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Abstract

Background: Postoperative infections constitute more than half of all postoperative 

complications. Surveillance of these complications is primarily done through manual chart review, 

which is time consuming, expensive, and typically only covers 10% to 15% of all operations. 

Automated surveillance would permit the timely evaluation of and reporting of all operations.

Methods: The goal of this study was to develop and validate parsimonious, interpretable models 

for conducting surveillance of postoperative infections using structured electronic health records 

data. This was a retrospective study using 30,639 unique operations from 5 major hospitals 

between 2013 and 2019. Structured electronic health records data were linked to postoperative 

outcomes data from the American College of Surgeons National Surgical Quality Improvement 

Program. Predictors from the electronic health records included diagnoses, procedures, and 

medications. Infectious complications included surgical site infection, urinary tract infection, 

* Reprint requests: Kathryn Colborn, University of Colorado Anschutz Medical Campus, 12631 E. 17th Ave, C-305, Aurora, CO 
80045. Kathryn.colborn@cuanschutz.edu (K.L. Colborn); Twitter: @ColbornKathryn. 

Conflict of interest/Disclosure
The American College of Surgeons National Surgical Quality Improvement Program and participating hospitals are the source of the 
outcomes data; the American College of Surgeons has not verified, and are not responsible for, the statistical validity of the data 
analysis or the conclusions derived by the authors. The authors have no relevant financial disclosures.

HHS Public Access
Author manuscript
Surgery. Author manuscript; available in PMC 2024 February 01.

Published in final edited form as:
Surgery. 2023 February ; 173(2): 464–471. doi:10.1016/j.surg.2022.10.026.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sepsis, and pneumonia within 30 days of surgery. The knockoff filter, a penalized regression 

technique that controls type I error, was applied for variable selection. Models were validated in a 

chronological held-out dataset.

Results: Seven percent of patients experienced at least one type of postoperative infection. 

Models selected contained between 4 and 8 variables and achieved >0.91 area under the receiver 

operating characteristic curve, >81% specificity, >87% sensitivity, >99% negative predictive value, 

and 10% to 15% positive predictive value in a held-out test dataset.

Conclusion: Surveillance and reporting of postoperative infection rates can be implemented for 

all operations with high accuracy using electronic health records data and simple linear regression 

models.

Introduction

Surgical infectious complications are among the most common healthcare associated 

infections (HAI).1 Postoperative infectious complications include surgical site infection 

(SSI), sepsis, pneumonia, and urinary tract infection (UTI). The SSIs are the costliest 

HAI type, with an estimated annual cost of $1.6 to $3.3 billion, and are associated with 

nearly 1 million additional inpatient days annually in the US.2,3 Worldwide, significant 

hospital resources are devoted to surveillance of postoperative infections, which is often 

accomplished by manual chart review.4 Due to the time and cost required to perform these 

reviews, typically only a small subset of all patients is reviewed, and delays exist between 

data abstraction and analysis. As a result of these limitations, the data are primarily used to 

compare hospitals and are not fed back to surgeons and other providers.

The American College of Surgeons National Surgical Quality Improvement Program (ACS-

NSQIP) provides accurate reporting of postoperative complications on a systematic sample 

of major operations at >800 hospitals.5 Infectious complications are the most frequent 

type, constituting over half of all postoperative complications.6 At each participating 

hospital, trained surgical nurse reviewers use the ACS-NSQIP protocol and standardized 

definitions to collect preoperative risk factors, operative variables, and 30-day postoperative 

outcomes on a systematic sample of surgical patients. These curated data are subsequently 

risk-adjusted centrally, and results are reported back to participating programs to facilitate 

tracking of outcomes over time and identifying best practices. Despite its widespread 

acceptance, the ACS-NSQIP has a number of important limitations: (1) it covers only a 

sample of operations at each participating center (10%–15% at higher volume hospitals), (2) 

the manual data collection burden is significant and costly, (3) the data are not reported at 

the individual surgeon level, and (4) there is a delay of at least 6 to 18 months between the 

surgical procedure and when the ACS reports back to participating programs.7

Additionally, the Centers for Disease Control’s National Healthcare Safety Network 

(NHSN) is the largest HAI surveillance system in the US. The goal of NHSN is to identify 

problems at certain facilities, track progress, and facilitate mandatory reporting of HAIs 

to federal agencies.8 For many large facilities, the NHSN indicators, which include SSI, 

pneumonia, and UTI, are only collected for specific operations, because the review process 
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is laborious and expensive. Despite their limitations, both the ACS-NSQIP and the NHSN 

tracking systems are robust sources of information on HAIs.

Given the time and costs involved in postoperative infection surveillance, some institutions 

have considered the use of statistical models applied to the electronic health record (EHR) 

to identify infectious complications of surgery, specifically for SSIs,9–13 UTIs,14–24 sepsis,25 

and pneumonia.12,26,27 In these studies, researchers used structured data or natural language 

processing (NLP) of text data to develop models for postoperative infection detection. 

The most commonly used data for patient outcomes were ACS-NSQIP and Veterans 

Administration Surgical Quality Improvement Program. In many of these previous studies, 

low-dimensional datasets were used because the statistical techniques applied could not 

handle a large number of predictors. Natural language processing has shown promise in 

various studies,14,20,28–30 but not all institutions have the capacity to implement NLP, 

limiting its reach. Knepper et al created an algorithm for flagging NHSN SSIs using EHR 

data.31 They showed that a single International Classification of Disease version 9 (ICD-9) 

code, 998.59, could detect SSIs in seven specific procedures with 64% sensitivity and 

97% specificity, and their overall model, which included additional laboratory data and 

diagnosis codes, had 100% sensitivity and 88% specificity. Importantly, they estimated that 

the algorithm reduced the number of cases requiring manual review by 80%.

The primary objective of this study was to create an automated, reliable, and generalizable 

method to identify postoperative infections, including SSI, UTI, pneumonia, and sepsis/

septic shock, using machine learning applied to EHR data. By automating the identification 

of infections using this approach, we believe that the following goals can be accomplished: 

(1) all operations can be evaluated for infectious complications, not just a limited subset, 

(2) the charts requiring manual review can be identified and will constitute only a small 

percentage of all operations, (3) complication rates can be fed back to surgeons in a timely 

manner, and (4) reliable results can be obtained at the level of the individual surgeon. In 

this article, parsimonious, interpretable models for SSI, UTI, sepsis, and pneumonia that 

only used structured EHR data are presented. Unique features of the approach include the 

use of disease phenotypes32,33 and implementation of the knockoff filter34,35 for controlled 

variable selection.

Methods

Study design

Retrospective observational data from surgeries that were done at 5 major hospitals within 

a large healthcare system, University of Colorado Health, between 2013 and 2019, were 

included. The hospitals included 3 academic and 2 community hospitals that participated 

in the ACS-NSQIP program. Approximately 80,000 total surgeries are performed at these 

hospitals per year. The EHR data were linked to outcomes data from the ACS-NSQIP 

using medical record numbers and other personal health identifiers by the University of 

Colorado’s Health Data Compass Data Warehouse project. All hospitals and affiliated clinics 

within this healthcare system used Epic (Epic Systems Corp, Verona, WI). This study was 

approved by the Colorado Multiple Institutional Review Board (#20–1862).
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Electronic Health Records Data

The EHR data included demographic characteristics, details about the operation, surgeon 

information, ICD-9 and ICD-10 codes, procedure names, laboratory data, and medications. 

Diagnosis codes and laboratory data were included if they occurred up to 30 days after 

the primary operation. Medications were included only if they were prescribed between 2 

and 30 days after the operation to avoid inclusion of perioperative prophylactic antibiotics 

prescribed at the time of the operation. Current procedural terminology and Logical 

Observation Identifiers Names and Codes were often missing or mis-coded, so procedure 

and laboratory names were used instead. Due to the longitudinal nature of the data and the 

multiple sites, these names appeared in a variety of forms (eg, “AEROBIC CULTURE 

[ie, TISSUE, ABSCESS, WOUND, SINUS, ETC]” and “ANAEROBIC CULTURE, 

[ie, TISSUE, ABSCESS, WOUND, SINUS, ETC],” and “CULTURE ANAEROBIC”). 

Therefore, to avoid having to create logical groupings of these names for the entire set, 

a 2-stage process was implemented, where individual names were included as predictors 

on the first pass, and for those selected during the model selection process (described in 

the statistical methods section), similar names were classified into 1 predictor (eg, “blood 

culture”) and the models were refit. If the beginning of the laboratory result started with 

“no [space]” or “negative [space],” the result was coded as negative. For the medication 

data, we first subset the pharmaceutical classes into only those in the therapeutic class 

of antibiotics and created a binary indicator of at least one antibiotic prescribed versus 

none. Antifungals were also included, and for the sepsis models, the therapeutic class 

of “cardiac” was included to capture vasoactive and inotropic agents. We used phecode 

mappings to reduce the number of diagnosis codes as predictors and to combine similar 

diagnoses into diagnosis phenotypes.32,33 This also permitted us to include data that spanned 

the change from ICD-9 to ICD-10 codes, which occurred in October 2015. The phecode 

mapping versions used were 1.2 (ICD-9), 1.2 b1 (ICD-10), and 1.2 b1 CM (ICD-10 CM). 

For hierarchical phecodes, we rounded them to whole numbers and labeled their extension 

as “X.” These were phecodes that clinically could be combined into a single predictor 

representing a specific diagnosis related to one of the infections. We assumed that if a 

patient did not have a specific code, then they did not experience that exposure (ie, there 

were no missing covariates).

ACS-NSQIP Outcomes Data

Postoperative infection outcomes collected by the ACS-NSQIP included the following 

complications occurring within 30 days of the index operation: superficial SSI, deep 

incisional SSI, organ space SSI, wound disruption, UTI, sepsis, septic shock, and 

pneumonia. We grouped the different SSI complications plus wound disruption into one SSI 

variable, and sepsis and septic shock into one variable, because the process for diagnosing 

each infection within those groups is similar.

Statistical analysis

Data were divided into training and test datasets for model development and validation using 

a temporal split of 70%/30%, respectively. Supervised learning was used to develop and 
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validate models for identifying infectious complications in patients who underwent surgery 

using EHR covariate data and ACS-NSQIP outcomes data.

To identify a parsimonious and generalizable model, we used the “knockoffs” framework 

described by Barber and Candes34 and Candes et al,35 which is a variable selection 

technique that controls type I error using false discovery rate (FDR) correction. Previously, 

Colborn et al developed and validated models for SSI,10 UTI,16 and overall morbidity36 

using data only from one hospital, and they used penalized regression techniques to 

carry out variable selection. Although penalized regression techniques are suited to handle 

problems with a large number of predictors, it is difficult to choose a value of λ (ie, the 

penalty term) such that type I error is controlled. Knockoffs solve the variable selection 

problem by providing a negative control group for the predictors. These “knockoff” 

variables mimic the original independent variables, except they are known to be null (ie, not 

associated with the outcome). When the effect estimates of the true variables are sufficiently 

larger than their negative controls, they are selected by the knockoff filter. The threshold for 

this difference is determined by the FDR rate, which is set by the user.

We created 63 training scenarios. For each scenario, we varied the cutoff of frequency of 

each variable between 5 and 50 by increments of 5. This preprocessing step allowed us 

to remove exposures that were only seen in a small number of patients, which sped up 

model fitting. We also treated the FDR rate as a tuning parameter, testing values between 

0.1 and 0.25 by increments of 0.025, as the choice of FDR rate is not obvious before 

model fitting. Next, lasso models were used to estimate regression coefficients for the 

knockoff filter. Models that exhibited parsimony, that had high performance in the training 

set and made sense clinically, were selected for each infection outcome. As mentioned in 

the methods section, for any procedures or laboratory tests that were selected, we went back 

to the original data and searched for similar names so that we could regroup these into one 

variable. Finally, multiple logistic regression was used to estimate unbiased coefficients and 

95% CIs of the selected variables (lasso coefficients are biased). The logistic regression 

models were applied to the training and test datasets to report final model performance. 

Performance statistics of these models were computed in the test dataset using the Youden’s 

J37 threshold estimated in the training dataset. Confidence intervals of the performance 

statistics were estimated using bootstrap methods. The model estimated prevalence for 

each outcome was calculated as the sum of the predicted probabilities across all patients. 

Calibration plots were created by plotting predicted values for each outcome divided into 5 

groups determined by equally spaced cut-points between 0% and 100%.

All analyses were performed in R Version 3.6.1 (R Project for Statistical Computing, 

Vienna, Austria). We used the knockoff38 and glmnet39 packages for model fitting, and 

the pROC40 package for estimating model performance statistics. Example R code for 

implementing the models is provided in a GitHub repository.41 The methods for developing 

and validating the models in this study follow the “Type 2b: Nonrandom split-sample 

development and validation” guidelines described in the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis.42 A completed copy 

of the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis 

or Diagnosis checklist for this study can be found in Supplementary Table S1.
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Results

There were 31,579 operations in the ACS-NSQIP data from these institutions occurring 

between June 30, 2013 and October 16, 2019. Of these operations, 940 (3%) were not 

identified in the EHR data. Therefore, 30,639 operations were included in the analyses 

presented herein (STrengthening the Reporting of OBservational studies in Epidemiology 

diagram provided in Figure 1). The training dataset consisted of operations that occurred 

between June 30, 2013 and March 1, 2017 (N = 21,450 [70%]), and the test dataset included 

operations between March 2, 2017 and October 16, 2019 (N = 9,189 [30%]). There were 

>3,000 candidate predictors in each analytic dataset.

Table I summarizes the patient characteristics and outcomes in this population, overall and 

by hospital. Because the outcomes are not risk-adjusted, we have chosen to keep the names 

of the hospitals anonymous. Five hospitals were included but 2 are not distinguishable from 

one another in the data, so the data are summarized into 4 hospitals. Overall, the average age 

was 55.3 ± 16.6, and 56% of the patients were female. All of the hospitals served mostly 

White patients (76%–93%). Black patients were seen more at 2 of the hospitals (5% and 

7%) but were not seen commonly at the other 2 hospitals (1% each). Hispanic patients made 

up between 7% to 12% of patients across the hospitals. Most of the operations were from 

orthopedic (33%), general (28%), gynecology (11%), urology (9%), and neurosurgery (8%). 

The overall infection rate was 7% and varied from 4% to 9% at individual hospitals.

Coefficients, 95% CIs, and intercepts for each of the models are provided in Table II. A total 

of 4 variables were chosen for the SSI model, 7 for the UTI model, 7 for sepsis, and 8 for 

pneumonia. All of the variables chosen by the knockoff filter made clinical sense.

Performance of the models applied to both the training and the test datasets are summarized 

in Table III. Estimated prevalence in the test dataset was 3.3% for SSI, 1.7% for UTI, 

2.5% for sepsis, and 0.9% for pneumonia, compared to 3.1% for SSI, 1.6% for UTI, 2.0% 

for sepsis, and 0.7% for pneumonia reported by the NSQIP nurses, which showed strong 

agreement. When applied to the test dataset, the models achieved between 0.91 to 0.96 

AUC, 82% to 95% specificity, 87% to 93% sensitivity, 82% to 95% accuracy, 99% negative 

predictive value, and 10% to 15% positive predictive value (PPV). All the models performed 

similarly in the test dataset as they did in the training dataset.

Calibration plots are provided in Figures 2A to 2D; the dashed lines indicate the training 

data, and the solid lines indicate the test data. Calibration was very good in the training and 

test data for each outcome, but there was a slight tendency for models to overestimate risk. 

This could be because prevalence of infectious complications has decreased over time (Table 

III).

How to use the models

The models can be implemented by using the regression coefficients in Table II and 

information taken directly from a patient’s EHR. For example, a patient who had a diagnosis 

code that mapped to phecode 080, a blood culture within 30 days after their index operation, 

and an antibiotic prescription between 2 and 30 days after the index operation, would have 
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the predicted log odds of an SSI: −5.1187 + 2.7245 × 1 +0.886 × 0 + 2.0891 × 1 + 2.041 × 

1 =1.7359. To convert the log odds to a probability, take exp (1.7359) / 1 + exp (1.7359) = 

0.85. Comparing this to a patient who did not have any of the 4 SSI variables in their chart, 

−5.1187 + 2.7245 × 0 + 0.886 × 0 + 2.0891 × 0 + 2.041 × 0 =−5.1187, and exp (−5.1187) / 1 

+ exp (−5.1187) = 0.006.

Discussion

This study suggests that simple, interpretable models can be applied with high accuracy 

to EHR data to perform surveillance of postoperative infections in patients who underwent 

operations at a large healthcare system. The final models presented are easy to implement 

in virtually any software and can be applied to all operations. This work is unique in 

that it covered 4 major postoperative infectious complications, it used phecode mappings 

which improved generalizability and decreased the chance of missing an important ICD-9 

or ICD-10 code, and it used robust statistical methods to control type I error when 

selecting the most important variables to include in the models. Because prevalence of these 

infectious complications is relatively rare, PPV was low. Therefore, these models are most 

appropriate for estimating rates of complications rather than identifying specific patients 

who experienced an infection. To estimate rates, it is best to sum the predicted probabilities 

rather than introduce error by classifying patients.

Although the granularity of diagnosis codes is lost when using phecodes, those that were 

selected for the models contained logical mappings from a clinical perspective upon 

inspection. For example, ICD-9 code 519.01 “Infection of tracheostomy” and ICD-10CM 

code J95.02 “Infection of tracheostomy stoma” both map to phecode 080 “Postoperative 

infection,” as well as ICD-10CM T81.4 “Infection following a procedure.” This is the 

desired outcome of using phecodes because the infection is picked up in all cases. Although 

each postoperative infection is slightly different, they all likely indicate that a postoperative 

infection occurred. If the codes had been left as individual predictors, less common codes 

would not have been selected for inclusion in the model, and some infections would have 

been missed.

Previously published studies reported models for SSI detection with sensitivities between 

0.65 and 0.79 and specificities between 0.92 and 1.00.9,11 A recent article showed that 

artificial intelligence detected UTIs in 59 patients using EHR data with 98% sensitivity and 

100% specificity using artificial neural networks, but given this very small sample size, 

the use of a black box algorithm, and the lack of external validation, generalizability of 

these findings is questionable.43 The SSI model we presented is simple and is similar to 

that of Knepper et al, which suggests that it could also be used to augment NHSN SSI 

surveillance.31

A future goal is to also produce a preoperative risk model that can be used to risk-adjust the 

infectious complication rates by creating observed to expected event ratios at administrative 

levels of interest. Moreover, there is a large amount of narrative text data that might 

enhance the models. For example, FitzHenry et al found sensitivities and specificities of 

80% and 93% for sepsis, 80% and 90% for pneumonia, 95% and 80% for UTI, and 
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80% and 93% for wound infections, respectively, using NLP alone on EHR data from 

the Veteran’s Health Administration.28 Currently, we are working with experts in NLP 

to use narrative text data. However, the current models presented performed well and do 

not require NLP or sophisticated machine learning techniques to implement them. This 

improves generalizability across institutions.

There are some limitations to our methods. First, we assumed that if a code was not 

observed in a patient’s chart, then the event represented by that code did not occur. This may 

not be valid for various reasons, including the possibility that postdischarge complication 

care was sought outside of the University of Colorado Health network of hospitals and 

clinics. Second, the probability that a patient experienced a postoperative infection could 

still increase if the surgeon prescribed perioperative antibiotics past 24 to 48 hours for 

prophylaxis, against the Surgical Care Improvement Project recommendations. Third, only 2 

discriminators for negative test results were used but there may have been more indicators of 

negative laboratory results. Fourth, if a urine or blood culture name did not contain “culture” 

it may have been missed. Moreover, although we would have preferred to use the Logical 

Observation Identifiers Names and Codes for laboratory procedures rather than panel names, 

because these were not completed consistently in the EHR data, they could not be used. 

However, because there are no phenotype mappings for procedures or laboratory codes, 

like the phecodes, the individual codes become cumbersome. The approach implemented 

in this study attempts to create that mapping using the procedure and lab names, but 

it is likely incomplete and may need to be modified at an external institution that uses 

different names. Fifth, because only one EHR system was used across all sites, it is unclear 

whether the results are generalizable beyond this EHR system. However, we did observe 

variability in the individual EHRs across the hospitals and clinics within this system, and 

the methodological approach implemented here captures that variability by mapping specific 

procedures, labs, and diagnoses to broader groups. Finally, the models should eventually be 

validated in an external dataset from a different healthcare system, much like Zhu et al did 

for their SSI detection algorithm,44 and because they were developed on retrospective data 

and applied to prospective data, they will need to be recalibrated over time due to model 

drift.45,46

In conclusion, artificial intelligence can be used for the surveillance of postoperative 

infections with high accuracy, specificity, and sensitivity using EHR data and simple 

linear regression coefficients. Although the model selection technique that was applied was 

complex, the final chosen models are simple to implement. Unlike HAI surveillance that 

relies on manual chart review, these models can be applied to all operations and results can 

be disseminated in a timely manner. Due to the low PPV, these models are most appropriate 

for tracking rates of complications over time, but they may require additional manual review 

to identify exact patients who experienced an infection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
STrengthening the Reporting of OBservational studies in Epidemiology diagram. ACS-

NSQIP, American College of Surgeons National Surgical Quality Improvement Program; 

UCHealth, University of Colorado Health.
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Figure 2. 
Calibration plots for each model applied to the training and test datasets: (A) surgical site 

infection, (B) urinary tract infection, (C) sepsis, (D) pneumonia. The dots signify the mean 

predicted values by the observed complication rates; whiskers represent the 95% CIs of 

the observed rates based on the binomial distribution; and perfect estimation is indicated in 

these plots by the gray 45° line. SSI, surgical site infection; UTI, urinary tract infection.
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Table I

Patient sample stratified by hospital and overall

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Overall

(N = 6,440) (N = 6,264) (N = 6,469) (N = 11,466) (N = 30,639)

Age* 57.0(16.5) 55.1 (16.6) 57.1 (16.9) 53.4 (16.3) 55.3 (16.6)

Sex

Female 3,199 (49.7%) 3,793 (60.6%) 3,807 (58.8%) 6,390 (55.7%) 17,189 (56.1%)

Male 3,241 (50.3%) 2,471 (39.4%) 2,662 (41.2%) 5,076 (44.3%) 13,450 (43.9%)

Race

American Indian and Alaska Native 17 (0.3%) 25 (0.4%) 28 (0.4%) 41 (0.4%) 111 (0.4%)

Asian 24 (0.4%) 92 (1.5%) 38 (0.6%) 230 (2.0%) 384 (1.3%)

Black or African American 33 (0.5%) 331 (5.3%) 57 (0.9%) 843 (7.4%) 1,264 (4.1%)

Multiple race 82 (1.3%) 93 (1.5%) 78 (1.2%) 343 (3.0%) 596 (1.9%)

Native Hawaiian and Other Pacific Islander 8 (0.1%) 18 (0.3%) 8 (0.1%) 19 (0.2%) 53 (0.2%)

Null/unknown 114(1.8%) 158 (2.5%) 83 (1.3%) 282 (2.5%) 637 (2.1%)

Other 223 (3.5%) 504 (8.0%) 136 (2.1%) 998 (8.7%) 1,861 (6.1%)

White or Caucasian 5,939 (92.2%) 5,043 (80.5%) 6,041 (93.4%) 8,710 (76.0%) 25,733 (84.0%)

Ethnicity
Hispanic

704 (10.9%) 625 (10.0%) 475 (7.3%) 1,377 (12.0%) 3,181 (10.4%)

Non-Hispanic 5,628 (87.4%) 5,398 (86.2%) 5,904 (91.3%) 9,807 (85.5%) 26,737 (87.3%)

Patient refused 41 (0.6%) 49 (0.8%) 41 (0.6%) 53 (0.5%) 184 (0.6%)

Unknown 67 (1.0%) 192 (3.1%) 49 (0.8%) 229 (2.0%) 537 (1.8%)

Surgeon specialty General surgery 2,055 (31.9%) 1,630 (26.0%) 1,859 (28.7%) 2,932 (25.6%) 8,476 (27.7%)

Gynecology 408 (6.3%) 1,113 (17.8%) 722 (11.2%) 1,078 (9.4%) 3,321 (10.8%)

Neurosurgery 549 (8.5%) 409 (6.5%) 313 (4.8%) 1,036 (9.0%) 2,307 (7.5%)

Orthopedics 1,958 (30.4%) 2,398 (38.3%) 2,814 (43.5%) 2,978 (26.0%) 10,148 (33.1%)

Otolaryngology, Head and Neck 94 (1.5%) 194(3.1%) 321 (5.0%) 993 (8.7%) 1,602 (5.2%)

Plastics 79(1.2%) 103 (1.6%) 134 (2.1%) 445 (3.9%) 761 (2.5%)

Thoracic 274 (4.3%) 1 (0.0%) 0(0%) 540 (4.7%) 815 (2.7%)

Urology 943 (14.6%) 232 (3.7%) 306 (4.7%) 1,128 (9.8%) 2,609 (8.5%)

Vascular 80(1.2%) 184 (2.9%) 0 (0%) 336 (2.9%) 600 (2.0%)

Infectious complications Overall infections 371 (5.8%) 419 (6.7%) 253 (3.9%) 1,075 (9.4%) 2,118 (6.9%)

Surgical site infections 170 (2.6%) 185 (3.0%) 135 (2.1%) 579 (5.0%) 1,069 (3.5%)

Urinary tract infections 83 (1.3%) 78 (1.2%) 61 (0.9%) 244 (2.1%) 466 (1.5%)

Sepsis or septic shock 126 (2.0%) 208 (3.3%) 82 (1.3%) 352 (3.1%) 768 (2.5%)

Pneumonia 82 (1.3%) 43 (0.7%) 23 (0.4%) 137 (1.2%) 285 (0.9%)

*
Mean (SD); otherwise, N (%).
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Table II

Logistic regression model estimates

Model Estimates

Beta OR LCL UCL P value

Surgical site infections

 (Intercept) −5.1187

 Phecode 080: “Postoperative infection” 2.7245 15.25 11.82 19.67 < .001

 Phecode 1011: “Complications of surgical and medical procedures” 0.886 2.43 1.85 3.18 < .001

 At least 1 antibiotic prescribed between 2–30 d after surgery 2.0891 8.08 6.51 10.02 < .001

 Laboratory procedure: Blood culture 2.041 7.7 6.38 9.29 < .001

Urinary tract infections

 (Intercept) −6.1696

 Phecode 590: “Pyelonephritis” 2.3597 10.59 4.44 25.23 < .001

 Phecode 591: “Urinary tract infection” 1.9223 6.84 5.16 9.05 < .001

 Phecode 592.X: “Cystitis,” “Urethritis,” “Urethral stricture due to infection” 1.7764 5.91 3.6 9.7 < .001

 Phecode 599.X: Various symptoms involving the urinary system 1.1322 3.1 2.36 4.09 < .001

 At least 1 antibiotic prescribed between 2—30 d after surgery 1.2781 3.59 2.58 5 < .001

 Laboratory procedure: Urine culture 1.6599 5.26 3.78 7.32 < .001

 Laboratory procedure: Clostridioides difficile PCR 0.4246 1.53 0.92 2.55 0.1

Sepsis

 (Intercept) −7.2263 < .001

 Phecode 540.X: “Acute appendicitis,” “Appendicitis,” “Appendiceal conditions” 2.0447 7.73 5.53 10.79 < .001

 Phecode 994.X: “Sepsis,” “SIRS” 2.4980 12.16 9.23 16.02 < .001

 At least 1 antibiotic prescribed between 2—30 d after surgery 1.6909 5.42 4.14 7.11 < .001

 Laboratory procedure: CBC auto diff 1.3637 3.91 2.07 7.38 < .001

 Laboratory procedure: Blood culture 1.9005 6.69 5.36 8.34 < .001

 Laboratory procedure: Magnesium serum 1.2173 3.38 2.65 4.30 < .001

 Laboratory procedure: Peripheral blood smear 1.4547 4.28 3.00 6.12 < .001

Pneumonia

 (Intercept) −7.3366

 Phecode 480.X: Bacterial, viral, and fungal pneumonias 2.5952 13.4 9.17 19.57 < .001

 Phecode 501: “Pneumonitis due to inhalation of food or vomitus” 1.7072 5.51 3.03 10.03 < .001

 Phecode 1013: “Asphyxia and hypoxemia” 0.9214 2.51 1.67 3.78 < .001

 At least 1 antibiotic prescribed between 2—30 d after surgery 1.812 6.12 3.59 10.44 < .001

 Laboratory procedure: Magnesium serum 0.7905 2.2 1.37 3.56 .001

 Laboratory procedure: Vancomycin trough 0.9937 2.7 1.84 3.96 < .001

 Laboratory procedure: Respiratory culture 1.4024 4.06 2.52 6.55 < .001

 Laboratory procedure: Blood gasses 1.511 4.53 3.02 6.79 < .001

CBC, complete blood count; LCL, lower confidence limit; OR, odds ratio; PCR, polymerase chain reaction; SIRS, systemic inflammatory response 
syndrome; UCL, upper confidence limit.
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