioremediation is one of the promising and cost-effective 
technologies that can be adopted to deal with and reha-
bilitate the contaminated environment. Several kinds of 
research have been carried out where potential bacteria 
had been isolated from contaminated sites and applied in 
either singlet or consortium form to degrade oil compo-
nents into simpler forms (Das and Mukherjee 2007; Pato-
wary et al. 2016; Tian et al. 2018; Ali et al. 2020; Zhang 
et al. 2020; Ambust et al. 2021). Bioremediation mainly 
comprises two prime strategies; one is bio-stimulation, 
and the other is bioaugmentation. Bio-stimulation involves 
the application of nutrients or components that enhance 
the indigenous microbes’ activity to degrade the contami-
nants, whereas bioaugmentation is the addition of exog-
enous microorganisms into the contaminated environment 
to lessen the contaminant of interest (Ruffini et al. 2016; 
Heinaru et al. 2005).

Another popular conventional technique, known as 
phytoremediation, involves the potentiality of plants to 
neutralize or metabolize toxic components by their active 
enzymatic system and also rhizospheric microbes that 
helps in the filtration or degradation of the contaminants 
to nontoxic forms. Several studies have used various plant 

species for the phytoremediation of oil-contaminated sites 
(Bordoloi et al. 2012; Baruah et al. 2016; Tang and Angela 
2019). Figure 1 depicts the overall process of bioremedia-
tion of hydrocarbons. Although bioremediation is one of 
the clean and most effective strategies to remediate con-
taminated sites, it has several drawbacks that prohibit it 
from being widely accepted on a field scale. The follow-
ing are a few specific drawbacks of the bioremediation 
process:

Poor contact between oil and microbes

Hydrocarbons are highly hydrophobic and are not readily 
soluble in the aqueous phase. The bacterial cells must con-
tact the hydrocarbons to mediate the degradation process. 
The bioavailability of pollutants is necessary for initiating a 
degradation process by microbes (Gao et al. 2021). Before 
the initiation of molecular mechanism and enzyme activ-
ity of the microbes to degrade hydrocarbons, the contact of 
microbial cells and the oily component is essential (Hua and 
Wang 2014). Thus, the poor bioavailability of hydrocarbons 
becomes the rate-limiting factor for efficient biodegradation.

Nevertheless, a few classes of microorganisms have 
evolved and developed features that enhance their ability to 
utilize oil contaminants. Few categories of microorganisms 
produce exopolysaccharides and biosurfactants, leading to 
improved bioavailability of oily pollutants and altering cell 

Fig. 1   Mechanism of bioremediation of contaminants (hydrocarbon) from contaminated sites
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hydrophobicity for better uptake of the impurities (Liu et al. 
2015; Patowary et al. 2018). Furthermore, future studies on 
the investigation of the availability of a particular pollutant 
by modern chemical analysis can be helpful for the execution 
of microbial degradation studies. They often alter surface 
properties and secrete metabolites such as bioemulsifiers and 
biosurfactants that enhance the bioavailability of hydropho-
bic contaminants (Das and Mukherjee 2007; Mukherjee and 
Das 2010; Alizadeh-Sani et al. 2018; Sharma and Pandey 
2021).

Constraints of abiotic and biotic factors 
in the bioremediation process

Environmental factors such as temperature, salinity, nutrients, 
electron acceptors, and available metabolic substrates play an 
important role in bioremediation (Varjani and Gnansounou 
2017). Due to the influence of such environmental factors, 
many microbes, although they exhibited promising results on 
a lab scale, may not show a similar effect in field conditions. 
Temperature plays a significant role in bacterial growth, soil 
texture, and mode of occurrence of the pollutant. Generally, 
the optimum temperature range for bacteria lies between 30 
and 40 ℃ (Ubani et al. 2013). Furthermore, microorganisms 
require nutrients for their growth and metabolism. 
Besides carbon, nitrogen, phosphorus, oxygen, sulphur, 
and various trace elements are essential for the effective 
development of microbes (Ron and Rosenberg 2014; 
Xu et  al. 2018). Thus, the availability of the nutrient 
components in the contaminated sites shall determine the 
fate of the biodegradation process. Salinity and pH also 
influence the actions of microbes towards bioremediation 
(Saha et al. 2019).

Additionally, the moisture content in the contaminated 
soil is a vital feature essential for microbial remediation of 
hydrocarbons. Sufficient moisture is required to bring the 
soluble pollutants and microbial cells in contact and their 
absorption (Ubani et al. 2013). Furthermore, oxygen is nec-
essary for the action of oxygenase to degrade oil compo-
nents. Thus, sufficient oxygen is essential for aerobic micro-
organisms’ efficient biodegradation of pollutants (Ward 
et al. 2003). Furthermore, another factor that influences the 
biodegradation potentiality of microbes is the compatibility 
of microorganisms with indigenous microbes in the con-
taminated sites. Very often, it is difficult to achieve such 
abiotic conditions favouring the microbial degradation of 
contaminants that fails in situ bioremediation. The syner-
gistic relationship of the microbes is essential for efficient 
degradation, whereas the antagonistic effect can down-reg-
ulate the biodegradation process. Additionally, the in-depth 
analysis of the microbial community in oil reservoirs shall 
aid in understanding the metabolic processes which lead 
to the degradation of the oily components, determine the 

intensity of contamination, and propose effective remedia-
tion strategies (Zhou et al. 2020, 2022). Adopting advanced 
culture-independent technologies shall provide more reliable 
information on the diversified microbial community in oil-
contaminated sites.

Metabolic constraints

The concentration and composition of hydrocarbons severely 
influence the bioremediation process. It has been observed 
that microbes cannot work efficiently in exceptionally highly 
contaminated sites due to growth inhibition in higher con-
centrations of crude oil (Xu et al. 2018). Moreover, organic 
pollutants can impose toxicity towards microbial cells and 
inhibit their metabolism at a particular concentration, and 
thus, ecotoxicological studies find importance in this per-
spective (Gao et al. 2021). Additionally, in previous studies, 
it has been reported that the more straightforward form of 
hydrocarbons, i.e. linear and aliphatic alkanes, are more eas-
ily degraded than the aromatic hydrocarbons, and the PAHs 
are the complex hydrocarbons that are not easily degraded 
by the microorganisms (Das and Mukherjee 2007). Hydro-
carbon compounds’ various sizes and structures change their 
physicochemical properties and bioavailability, ultimately 
influencing their biodegradation.

The biodegradation of hydrocarbons by microorganisms 
also depends on the activity of special classes of oxidative 
enzymes, namely oxygenases, monooxygenases, and dehy-
drogenases (Mukherjee et al. 2017). Certain microorgan-
isms possess enzymes mediating the conversion of complex 
hydrocarbon mixtures, while others can only degrade spe-
cific group of hydrocarbon compounds, especially linear 
ones (Varjani et al. 2017). Therefore, the existence of suit-
able microbes in a community that works together syner-
gistically can lead to better degradation of contaminants 
(Gurav et al. 2017). Applying microbial consortia consist-
ing of compatible microbes can be beneficial to bring about 
efficient degradation of hydrocarbons. In one of our previ-
ous studies, a bacterial consortium comprised of Bacillus 
pumilus KS2 and Bacillus cereus R2 led to efficient crude 
oil degradation. It could potentially degrade up to 84.15% 
of TPH after an incubation of 5 weeks in vitro conditions 
(Patowary et al. 2016.)

A slower rate of the overall bioremediation process

The microorganisms usually do not use hydrocarbons as 
carbon sources. In the absence of suitable carbon sources 
only, the microbes attempt to utilize hydrocarbon as car-
bon and energy sources. For such an action, the bacteria 
exclusively depend on the activity of hydrocarbonoclastic 
enzymes whose expression and activity depend on the bac-
teria’s physiology (Mukherjee et al. 2017). It requires time 
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to get acclimatized in the contaminated environment and 
express its enzyme, which ultimately catalyses the degra-
dation process. Yet again, it has been seen that although 
some bacteria work very efficiently in laboratory conditions, 
they lose their efficiency when introduced to field conditions 
(Fida et al. 2017; Zheng et al. 2018).

Additionally, one core problem that hinders bioremedia-
tion is the ageing phenomena of the oily components. With 
time, the oily contaminants penetrate deeper into the soil 
particles, sequester themselves, and become less accessible 
to the microorganisms or plants, thus affecting the reme-
diation process (Tang et al. 1998, 2012). There are reports 
based on experimental evidence, which culminate that as the 
age of organic contaminants progresses, the bioavailability 
reduces, hindering their bioremediation (Alexander 2000). 
But, the new contaminants can be subjected to bioremedia-
tion as they are mobilized better than the aged contaminants. 
Thus, the various factors, as discussed above, hinder the 
bioremediation process, making it time-consuming. To 
mitigate the drawbacks mentioned above, it is necessary 
to intertwine advanced technologies with the conventional 
bioremediation process.

Can nanotechnology and artificial 
intelligence (AI) revolutionize environmental 
pollution bioremediation?

Today, nanotechnology is gaining much attention due to its 
numerous attractive properties. Nanotechnologies deal with 
the construction of nano-sized particles, the characterization 
of NPs, and their applications in various fields such as elec-
trical, chemical, biotechnological, and medical (Rajan et al. 
2011). Nanotechnology is an expanding study that involves 
structures, devices, or systems with extraordinary proper-
ties concerning their atoms of nanoscale size (Rajput et al. 
2019; Rajput et al. 2021a, b). Recently nanotechnology has 

also been applied in the treatment of contaminated sites and 
remediation of groundwater and wastewater, although it is 
still at the bench-scale level with very scanty field appli-
cations (Singh et al. 2020; Hussain et al. 2022). NPs have 
several advantages that make them suitable candidates for 
vivid applications (Fig. 2). They can be synthesized cost-
effectively (Prado-Audelo et al. 2021); they exhibit extraor-
dinarily high surface area to mass ratio, catalytic behaviour, 
better diffusion, electronic properties, and present sensitivity 
(Corsi et al. 2018). The random distribution of active sites in 
their high surface area and the ease of coating modification 
add to their benefits for application in the remediation field 
(Guerra et al. 2018).

As shown in Fig. 3, NPs can be synthesized by various 
techniques in two basic phenomena—(a) top-down and (ii) 
bottom-up approaches. In the top-down process, the NPs are 
synthesized by minimization of size and are usually medi-
ated by various physical and chemical techniques. In con-
trast, in the bottom-up approach, NPs are generated from 
smaller entities, such as atoms and molecules, by chemical 
reactions, usually oxidative-reductive ones.

Nano‑based remediation of crude petroleum 
oil‑contaminated sites

In the context of remediation, NPs allow the detoxification of 
toxic contaminants by catalysis or chemical reaction. Most 
importantly, adsorption is facilitated by its high surface-
to-volume ratios and favourable distribution of active sites 
(Akharame et al. 2019; Blundell and Owens 2021). Usually, 
the remediation is carried out by two fundamental processes 
(Kharisov et al. 2014)—(i) adsorptive and (ii) reactive. In 
the adsorptive technique, the pollutants are sequestered or 
adsorbed from the contaminated sites. In contrast, in the 
reactive method, the NPs react with target pollutants and 
convert them into their intermediate forms.

Fig. 2   A schematic diagram 
showing the advantages of 
nanoparticles for practical 
bioremediation
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Kharisov et al. (2014) have elaborately discussed the vari-
ous nanomaterials that can be used for cleaning up oil spills. 
They are (i) aerogels, (ii) nanodispersions, (iii) magnetic 
nanocomposites, (iv) membranes, (v) foams and meshes, (vi) 
filters and pads, (vii) carbon nanostructures, (viii) nanostruc-
ture hydrophobic organoclays, and (ix) TiO2. It has been 
stated that the selectivity of the nanomaterial is one of the 
main criteria determining the fate of oil sequestration from 
the oil–water phase.

Conventional nanomaterials such as polypropylene, raw 
cotton, and silicon-coated glass fibres tend to adsorb both 
water and organic solvents, but specific nanomaterials such 
as CNTs, nanowire membranes, and Recam provide selec-
tive adsorption and potentially adsorbs oil from an oil–water 
mixture (Kharisov et  al. 2014).The high flexibility and 
attribute to withstand consecutive adsorption cycles make 
specific nanomaterials such as CNTs, aerogels, Recam, and 
Gigasorb highly effective in oil spill clean-up.

Based on their chemical compositions, NPs can be clas-
sified into inorganic, polymeric, carbonaceous, and compos-
ite substances (Ealia and Saravanakumar 2017). Inorganic 
NPs are synthesized from metal oxides such as silver, gold, 
titanium dioxide, zinc oxide, or silicon-based compounds. 
Polymeric NPs are made of chitosan, micelles, liposomes, 

alginate-based NPs, etc., whereas carbonaceous forms are 
constructed from carbon nanotubes, graphene nanosheets, 
graphene oxide nanosheets, nanofibers, and fullerenes. 
Composite NPs are usually multiphasic, consisting of dif-
ferent forms of NPs in combinations—for instance, gold 
NPs (AuNPs) combined with a polymer, biochar-supported 
zerovalent iron nanocomposites.

There are few reports on using NPs to remediate crude oil-
contaminated sites. In a study, Guidi et al. (2022) reported 
the application of anatase titanium dioxide NPs (n-TiO2) 
in remediating crude oil-fractionated water samples. It was 
found that the NPs were harmless to a model marine sp. 
Dicentrarchus labrax. It was found that the anatase n-TiO2 
did not possess a hazardous effect on aquatic organisms in 
terms of DNA damage, and it also reduced the impact of 
the genotoxicity of organic pollutants. In another study, Vu 
and Mulligan (2020) synthesized bimetallic Fe-Cu NPs of 
size 20-nm diameter that could potentially remove oil as 
indicated by total petroleum hydrocarbon estimation through 
gas chromatography. Murgueitio et al. (2018) also studied 
the effect of zerovalent iron NPs in removing petroleum 
oil from contaminated soil and water. They produced iron 
NPs of size ranging between 5 and 10 nm by using mortino 
berry (Vaccinium floribundum) as stabilizing and reducing 

Fig. 3   A schematic diagram showing various processes for the synthesis of nanoparticles
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agents. Applying the produced NPs led to removing 85.94% 
and 88.34% TPH from water samples contaminated with 
two varying concentrations of total petroleum hydrocarbon 
(TPH), viz. 9.32 mg/L and 94.20%, respectively. Further-
more, they also evaluated the effect of the nZVI NPs in the 
removal of oil from contaminated soil samples, and they 
corroborated that the NPs could efficiently remove 81.90% 
TPH after a treatment of 32 h. Their study culminated that 
the application of NPs created a reducing condition that 
fastened the removal of TPH from the contaminated sam-
ples. In another study, Atta et al. (2020) studied the effect 
of magnetic NPs capped with myrrh, a sap-like component 
secreted from trees, on the remediation of crude petroleum 
oil-contaminated water samples by water hyacinth (Eic-
chornia crassipes (Mart)). They used myrrh’s hydrophobic 
hexane and ether extracts to cap onto magnetic NPs. They 
performed a greenhouse study, where water hyacinth was 
cultivated in bowls containing freshwater from the Nile 
River that was artificially contaminated at varying concen-
trations of crude petroleum oil, viz. 0.5, 1, 2, 3, and 5 mL/L 
for 1 month, after which plants were harvested, and plant 
parts were separated into roots and shoots and allowed to 
oven dry and then ground to obtain their powdered form. 
The sulphur and total hydrocarbon contents were estimated, 
and it was received that the plants bio-accumulated sulphur. 
A significant reduction of hydrocarbons was observed in the 
water samples.

Studies from our laboratory have shown that ZnO NPs 
can also be used to remediate oil field formation water. In 
the process, ZnO NPs were synthesized by the electrochemi-
cal method. GCMS results revealed that the NPs absorbed 
131 hydrocarbon compounds out of 214 (Sharma et  al. 
2020). Thus, from the above discussion, it can be affirmed 
that nanotechnology can be widely used to remediate oil 
contamination.

Amalgamation of nanotechnology 
and bioremediation process for mitigation 
of petroleum oil pollution

Owing to the advantages and efficiency of nanotechnology, 
NPs can be used to nullify the drawbacks of the bioreme-
diation process. Fabrication of nanotechnology with biore-
mediation leads to a process termed nanobioremediation 
(NBR), which is much faster, more efficient, and environ-
mentally benign over the individual functions (Kumar et al. 
2021). NBR has been defined as a technique that utilizes 
NPs together with microorganisms or plants to restore envi-
ronmental contamination (Cecchin et al. 2017). NPs exhibit 
a quantum effect that helps minimize the activation energy 
required for initiating a reaction, making the biodegradation 
process faster than usual. They also acquire surface plas-
mon resonance data that aids in detecting a toxic compound 

of interest in a degradation process (Sadrolhosseini, et al. 
2021).

In the present-day scenario, where the focus has been 
put forward on a sustainable approach towards environmen-
tal restoration, NBR is one of the most suitable techniques 
environmentalists can use to clean up polluted sites. It is an 
effective process that converts harmful contaminants into 
safer molecules by utilizing microbes along with nano-sized 
particles of a range smaller than 1–100 nm. NBR is usu-
ally classified into two broad classes: (i) NBR that involves 
microbes and NPs is referred to as microbial nanoremedia-
tion, and (ii) NBR that includes plants and nanoparticles, 
the process is referred to as phyto-nanoremediation (Singh 
et al. 2020; Kumari et al. 2022). NBR provides an economi-
cally feasible and eco-friendly solution to clean up polluted 
sites where microbes and NPs work synergistically to medi-
ate the degradation phenomena (Shahi et al. 2021). In the 
NBR process, NPs act as a catalyst and enter within the 
contaminants (Chauhan et al. 2020) and aid the microbes 
in carrying out the actual degradation. This property makes 
NBR unique because the NPs are small and can penetrate the 
contaminants better than the micro-sized particles, making 
the overall degradation process faster and more efficient. The 
microbes then convert the harmful pollutants into simpler 
intermediates that can be used as growth metabolites for 
the microbes or even generate end products such as CO2 
and H2O.

It is essential that the biological entity and the NPs, 
in NBR technology, should have compatibility (Paterlini 
et al. 2021), so that both can work together. Several factors 
influence the NBR process, viz. the size of the NPs, shape, 
surface properties, type of organic contaminants, type of 
microbes or plants, and environmental factors such as media, 
pH, and temperature, which have an impact on microbial 
growth and activity (Tan et al. 2018). Temperature is one of 
the prime factors determining an NBR process’s fate. Tem-
perature influences plant extract formation and nano crystal 
generation in the NBR process. However, future research 
to investigate such abiotic factors for developing a set of 
optimum conditions to enhance the efficiency of the NBR 
process shall be beneficial to achieve the desired outcome.

Some of the NPs that are being used in NBR technology 
are as follows: iron NPs, dendrimers, carbon nanotubes, and 
single enzyme NPs (Shahi et al. 2021). NPs can also immo-
bilize microbial cells, which can degrade harmful contami-
nants. Shan et al. (2005) applied magnetic NPs that were 
functionalized with ammonium oleate and coated onto the 
cell surface of Pseudomonas delafieldii. They then used an 
external magnetic field, which led to the immobilization of 
the bacterial cells at a specific site of the reactor, separating 
them from the bulk reactor. The cells were used in a biore-
actor to desulfurate organic sulphur from fossil fuels. In the 
NBR process, the sorption mechanism is fundamental and 
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involves both adsorption and absorption. In the first one, 
sorption occurs at the surface, whereas, in the later one, the 
contaminants penetrate deep into the sorbent, which usually 
can occur by either chemisorption or physisorption (Vierra 
and Volesky 2000).

The behaviour of sorption of nanomaterials is essential, 
and extensive research is needed to be carried out for a 
proper understanding of the sorption mechanism of various 
nanomaterials used in NBR processes so that the efficiency 
of the process can be enhanced. Some researchers have elu-
cidated models that describe such behaviour and biologi-
cal matrix in remediation processes, viz. Freundlich and 
Temkin isotherms, Dubinin and Radushkevich model, and 
Langmuir model (Lopez-Luna et al. 2019; Abu-Nada et al. 
2021; Hassan et al. 2022). There are several reports on using 
zerovalent metal ion NPs of iron, nickel, palladium, etc., 
along with biological entities for the remediation of sites 
contaminated with toxic substances. Nanoscale zerovalent 
iron NPs (nZVI), Ti, Mn, Ag, and Au, were used along with 
Sphingomonas sp. for remediation of decarbonated diphenyl 
ether in the water system where degradation of up to 67% 
was obtained (Kim et al. 2012).

Notably, iron NPs were utilized to coat bacterial sp. A3 
to degrade azo dye, Basic Red 46 (Bekhit et al. 2020). After 
24-h incubation, 91.6% of the original value (100%) was 
decolourized at the optimum dosage (5 mL/L) and dye con-
centration of 2200 ppm. The bacterial cells were success-
fully reused for a couple of cycles (4 times) with an effi-
ciency of 86.34% by the magnetic separation method. Zinc 
sulphide NPs in crystalline form were entangled with bac-
terial enzyme organophosphorus hydrolase to disintegrate 
dinitrophenol and acid orange 7, and they could successfully 
remove more than 80% of the compound (Torres-Martínez 
et al. 2001). Nanocellulose was utilized to immobilize the 
bacteria Arthrobacter deformis D47 to remediate water sys-
tem contaminated with herbicide diuron, where 90% deg-
radation was obtained (Liu et al. 2018). In another study, a 
thin film composite polyamide nanomembrane and a natural 
extract of Cynomorium coccineum L. were used to clean 
up industrial wastewater contaminated with cyanide com-
pounds. However, the degradation was not satisfactory and 
was estimated to be around 22% (Mechrez et al. 2014).

Although NBR technology is being used for the res-
toration of the contaminated environment, the literature 
review shows that there exists a paucity of research on NBR 
applications for the degradation of crude petroleum oil 
pollution, including PAH compounds which are of prime 
concern due to their extraordinarily resistant and toxic prop-
erties (Patel et al. 2020). The level of PAHs, one of the pre-
mium components of fossil fuel, has recently skyrocketed 
in various regions due to the excessive use of fossil fuels 
and rapid industrialization (Vecchiato et al. 2020). NPs can 
enhance the bioavailability of these hydrophobic crude oil 

contaminants, which usually remain sequestered in the non-
aqueous phase.

Tungittiplakorn (2005) studied the utilization of poly-
ethylene glycol-modified urethane acrylate (PMUA) for 
the disintegration of phenanthrene dissolved in an aquifer 
model. They affirmed that PMUA increased the discharge 
of phenanthrene and expanded its mineralization rate, mak-
ing them available to a microbial population that carries out 
in situ biodegradation of the pollutant. In another study, the 
activity of halotolerant biosurfactant producer Pseudomonas 
aeruginosa NSH3 having the potential to degrade recal-
citrant PAHs was enhanced by using magnetic iron NPs. 
They also carried out a study in artificially contaminated 
sediments at the microcosm level, where regression model-
ling and statistical analysis were smartly applied to provide 
information about the interactive impacts of such contami-
nants. Furthermore, they also used the NBR technology for 
the remediation of diesel-polluted sediments in an in vitro 
microcosm study where satisfactory results were obtained, 
and complete mineralization of various components of diesel 
was achieved. They stated that the NBR technology facili-
tates the mass transfer of hydrocarbon and subdues the steric 
hindrance of low molecular weight (LMW) hydrocarbons 
and alkylated PAHs.

In another study, Osadebe et al. (2022) utilized a nano-
composite comprising green-synthesized iron NPs embel-
lished with biochar composed of cow bone for the degra-
dation of petroleum-contaminated soil. The biochar was 
obtained by slow reaction pyrolysis at nearly 500 ℃ under 
meager oxygen, and the NPs were synthesized from pea egg-
plant (Solanum torvum). The composite was applied to soil 
in microcosm at 10% w/w and 15% w/w amendment, and 
the study was carried out for 60 days. It was obtained that 
the TPH removal was noticeably more pronounced in the 
nanocomposite-amended soil when compared to the control, 
where no composite was added. It was 28.4% and 26.2% 
greater in the 10% and 15% composite cases, respectively.

Moreover, heterotrophic bacterial abundance was more 
significant in the amended soil than in the control soil sam-
ple. The metagenomic study revealed the quantity of the 
Proteobacteria family. Thus, their study ratified that iron 
oxide NPs decorated with biochar could restore petroleum-
contaminated sites by enhancing the natural attenuation pro-
cess. A few other studies where NBR technology has been 
utilized for the remediation of hydrocarbon-contaminated 
sites are listed in Table 3. From the literature survey, it has 
been observed that detailed study on the stability of the NPs 
at adverse environmental conditions, determination of active 
sites in biological species where the NPs can bind efficiently, 
and the optimization of physical conditions at which the syn-
ergy between the natural component and the NPs is optimum 
are not yet carried out. Thus, future studies in these areas 
can amplify the efficacy of the NBR processes and pave the 
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way towards implementing the technology at a large scale. 
Additionally, hydrocarbon mass balance and investigation 
of reaction stoichiometries and microbial population study 
are equally important to measure a particular remediation 
process’s biodegradation rate and success. Thus, the focus 
should be given to investigating the mechanism of hydrocar-
bon degradation by the NBR approach.

Overcoming the limitations 
of nanoparticle‑mediated bioremediation: 
a challenge

The attractive and unique properties of NPs lead to their 
extensive application in various fields such as pharmaceu-
ticals, drug delivery, and environmental remediation. In 
environmental remediation, the small-sized NPs enter deep 
into the target locations and aid in discharging the sorbed 
and sequestered hydrophobic substances. Although NPs are 
gaining importance in day-to-day life, there also exists a 

threat from NPs. They can enter deep into the cells and reach 
the organelles, distorting cell membranes and leading to cell 
death (Hondroulis et al. 2014; Exbrayat et al. 2015). NPs 
can be inhaled, sorbed through the skin, and ingested with 
food (Kharisov et al 2014). They also affect reproduction 
and negatively impact embryonic development (Sun et al. 
2013; Yan and Wang 2022). There are also reports on the 
entry of NPs in the food chain and bio-magnifications when 
it reaches higher trophic level organisms.

Furthermore, NPs synthesized by various chemical and 
physical methods can have additional effects on the environ-
ment and microorganisms, and the overall manufacturing 
process is expensive (Ahmed et al. 2016). In recent years, 
emphasis has been given towards synthesizing green NPs, 
including biological components that can be used as disper-
sants and end-capping agents during NP synthesis. Green 
NPs are synthesized using microorganisms or extracts from 
different plant parts such as leaves, roots, seeds, flowers, 
fruit, and stems (Fig. 4). The green materials comprise 

Fig. 4   Schematic representation for the biosynthesis of green nanoparticles
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proteins and polyphenols that can act as reducing agents to 
efficiently reduce metal ions during NP synthesis. In some 
instances, it has been observed that biological substances 
work better than their chemical counterparts. Table 4 sum-
marizes the various natural components, including plants, 
used to synthesize NPs.

Although several methods for synthesizing green NPs 
have been reported, there arises a gap in the thorough under-
standing of the synergy of the biological entities and the 
metal ions, the stability of the physical component, and the 
effect of various parameters on the synthesis of the green 
NPs. Furthermore, natural ingredients that are used in the 

synthesis of particular NPs may be seasonal; just like in 
some instances, the leaves of flowering plants can only be 
used for the synthesis of the NPs, or some raw materials can 
be limited to particular geographical location; thus, in such 
cases, the raw material collection might be delayed which 
ultimately constrains the production process of NPs (Ghaemi 
and Gholamipoor 2017; Sana and Dogiparthi 2018).

The biological components need to be preserved well 
after collection up to experimentation because they might 
alter in quality and composition or rot due to microbial 
actions. Furthermore, in some instances, the raw materials 
are secondary metabolites of plants. Hence, the extraction, 

Table 4   List of biological entities that are utilized for the green synthesis nanoparticles

Organism Type of the nanoparticle Size of the nanoparticle 
(nm)

References

Bacteria
  Escherichia coli CdS QDs 2–5 Midya et al. (2019)
  Lactobacillus johnsonii TiO2 40–60 Al-Zahrani et al. (2018)
  Pseudomonas deceptionensis Ag 10–30 Singh et al. (2018)
  Actinobacter sp. Au 50–500 Camas et al. (2018)
  Streptomyces capillispiralis Ca-1 Ag 5 Fouda et al. (2020)
  Staphylococcus aureus Ag 5–100 Agnihotri et al. (2014)
  Bacillus strain CS 11 Ag 42–92 Das et al. (2014)
  Deinococcus radiodurans Au 43.75 Li et al. (2016)
  Pseudomonas putida KT2440 Selenium 70–360 Avendaño et al. (2016)

Fungus
  C. glabrata Cd 2 Raj et al. (2016)
  Aspergillus fumigatus AA001 ZnO 12.6 Srivastava et al. (2016)
  Aspergillus japonicus AJP01 Au 5–20 Bhargava et al. (2015)
  Macrophomina phaseolina Ag 16–20 Bhargava et al. (2015)

Algae
  Bifurcaria bifurcate Copper oxide 5–45 Abboud et al. (2014)
  Bifurcaria bifurcate Au 0.25–30 Venkatesan et al. (2014)
  Sargassum plagiophyllum Ag chloride 18–42 Dhas et al. (2014)
  Chlorella pyrenoidosa Ag 300–700 Aziz et al. (2015)
  Cystophora moniliformis Ag 75 Prasad et al. (2013)

Plants
  Azadirachta indica Ag 41–60 Kishanji et al. (2017)
  Cymbopogon citratus Au 20–50 Murugan et al. (2015)
  Cocos nucifera Pb 47 Uddin et al. (2020)
  Banana CdS 1.48 Zhou et al. (2014)

Raspberry, strawberry, blackberry Ag 2–5 Demirbas et al. (2017)
  Citrus medica Cu 20 Shende et al. (2015)
  Ginkgo biloba Cu 15–20 Din et al. (2017)

Red ginseng Ag 10–30 Sreekanth et al. (2018)
  Pinus densiflora Ag 30–80 Velmurugan et al. (2015)

Carnivorous plants Ag 5–10 Banasiuk et al. (2020)
  Beta vulgaris, Cinnamomum tamala, Cinnamomum 

verum, Brassica oleracea var. italica
Zn 2–20 Pillai et al. (2020)

  Origanum vulgare L Ag 34.4–1.3 Baláž et al. (2017)
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separation, and purification of such components can increase 
the production cost of the NPs (Li et al. 2017). Noteworthy, 
the properties of the NPs synthesized in a green way should 
be appropriately investigated so that the applications achieve 
desirable outcomes. Above all, the production time, high 
energy consumption, and requirement of additional chemi-
cals in the process are prime factors that should not be over-
looked for the feasible production and utilization of green 
NPs (Guan et al. 2022).

There exists a lack of in-depth knowledge about the func-
tion and properties of green NPs. Thus, detailed research in 
this area can help us understand the mechanism of biosyn-
thesis of the green NPs, ease the separation and purification 
of the green NPs from the bulk biomass, and also lead the 
way to improve their quality and overcome the limitations 
associated with the production of green NPs.

The role of artificial intelligence (AI) in the efficient 
treatment of hydrocarbon‑contaminated sites

Artificial intelligence (AI) is gaining much attention in the 
present day. It is finding various applications such as pat-
tern recognition, disease diagnosis, image understanding, 
intelligence search, automatic programming, and human and 
robotic games, which are influencing human life to a great 
extent (Fan et al. 2018). AI can be considered a branch of 
engineering that provides affordable solutions to challenges 
by implementing novel concepts (Hamet and Tremblay 
2017; Baum et al. 2021). Continuous progress in the infor-
mation technology sector, development of good software, 
and scale-up of electronic speed might lead to the invention 

of highly efficient super computers with extremely high 
speed and proficient accuracy.

AI involves the ability of machines to work intelligently 
and make a decision in response to inputs without any clear 
set of external instructions typically provided to standard 
computers for a particular task. AI systems are designed to 
use a model that is usually trained before making predic-
tions. Different AI tools that are predominantly used are as 
follows: artificial neural network (ANN), Monte Carlo simu-
lation (MCS), immune algorithms (IA), boosted regression 
tree (BRT), and ant colony algorithm (ACA). AI is now also 
being used to monitor environmental quality and in reme-
diation to obtain accuracy and precision. Modern machine 
learning methods are aiding in interpreting high-dimensional 
and nonlinear data in research studies.

There are reports on the involvement of conventional 
mathematical or statistical models for optimizing different 
parameters playing a significant role in the microbial biodeg-
radation of petroleum oil hydrocarbons. For example, Bor-
doloi et al. (2014) have applied response surface modelling 
(RSM) to optimize various growth conditions for studying 
the desulfurization of dibenzothiophene (DBT), which is 
predominantly present in diesel oil by the bacterium Achro-
mobacter sp. isolated from petroleum oil-contaminated soil. 
Similarly, Ramasamy et al. (2017) have employed RSM to 
optimize various growth conditions for culturing Entero-
bacter cloacae (KU923381) to degrade diesel oil. Although 
statistical models and conventional mathematical algorithms 
have been incorporated in hydrocarbon degradation studies, 
however, only a few studies have employed AI in monitoring 
and hydrocarbon remediation. Figure 5 depicts the studies 
and reports on the involvement of AI in the bioremediation 

Fig. 5   AI application in hydrocarbon remediation in the last decade (2012–2022)
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of hydrocarbon-contaminated sites in chronological order 
for the last decade.

Kumar and Mathur (2013) utilized an artificial neu-
ral network (ANN) in place of BIOPUME III to simulate 
in situ biodegradation of hydrocarbons. BIOPLUME III is 
a two-dimensional finite difference model that can simu-
late hydrocarbon biodegradation in aerobic and anaerobic 
conditions but is usually a time-consuming process. Thus, 
a proxy model is necessary for better efficiency. Therefore, 
their study fabricated the artificial neural network (ANN) 
using the Levenberg–Marquardt back propagation algorithm. 
In a study, Dunea et al. (2014) designed a decision sup-
port system (eSCAP: soil petroleum contamination assess-
ment prototype) that elicits users to monitor the site and 
the characteristics of contaminants released from petroleum 
extraction and transportation processes and chooses the most 
suitable and feasible remediation technologies based upon 
database search. The selection of appropriate remediation 
technology is an essential task for a successful remediation 
process. The system was applied in several case studies of 
oil spills due to transportation leakage.

In another study, Dudhagara et al. (2016) utilized two 
models, a conventional response surface methodology 
(RSM) and an upgraded artificial intelligence model ANN 
for enhancing fluoranthene degradation by Mycobacterium 
litorale. The study involved optimizing media components: 
CaCl2, KH2PO4, and NH4NO3. The designed ANN model 
maximized fluoranthene degradation through input neuron 
network topology. The neurons in the hidden layer were 
recognized by training several ANN topologies and then 
choosing the optimal one based on minimizing the root 
mean square error (RSME) and mean absolute percentage 
error (MAPE). It was obtained that the ANN model could 
efficiently simulate the degradation process of fluoranthene, 
and the values obtained in ANN were more reliable, precise, 
and reproducible because ANN is assigned with nonlinear 
polynomials of the system whereas RSM models rely on 
quadratic equations merely. They obtained a better degrada-
tion of 51.28% on the 3rd day compared to an un-optimized 
degradation method in which only 26.37% degradation was 
achieved after 7 days.

Sanusi et al. (2016) conducted a comparative study to 
optimize total petroleum hydrocarbon (TPH) degradation in 
diesel-contaminated soil by Paspalum scrobiculatum, a trop-
ical plant, by using RSM and ANN. An optimum condition 
was attained at a diesel concentration of 3%, 72 sampling 
days, and 1.77-mL/min aeration in the case of RSM, which 
led to 76.8% TPH removal, whereas, in the case of ANN, 
the predicted optimum condition was at a diesel concentra-
tion of 3%, 72 sampling days, and 1.02-mL/min aeration, 
in which 85.5% TPH was removed. Thus, it was affirmed 
that the ANN was better than the conventional RSM model 
in estimation and data fitting. AI can also efficiently assist 

in monitoring the site of environmental contamination. The 
same group of researchers studied the adsorption and dif-
fusion of 16 PAHs (polyaromatic hydrocarbons) in silica 
nanopores by considering adsorption energy, free surface 
area, mean square displacement, and volume fraction incor-
porating molecular dynamic simulation (Sui et al. 2016). 
An interpretation was drawn that the sorption of PAHs in 
silica nanopores was due to diffusion. They performed linear 
and nonlinear regression using the partial least square (PLS) 
method and machine languages, namely support vector 
regression (SVR), M5 decision tree (M5P), and multilayer 
perceptrons (MLP), to procure information about the influ-
ence of various factors on the adsorption. They interpreted 
that the combined approach, including molecular dynamics 
(MD) and machine languages, can aid in deciphering the 
sequestration of organic contaminants in the soil particles.

Jiao et al. (2019) also designed a novel method for auto-
matically detecting oil spills which are usually not easily 
detectable. In the approach, they involved three units: UAVs 
(crewless aerial vehicles), deep learning, and traditional 
algorithms, which perform the task of oil spill detection. The 
job is divided into three sub-tasks, and the three units work 
independently to complete the task. Firstly, a model based 
on a deep convolutional neural network was constructed, 
which detects the oil spill as images and assures no exclu-
sions. Secondly, an Otsu algorithm was utilized to increase 
the detection task’s precision to eradicate other errors or 
noise in the seen images. Lastly, a maximally stable extremal 
region algorithm (MSERA) was used to procure the polygon 
from the detection box. They found that their method could 
successfully detect oil spill regions and also aided in the 
reduction of cost for oil spill detection by 57.2% compared 
to traditional detection methods.

Wang et al. (2019) utilized an AI system termed an inte-
grated extended short-term memory network (LSTM) that 
uses cross-correlation and association rules (Apriori) for 
the identification of point sources of pollutants and trace 
industrial contaminants in water bodies. They developed 
water quality cross-correlation maps that helped them track 
contaminants’ point sources. In another study, Shadrin et al. 
(2020) used various machine learning models, namely ANN 
(artificial neural networks) and support vector machine 
(SVM), to predict the phytotoxicity of TPH. They stud-
ied eleven soil samples collected from Sakhalin islands in 
greenhouse conditions. They obtained satisfactory results 
in predicting the phototoxicity effects of TPHs. The models 
can also help analyse the soil properties, which is usually 
time-consuming and laborious. In 2021, Dragoi and col-
leagues utilized a neuro-evolutive methodology involving 
ANN (artificial neural network) and DE (differential evolu-
tion) to predict TPH and OC (organic carbon), which are 
two main factors of oily sludge composting that determine 
the efficiency of the oil removal process. Experimental data 
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were used to validate the findings of the ANN model, and it 
was obtained that the proposed model provides information 
comparable to the observed values.

AI can be extensively applied to interpret the rheological 
properties affecting petroleum’s transportability and refin-
ing. Very recently, Stratiev et al. (2023) utilized an ANN-
based model to predict the viscosity of crude oil. Thus, 
from the above discussion, it can be affirmed that AI can be 
widely used to determine oil pollution sites and enhance the 
accuracy of a particular remediation process, thereby mak-
ing it more efficient. Therefore, the blend of the artificial 
brains, i.e. the machine learning algorithms with the conven-
tional remediation technology, makes the restoration process 
better, more precise, faster, and more cost-effective. It can be 
observed that the trend of AI-based remediation studies has 
been tremendously escalating in recent years (Fig. 5). Again, 
advanced bio-informatics tools can be utilized to study the 
decomposition patterns of the hydrocarbon compounds and 
elucidation of the catabolic pathway adopted by the microor-
ganisms for degradation of hydrocarbons in a contaminated 
environment. In the future, a database can be developed that 
would be destined to contain detailed information on differ-
ent crude oil-contaminated sites, which shall provide insight 
to researchers and environmentalists about a particular con-
taminated area. Therefore, it may be well anticipated that 
the research studies on AI-based bioremediation shall find 
enormous importance in solving environmental issues.

Future perspective and conclusion

Crude oil contamination is a central concern of global envi-
ronmental pollution that adversely affects the environment 
and life forms. Although bioremediation has been widely 
adopted as a clean and cost-effective treatment method, it 
has several drawbacks that must be tackled for better out-
comes and efficiency. The emergence of nanotechnology 
as a research study and its various advantages has led to 
its copious application in vivid fields such as drug deliv-
ery, agriculture, optics, space industries, and environmental 
remediation of toxic pollutants. NPs are extensively studied 
and applied to remediate contaminated sites and restore the 
environment. The high surface area and attractive sorption 
capacity of NPs allow proper sequestration of hydrophobic 
pollutants from matrix solution; as a result, the contami-
nants become available to the microbes for their efficient 
biodegradation. The conglomerate of nanotechnology and 
bioremediation technology, or the NBR process, is expected 
to enhance the efficiency of the overall degradation process 
and nullify the drawbacks of the mere bioremediation pro-
cess. The NBR technologies, where NPs are entangled with 
biological entities for remediation of the pollutant of inter-
est, are gaining much attention due to their higher efficiency 

and environmentally friendly nature. Although there are 
studies on the combined approach of microbes and NPs, 
lacunae exist in the in-depth understanding of the mecha-
nism of synergy between the NPs and the biological enti-
ties in NBR processes. Thus, a better understanding of the 
relationship between NPs and biological entities used in a 
particular NBR process and recognition of the factors that 
impact their synergistic relation shall help us enhance the 
process’s efficiency. Currently, scanty research studies have 
been carried out on NBR of oil spill contamination where 
promising results have been obtained. In the coming future, 
more studies of NBR on oil spill remediation should be car-
ried out to optimize and upgrade for practical and field-scale 
applicability.

Furthermore, the long-term impact of NPs on the environ-
ment must be clarified to avoid additional risks. Addition-
ally, the focus should be on using green or bio-NPs rather 
than chemical or metallic NPs to make the overall process 
sustainable and eco-friendly. Thus, future research should 
search for suitable, cost-effective biological raw materials 
that can be used for NP synthesis and determine various 
ways to modify the NPs to enhance their efficiency for better 
outcomes. Developing biocompatible nanomembranes for 
the adsorption of oil pollutants can effectively treat crude 
oil-polluted water bodies. It can provide a solution to the 
increasing problem of water scarcity. Furthermore, the cost-
effective manufacturing of the NPs should be emphasized 
so that the process becomes economically feasible for large-
scale applications to restore contaminated sites.

The integration of AI with NBR is of utmost essential 
for more efficient bioremediation to be achieved. The high 
accuracy, precision, and ease of detection of pollutants, pro-
vided by AI algorithms and software, upgrade the efficiency 
and reduce the time a remediation process takes. The AI 
algorithms have extensive features that overcome the disad-
vantages of conventional mathematical models. There are 
very few studies on understanding the role of AI in reme-
diation processes; hence, future studies and field trials on 
the involvement of AI in the monitoring of contaminated 
sites and remediation of contaminated sites are necessary to 
furnish our knowledge on the understanding of the role of 
AI in remediation processes. The focus should be on devel-
oping highly efficient algorithms, and their involvement in 
remediation studies should be carried out to achieve better 
outcomes. Additionally, creating a database that shall record 
all sorts of vital information about the oil fields of a particu-
lar region can aid researchers in planning and executing their 
work smoothly.

Furthermore, microbial enzymes also play a significant 
role in the biodegradation of contaminants in the environ-
ment. A depth study should be carried out on the microbial 
enzymes that catalyse a particular remediation process and 
search for techniques to modify them by involving NPs to 
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enhance their efficiency. Enzymes are usually very unsta-
ble and have a short life as they lose their activity due to 
oxidation. Immobilizing hydrocarbon-degrading enzymes 
with NPs might increase the stability and longevity of 
enzymes, thereby making them a suitable candidate for 
remediation technology. Besides, the intervention of bio-
technological tools with the NBR technology for removing 
toxic components from the environment should be studied 
to improve the remediation process. The involvement of 
marker genes to track the expression of a concerned gene 
can furnish additional knowledge and throw light on the 
genetic profile of microbes that shall contribute towards 
the up-gradation of the remediation process.

Furthermore, the fate of the hydrocarbon bioremedia-
tion process should be studied in detail by investigating 
growth kinetics, a study of the expression of specific genes 
and enzyme profiling, which would help us understand the 
metabolism of the microorganisms for mediating degra-
dation of the hydrocarbon and also provide information 
on the extent of degradation. DNA-stable isotope probing 
(DNA-SIP) is an advanced and effective technique that 
aids in identifying the active microorganisms that utilize 
particular carbon sources for their metabolism. The mass 
balance and stoichiometry of the hydrocarbon contami-
nants subjected to bioremediation are also equally impor-
tant to understand the compounds’ conversion and esti-
mate the remediation process’s effectiveness.

Genetically engineered plants can also be developed to 
increase efficiency in stabilizing or degrading particular 
contaminants of interest. Indeed, the ethical issues that 
might arise due to the use of genetically modified micro-
organisms or plants in a specific site should be considered 
prior hand before their implementation. Again, intertwin-
ing environmental biotechnology and other remediation 
technologies, such as chemical or physical approaches, can 
lead to better outcomes.

Thus, in the coming days, a thorough study of NBR pro-
cesses, their optimization, and the scale-up of the process 
by associating advanced AI and modern biotechnological 
approaches along with the incorporation of enzyme tech-
nology and genetic recombination shall provide sustain-
able solutions to combat environmental challenges.
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