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Abstract

Genome sequencing and analysis allow researchers to decode the functional information hidden 

in DNA sequences as well as to study cell to cell variation within a cell population. Traditionally, 

the primary bottleneck in genomic analysis pipelines has been the sequencing itself, which has 

been much more expensive than the computational analyses that follow. However, an important 

consequence of the continued drive to expand the throughput of sequencing platforms at lower 

cost is that often the analytical pipelines are struggling to keep up with the sheer amount of 

raw data produced. Computational cost and efficiency have thus become of ever increasing 

importance. Recent methodological advances, such as data sketching, accelerators and domain-

specific libraries/languages, promise to address these modern computational challenges. However, 

despite being more efficient, these innovations come with a new set of trade-offs, both expected, 

such as accuracy versus memory and expense versus time, and more subtle, including the human 

expertise needed to use non-standard programming interfaces and set up complex infrastructure. In 

this Review, we discuss how to navigate these new methodological advances and their trade-offs.

Introduction

Historically, genomic sequencing has been much more expensive and time-consuming than 

the computational analyses that follow. If sequencing costs were tens of thousands of dollars 

for a single sample and the per-sample compute was only a few dollars, then compute costs 

became an afterthought. Researchers had little need to think about allocating resources for 

computation, or about what types of analyses would be faster and, thus, more cost-effective. 

Obviously, faster algorithms were always preferable, but if a 10 times slower algorithm 
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was only 5% more accurate, then it often made sense to use the slower, more accurate 

algorithm because so little of the overall cost of a sequencing analysis was bound up in 

compute times. Compute hardware was even less of a choice for individual experiments, as 

decisions were made on a technology refresh lifecycle; it would be atypical to buy 

a new compute server for a single analysis. Thus, it was generally unnecessary to constantly 

consider trade-offs between different performance characteristics.

However, the continued drive to bring down the cost of sequencing and expand 

the throughput of sequencing platforms has proven successful1 — Illumina short-read 

technology can sequence a full genome for around US$600 (ref.2), and Ultima Genomics 

and Beijing Genomics Institute (BGI) report that they can sequence a genome for around 

US$100 (refs.3,4). Advances in computing have not kept up, so we cannot simply rely 

on Moore’s law, which relates to time-complexity, or Kryder’s law, which 

relates to space-complexity, to make computation commensurately cheaper5. Analytical 

pipelines are often overwhelmed in processing the massive data that reside in different 

laboratories, companies and biobanks. Coupled with the explosion of raw data from single-

cell sequencing6,7, as well as studies that employ the large-scale re-analysis of existing 

publicly available data8, computation is becoming a considerable part of the total cost. As 

such, scientists who use or process these data not only must plan on acquiring sufficient 

compute resources but must now also consider trading off accuracy, compute, storage 

and complexity of infrastructure.

Recent computational advances in algorithms, hardware and programming languages have 

emerged that account for some of these trade-offs and other more subtle trade-offs. 

Data sketching, akin to a sketch of a scene by an artist, can provide orders of 

magnitude speed-up by using ‘lossy’ approximations that give up perfect fidelity to 

capture only the most important features of the original9; this can allow researchers to 

continue thinking of computational cost as negligible, but only if they are willing to give 

up the possibility of perfect accuracy. Accelerators (such as field-programmable 

gate arrays (FPGAs) and graphics processing units (GPUs))10 and cutting-edge 

domain-specific languages11 may require additional investment either in expensive 

hardware or training of users; yet accelerators provide significant speed-ups, and domain-

specific languages can make it easier for programmers to reproducibly and consistently 

handle complex operations that arise often in practice. Furthermore, the ease with which 

it is now possible to outsource compute to the cloud has turned hardware decisions from 

mattering primarily during technology refresh cycles of sequencing cores to choices and 

options present during every single experimental analysis. In the past, a scientist faced with 

a week-long wait for an analysis to complete using local resources simply had to wait; 

now, they typically have the option to run it on the cloud, renting possibly specialized 

hardware, but with a new set of costs. It is thus not just computational scientists who have 

to understand these approaches but also the biological and biomedical researchers who use 

them; the decision of what trade-offs are worthwhile is one of overall experimental design 

and resource allocation.

As an example, suppose a clinician wants to analyse a patient’s genome and gut microbiome 

for the purposes of personalizing medical treatment. One approach could be to fully 
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sequence, map and call variants for both the human and bacterial genomes using the best 

practices of the genome analysis toolkit (GATK)12. On a 30× coverage Illumina short-read 

sample, the full pipeline might take upwards of 10 h on a typical compute server13. Another 

choice could be to process it in the cloud (for example, via Google Cloud Platform) for 

US$5 worth of compute, but it would still take tens of hours and the data also need to be sent 

to the cloud14. However, a functionally equivalent analysis using Illumina Dragen hardware 

acceleration could be completed in less than an hour but would cost $20 to outsource to 

Amazon Web Services15. Alternatively, a more targeted analysis might be all that is required 

by the clinician: perhaps it would be sufficient to look for specific marker genes using 

an alignment-free computational SNP array16 and comparing the microbiome at a k-mer 
distribution level using Mash with other patients17, but this may give up accuracy for speed. 

There are now many available options for practitioners to decide between, and with the 

advent of cloud computing they may freely make a different choice for each analysis, 

depending on both the local compute resources they possess and the speed and accuracy they 

need.

In this Review, we discuss how to navigate new and emerging technologies for handling 

the computational nature of secondary processing as a bottleneck in the wider pipeline 

of genomic sequencing analyses (Fig. 1). Following primary generation of the sequencing 

data (Box 1), secondary processing refers to diverse types of analyses, including computing 

genomic variation and assembling or mapping of raw reads (Box 2); this step precedes 

tertiary processing to answer specific biological questions, which invokes methods such 

as genome annotation18, genome-wide association studies (GWAS)19, machine learning 

predictions/classifications20 and so on. The Review will not cover important topics 

related to non-traditional sequencing data such as proteomic21, epigenetic22 and spatial 

modalities23,24, as well as privacy of genomic data25,26.

We start by discussing how analytical bottlenecks create trade-offs in genomic analyses. 

Algorithm designers generally are concerned with technical trade-offs in compute, memory 

and communication, but those give rise to user-facing trade-offs of time, money and 

complexity of deployment. We then discuss newer methods, which sometimes allow for a 

continuous trade-off of two or more desirable characteristics, a decision that increasingly 

falls on the end users. As background, we also give a short overview of newer data 

acquisition technologies that have recently emerged, including long-read sequencing, single-

cell sequencing and more (Box 1, Table 1). These technologies are not only adding to 

the data deluge already present from second-generation short-read sequencing but also 

introduce different trade-offs in analyses. As the various analytical and hardware advances 

for addressing the processing bottlenecks are not specific to a single technology, our Review 

does not focus on the differences in data acquisition and primary processing. Rather, 

the Review focuses on those various techniques for secondary processing, including data 

compression and sketching, hardware accelerators, cloud parallelization and domain-specific 

languages. We conclude by highlighting exciting future directions for the field.
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Trade-offs in genomic data analysis

As the cost of primary sequencing decreases, the relative cost of compute in secondary 

processing increases and is fast becoming an increasingly important bottleneck. However, 

there are several different types of salient trade-offs; we will be dividing our exposition of 

the trade-offs into those that are largely technical, such as computation, communication, 

storage and memory, and those that are more user-facing, including the overall time, 

expense, complexity of deployment and accuracy of the analysis. Obviously, the two types 

of trade-offs are related, and understanding the user-facing experience requires delving into 

the technical considerations.

Technical trade-offs

Compute.—Computational cost is one of the first things people think about when they 

think of algorithms and processing; that is, the number of central processing unit (CPU) 

operations an algorithm uses, which is often a rough proxy for the amount of time it 

takes. Classically, in the algorithms literature27, computer scientists have largely focused 

on the complexity class of algorithms, which refers to how the algorithms scale with 

the amount of data to be analysed. However, the raw amount of genomics data is huge — 

with, for example, The Cancer Genome Atlas (TCGA)28,29 data, the files are massive (often 

50–100 GB compressed), and even just parsing them takes a lot of time. Thus, in order 

to even be in contention, most practical algorithms have an asymptotic time-complexity that 

scales either linearly or almost linearly (log-linearly) with the size of the data. Of course, 

algorithms are still faster or slower because of multiplicative constant factors; for example, 

all else equal, an algorithm that has to read all of the data twice will be slower than one 

that reads through the data only once. Although in this Review we focus on the big-ticket 

items of mapping and variant calling (Box 2), there are also many smaller tasks, such as 

sorting reads, quality control, fixing CIGAR strings and calculating quality score profiles. 

None of these are independently as ‘heavy’ as mapping or genotype calling, and they are 

all at worst log-linear time, but the multiple independent steps add up and can sometimes 

even dwarf the time needed to map the reads or call the genotypes. Scaling behaviour is 

important, but in practice actual speeds may vary.

Space.—Space costs — that is, storage and memory — are usually the second type of 

technical cost people consider. Although magnetic tape can be obtained for less than one US 

cent per gigabyte30 and more-managed cloud-based options such as Amazon Glacier Deep 

Archive are priced at approximately one cent per gigabyte-year, storage — unlike compute 

— is an ongoing cost and cumulative over time. Data must be maintained indefinitely, not 

only to support reproducibility of individual studies but also to enable later re-analysis using 

more recent tools and to allow larger meta-studies that analyse data from many studies. For 

example, the UK Biobank has hundreds of thousands of samples31, and that number will 

only grow with time. Furthermore, with the decrease in the cost of sequencing, it is possible 

to run experiments studying questions that require more data; indeed, modern genomics 

projects often use data from thousands of samples. An individual sample may be stored in 

compressed form in tens of gigabytes, but that scales up to many terabytes for thousands of 

samples and to petabytes for entire biobanks. New approaches such as storing data long-term 
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in genomic samples themselves are exciting science32, but for the foreseeable future we still 

need to use conventional mechanisms for storage.

Even more expensive on a per-byte level is shorter-term storage33. Any sequencing data that 

researchers expect to analyse in the near-term lives on either hard disk drives (HDDs), solid-

state drives (SSDs) or the cloud. Both genomics-specific compression formats (for example, 

CRAM34 and BAM35) and general-purpose compression (gzip-compressed FASTQ36 

files) are in widespread use37. However, storing in compressed format usually requires 

additional processing in the form of decompression before running analyses, so compression 

algorithms allow trading off storage space with computational cost. Some analysis methods 

can operate directly on compressed data, a technique known as ‘compressive genomics’38, 

which reduces or sometimes entirely eliminates that trade-off, but these are the exception 

rather than the rule. As we move from long-term to short-term storage, we eventually get to 

in-memory storage (random access memory (RAM)), which is often considered a hard 

constraint on algorithms. To a first-order approximation, methods that require too much 

RAM are simply not runnable on low-RAM machines, because the algorithm requires fast 

access to all of the data in RAM; however, higher RAM machines are rapidly coming 

down in price. In the past, users who ran into a RAM bottleneck might have needed to 

use different analysis software or wait to acquire a higher RAM machine; now, a viable 

alternative solution would be to instead provision a high-RAM cloud instance on demand.

Communication.—Because different forms of storage have their pros and cons, 

communication costs between both different forms of storage and different parties become 

important. This is in many ways a much more severe bottleneck than storage itself, because 

it directly affects the time it takes to perform an analysis in settings where the data-gathering 

party and compute party are different, such as in cloud computing39. Communication costs 

have practical consequences for practitioners because they need to decide on the trade-offs 

of where to perform certain computations — do they send only the outputs of analysis, or 

rather the original data and allow the recipient to compute? For example, sometimes sending 

a raw compressed FASTQ sequencing file to a central compute server might be smaller 

than sending a mapped sequence alignment map (SAM)/BAM file, but that then puts all 

the computational burden on the central server. On the other hand, sending a variant call 

format (VCF)40 file uses much less space than sending either raw FASTQ or SAM/BAM 

files, but places nearly all the computational burden on the sending party; moreover, this 

means that a central party doing a large analysis on samples from multiple parties does not 

have access to the raw data, which may limit the types of analyses they can do. VCF files 

may allow for performing GWAS analyses, but they do not allow re-phasing of the data; that 

is, re-identification of which allele is inherited from which chromosome (Box 2).

Communication bottlenecks have become especially important as single-cell sequencing 

takes off41. Single-cell sequencing is currently still more expensive to generate per base 

because of library preparation costs, but the total raw reads for an individual can be greater 

than for normal bulk sequencing because there are distinct reads from each cell in the study. 

Thus, often practitioners will not send around the raw reads but, instead, precompute a 

(sometimes normalized) count matrix of expressed genes per cell42,43. Unfortunately, doing 

this removes a large amount of the information from the raw reads, can skew results and can 
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make it harder to perform non-standard analysis44. This means that the trade-off is not only 

in technical variables such as communication, computation and memory but also bleeds into 

the science an end user is able to do.

These communication costs are increasingly critical as cloud computing becomes more 

popular. When data are stored, for example, in the Google Cloud, egress costs of about 12 

cents per gigabyte45 can dominate storage and compute costs. On the other hand, as we fully 

enter the era of cloud-based biobanks31,46–49, a popular solution is simply to never perform 

egress. Cloud-based biobanks are large-scale biomedical databases available for research 

use on cloud platforms, where the expectation is that the raw data and compute all stay 

in the cloud, and only the resulting analysis is egressed — the UK Biobank31 and the US 

National Institutes of Health (NIH) All of Us50 projects have each generated whole-genome 

sequencing data for more than 100,000 individuals and counting. Although these resources 

provide a treasure trove of data for population and medical genetics studies, sequencing 

files cannot be egressed from and can be analysed only on cloud-based computing platforms 

themselves, such as DNAnexus for the UK Biobank. In this scenario, the compute for some 

large-scale genetic analyses can cost upwards of US$1 million. Furthermore, these cloud 

platforms often require platform-specific expertise; thus, research is far from democratized.

User-facing bottlenecks

Although the technical details of trade-offs are of primary importance to method developers, 

they often also affect the user experience. When the major bottlenecks in genomics pipelines 

were related to data collection and sequencing, the computational trade-offs could be largely 

overcome by just allocating more resources to the problem. However, this ‘solution’ only 

works for the few well-funded laboratories with resources to spare. As we seek to give more 

end users access to genomic data analysis, this kind of solution is not sufficient. For those 

users, here we connect the technical trade-offs to the user-facing bottlenecks.

Time.—The most obvious user-facing bottleneck is measured in time. How many minutes/

hours/days does it take for the user to receive the results of an analysis they wish to run? 

Although, classically, algorithm developers will talk about ‘time-complexity’ as a proxy 

for computation, we separate the two in this Review because the actual time a user has 

to wait is dependent on many other factors. The number of compute operations needed 

for the analysis, that is time-complexity, obviously plays a major role, but with increasing 

parallelization and hardware accelerators (FPGAs, GPUs and tensor processing 

units (TPUs)), for those who have access to those kinds of resources the actual wait time 

for an analysis can be decreased substantially.

However, there are very often many kinds of non-compute bottlenecks that increase the 

analysis time. Compute clusters are generally heterogeneous51, with a mix of different 

types of machines — for example, there may be many machines in a cluster, but only 

a limited number with state-of-the-art GPUs, large amounts of RAM or many compute 

cores. As discussed in the ‘Compute’ section above, many bioinformatics pipelines have 

both more-intense steps (for example, mapping or assembly) and less-intense steps (such 

as sorting or changing file formats). The more-intense steps often require those limited 
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higher performance machines, so there is often a cluster bottleneck of everyone waiting on 

the better machines. In addition to queuing for better machines, data transmission, network 

latency and generally moving data up and down the storage hierarchy can also impose 

considerable wait times.

The types of acceptable solutions can also vary tremendously depending on the use 

case. In a research laboratory, the time it takes for a single sample might not be so 

important, because the key bottleneck is often the time it takes to analyse an entire data 

set of hundreds of samples, and different samples can often be analysed independently. 

A single-threaded algorithm that takes a week to analyse a single sample could be 

perfectly acceptable in this scenario, because there may be enough resources to parallelize 

and analyse thousands of samples in that week. On the other hand, for clinical and 

personalized genomics, the speed of analysis of each individual sample can be critical, 

because a clinician may be waiting to make a decision about a particular patient based on 

the results52. Here, modern techniques using accelerators (for example, Illumina Dragen) 

may allow processing a single sample in the order of minutes instead of hours because 

they make it possible to parallelize the analysis of a single sample. For example, the 

GATK best-practices pipeline takes tens of hours for a single whole-genome sequencing 30× 

coverage sample on the Google Cloud Platform using single-threaded processes, but can be 

accelerated to less than an hour using Illumina Dragen. Thus, although there is overlap in 

the bottle necks for research and clinical genomics, they are not the same; research studies 

can apply parallelism at the sample level without much disadvantage, whereas clinical 

applications that need fast turnarounds should use some of the new hardware acceleration 

solutions.

Money.—In the discussion about ways to reduce analysis times, one major recourse is to 

parallelize across additional computers. However, this manifests in monetary cost, giving 

rise to the ever-present time–money trade-offs. By purchasing more computers, more cloud 

nodes or hardware accelerators, users can decrease wait times for individual results. Indeed, 

in the age of cloud computing, the time–money trade-off is often made explicit, as each 

limited resource has a specific associated cost, and users may choose to buy extra ‘priority’ 

on faster machines for an analysis that they really need to have done now or to pay less for 

pre-emptible instances that do not guarantee the analysis will finish in a specific amount of 

time53. On the other hand, for computing cores that actually purchase machines in-house, 

the time–money trade-off is not as continuous but, instead, can be somewhat discontinuous 

whenever you need more resources than you have. Incorrectly assessing the amount and type 

of storage needed for an algorithm can greatly raise both the financial and computational 

cost of analysis — if the computational analysis you are relying on requires 512 GB of 

RAM and you only have a 256 GB machine, then either you have to use slow disc swap, 

which can take orders of magnitude more time, or you have to buy more RAM or a different 

compute machine if your existing hardware does not support that amount of RAM. Unlike 

with cloud computing, you cannot simply temporarily upgrade to a larger machine54.

Because the cost of incorrectly predicting resources needed is much higher when purchasing 

machines, provisioning cloud resources on demand is therefore more forgiving for most 

users. Alternatively, users (or sequencing cores) who repeatedly run the same analysis 
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pipelines and therefore have predictable resource requirements may find it sensible to 

purchase in-house machines for those pipelines, knowing that whenever they need to run 

other pipelines, they always have the option of buying on-demand compute if existing 

machines are not suitable.

Accuracy.—In addition to the two well-known user-facing trade-offs of expense and time, 

in this Review we also focus on two less obvious constraints: accuracy and deployment 

complexity. Although accuracy is arguably a technical trade-off related to the analysis 

algorithms used, modern sampling-based and sketching-based techniques explicitly can 

reduce accuracy to different degrees for the benefit of using less computation and 

communication55. Computational biologists have always been implicitly making this trade-

off; even classical methods such as BLAST56 for local alignment are much faster than 

running a full Smith–Waterman57 dynamic programming method, but at the cost of lower 

accuracy58. This trade-off also appears in terms of communication: more recently, in single-

cell sequencing, just sending the normalized precomputed gene by cell count matrix is much 

faster, but different methods for computing that matrix demonstrate different accuracies59,60, 

so the cell count matrix cannot be treated as a fundamental unit of measurement without 

care61. However, we must be careful not to conflate the accuracy of one step of an analysis 

pipeline with the validity of conclusions drawn from the pipeline as a whole. Because of 

inherent noise, genomic analyses are designed to be robust, and we are simply looking for 

functional equivalence62 of the overall results. That provides room for trading away a small 

amount of accuracy.

Still, in the past this trade-off was often hidden behind large jumps in the accuracy–

performance continuum, or behind ambiguities in the optimization goals. More accurate 

methods such as Smith–Waterman are simply too slow to practically use in many instances, 

so everyone is forced to use the faster alternative of BLAST, or its more modern 

replacements (for example, BLAT63 or caBLAST38). When the choice is between two 

different algorithms, it is largely all or nothing. Methods developers can of course design 

methods with somewhat different trade-offs, such as BLAT, which is faster but less accurate 

than BLAST63, but there is no obvious user-facing way to interpolate between algorithms. 

Furthermore, there is the additional question about whether the scoring model we use 

to judge accuracy makes sense biologically. Smith–Waterman depends on the substitution 

matrix and gap penalty scheme chosen, and although it optimally computes local alignments 

given a particular scheme, this may not always correspond to the most biologically 

meaningful hits. Indeed, as we will see later when we talk about lossy compression, 

perfectly accurate reproduction of scores does not always translate to ‘accuracy’ in 

downstream analysis.

Modern data sketching methods often allow explicit choice of how much accuracy to give 

up for speed and memory. Thus, it now becomes a parameter choice on which users need 

to explicitly decide. Is it worth doubling the amount of computation or memory needed 

to buy yourself a 41% improvement in accuracy? Does that improvement in accuracy for 

a step in an analysis pipeline even change the final results of the analysis? At what point 

do you stop? This is not a hypothetical question any longer, because software such as 

Mash17 for comparing genomic samples requires users to set parameters controlling exactly 
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that. Unfortunately, because every analysis has different requirements for overall accuracy, 

and the impact of accuracy of different steps in a pipeline differs, we are unable to give 

specific numbers as guidance. A useful rule of thumb is that only rough equivalence of the 

accuracy on the final results of a pipeline matters; it is reasonable to reduce the accuracy 

of intermediate computations up until the point where it affects the final results more 

than re-running the experiment would. However, knowing that threshold requires thorough 

benchmarking of analysis pipelines with different parameter choices in intermediate steps. 

Nevertheless, at the end of the day, it is incumbent on the end user to make a specific choice 

of what trade-off they wish to make.

Complexity.—An even more subtle trade-off comes in the form of the complexity of 

development and deployment of software and infrastructure. The growth of biological 

data (and in particular sequencing data) has spurred much research into high-performance 

methods, algorithms and tools for analysing genomic data. For each individual application, 

the corresponding tools take software engineers months to develop, typically in a low-level 

language such as C or C++ to optimize performance (for example, BWA-MEM64, Bowtie2 

(ref.65) and Minimap2 (ref.66)). This is especially true for any development of hardware-

accelerated software. Many bioinformatics practitioners simply take those high-performance 

methods, use them as building blocks in pipelines and write their own code to ‘glue’ them 

together into pipelines, typically in a higher level, much less performant language such as 

Python67. The glue code normally just consists of taking the output of one tool and entering 

it as input for another tool. Normally, the glue is much less complex and therefore takes 

negligible amounts of time to run compared with the main methods. However, when new 

software is developed that uses a different input or output format, the glue code is often 

tasked with actually converting the file formats. It is still less complex than the main analysis 

code, but especially as more engineering hours go into the high-performance methods, the 

glue can take increasingly substantial portions of the total runtime.

For emerging areas, such as in single-cell sequencing, there is not yet much standardization 

of file formats or nomenclature across the various consortia (for example, Human Cell 

Atlas6), because scientists have not yet figured out what is most salient. Analysing a data 

integration method (for example, Scanorama42, Harmony68 or Seurat69) over various single-

cell data sets requires conversion to the same format. Thus, getting different pipelines to 

work together is highly non-trivial and often involves converting files from one format 

to another. As users are confronted with additional trade-offs and parameter decisions, 

building interoperable pipelines becomes even more difficult. When there are only specific 

points in the parameter space that are reasonable — such as when the choice is between 

just normalized cell counts and the raw FASTQ files for single-cell sequencing — it is 

relatively straightforward to build tools that take as input one or the other. However, when 

there is an entire continuum of possible trade-offs, downstream pipelines then must be 

aware of the many more possibilities. One solution is of course standardization, which will 

play an important role in generating interoperable file formats70, but standardization of file 

formats cannot resolve the issue when the underlying analyses can be performed with an 

entire range of parameter choices affecting accuracy. Furthermore, the process of setting 

up an environment to run high-performance bioinformatics software is itself a specialized 
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skill. There are many substantial algorithmic advances that see very little adoption in the 

community because the software is hard to use or is not well maintained. For instance, we 

had to replace our compressive read-mapping accelerator (CORA) program71 with CORA-

seq72. Substantial effort is required to actually make important methodological advances 

usable by end users.

Modern computational methodologies

In talking about modern methodologies (Table 2), there are three major themes: algorithmic 

advances, including data compression and data sketching (Fig. 2); hardware platforms, 

including accelerators and cloud computing; and development tools, including domain-

specific libraries and languages.

Data compression

When one thinks of trade-offs in computational bottlenecks, classically one gives the 

example of data compression. Compression typically takes advantage of redundancies in the 

original data to generate compressed encodings that take up fewer bytes than the original. 

This encoding reduces communication and storage requirements, but generally increases 

the computational cost because it is difficult (although certainly not impossible) to design 

algorithms that operate directly on compressed data73, and decompressing data takes some 

amount of compute.

There has been a lot of work on genomic data compression over the years37, some 

of which is towards standardization (for example, GA4GH (ref.74) and MPEG-G75). 

These developments range from simply applying general-purpose compressors (such as 

Gzip), to applying general-purpose compressors in a way that preserves some useful 

properties such as random access, to fully specialized genomics-specific compression 

algorithms76–78. Most sequencing cores currently use CRAM or BAM formats for 

mapping the compressed format to a reference genome, both of which preserve relatively 

straightforward decompression and random access. However, the academic literature 

includes several more sophisticated compression strategies that are nicely compatible with 

accelerated bioinformatics algorithms without decompression5. For example, reordering or 

clustering reads before compression71,79–81 not only can increase compress ratios but also 

can be used to accelerate similarity search. However, the downstream algorithms must 

be designed as compression-aware so they can directly read from the compressed file 

format, and furthermore, the way the compressed file is laid out also limits the types of 

possible fast queries. A simple example is that when compressing a data matrix, one has to 

choose whether to organize it by column, by row or by blocks. If it is organized by row, 

determining the average value in a column is expensive because the entire matrix must be 

decompressed. Similarly, when compressing genomes for accelerated similarity search38, it 

is fast to determine similar genomes, but without additional work may be slow to determine 

whether every genome contains a particular sequence; of course, that query could be enabled 

with a different specialized auxiliary data structure82–84.

These methods tend towards lossless compression, or at least nearly lossless. (Strictly 

speaking, reordering or clustering reads drops ordering information, but that information 
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is generally considered to be an artefact of random chance in the sequencing biology 

and chemistry.) However, when targeting specific genomics analyses, one can often 

achieve much higher compression ratios by discarding information. This type of lossy 

compression is in fact standard practice in the realms of audio, image and video 

compression85. Human eyes and ears are largely unable to perceive certain high-frequency 

patterns, and so those can be safely discarded in JPEG or MP3 files. In the genomics 

sequencing literature, some of the most prominent examples of lossy compression came 

from the quality score compression literature, whereby it was found that the self-reported 

base-calling confidence scores of Illumina sequencers could be safely discarded while 

not deteriorating, and often even improving, downstream variant calling75,86–88. When the 

downstream pipelines are standardized, it is feasible, therefore, to analyse the effects of 

discarding information in a systematic manner. Of course, what information can be safely 

discarded evolves over time as downstream analyses change. Additionally, scientists often 

have a greater emotional attachment to certain types of data; for example, the primary data 

of the DNA sequence itself seems somehow more important than metadata, such as quality 

scores. On the other hand, biologists are already comfortable with that trade-off when it 

is a limitation of experimental methodology — whole-exome sequencing discards the vast 

majority of non-coding sequences of course. In both cases, it is crucial to consider the end 

goal of the data being collected. When sending data to a collaborator for a specific analysis, 

the operating parameters are quite different than when data are stored for long-term archival 

purposes.

Data sketching

With lossy compression, the primary goal is to identify information that is not necessary for 

the related downstream analyses, and thus can be discarded. However, when speaking about 

lossy compression, we are usually targeting a pre-existing downstream analysis pipeline, and 

it is important to be able to reconstruct data in the same format as the original data, because 

that is what the downstream analysis pipeline expects. On the other hand, if we are given the 

additional degree of freedom of changing the algorithms used for the downstream analysis 

to accept sketched input, we do not need to be able to reconstruct even a lossy version 

of the original. This freedom can give rise to even more efficient encodings. This is the 

principle behind data sketching9. Intuitively, lossy compression creates a modified version 

of the same data that takes up less space, often with the goal of ensuring that biologically 

relevant features are preserved, whereas data sketching simply extracts those biologically 

relevant features directly. Data sketching can be more efficient than lossy compression, but it 

requires the downstream analysis to understand the sketches, whereas lossy compression can 

work with off-the-shelf tools.

One of the prominent examples of data sketching in the bioinformatics literature is the Mash 

software17. Mash is based on the even older MinHash data sketching algorithm89,90, which 

quickly estimates the Jaccard index, commonly used for measuring the similarity91. The 

premise behind MinHash is that we can use random hash functions to perform a coordinated 

random sample of both sets. Consider choosing the minimum hash value from the union of 

the sets; that value corresponds to an item in their intersection with probability precisely 

equal to the Jaccard index, but that is equivalent to whether or not the minimum hash 
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value is the same for both of the two original sets. Thus, overlap in the sets of minimum 

hash value(s) can be used as an estimator for the Jaccard index. Mash applies MinHash 

to sets of k-mers in genomic or metagenomic sequences as a fast proxy for genomic 

similarity, and successors such as BinDash92 and Dashing93 use other data sketches such as 

HyperLogLog94 to similar ends.

Notice that sets of minimum hashes cannot be used to reconstruct the original sets, 

even approximately, as those sets are sampled from the original sets. With Mash, this 

transformation is even lossier, because it is only sampling the sets of k-mers, and there is 

no hope of reconstructing the original sequences. Thus, this type of data sketching is only 

useful for specific downstream analyses, such as set or sequence similarity, and cannot be 

used as a generic lossy compression — indeed, Mash has proven inaccurate for measuring 

containment of a genome within metagenomic sequences, for which other tools such as 

Mash Screen are more effective95. However, the flip side is that, very often, we are able to 

achieve not only massive savings in space (both communication and RAM costs), through 

for example Bloom filters96, but also significant improvements in analysis speed, for 

example bitsliced genomic signature index (BIGSI)97. Instead of the usual space–time trade-

off of compression, we thus get better space-complexity and time-complexity, but instead 

at the cost of analysis accuracy, especially when storing only a few k-mers from very long 

sequences or if there are many sequences such as with metagenomics.

In addition to applying generic set sketching approaches such as MinHash and 

HyperLogLog to sets of genomic k-mers, there are also biological-analysis specific 

methodologies. Minimizer-based approaches apply something similar to a MinHash 

sketch along windows of a genome to sample k-mer anchors along a sequence for fast 

secondary analyses, such as mapping, alignment, classification or structural variation 

detection. Although originally developed in 2003, minimizer-like approaches have only 

recently become essential, forming the basis of Minimap/Minimap2 (ref.66), Kraken 2 

(ref.98), mashmap2 (ref.99), segmental duplication evaluation framework (SEDEF)100 and 

minimizer-space de Bruijn graphs (mdBg)101,102. A lot of recent work has been done on 

how to best sample k-mers, whether by changing the minimizer hash function103–105, by 

using a different k-mer selection scheme106,107 or by preferentially selecting members of a 

universal hitting set108,109. The key is that these are sample methods designed specifically 

for sequence data, instead of sets. As with set sketching, there is again a trade-off of 

accuracy, but here the accuracy loss is often barely visible because of the amount of 

redundancy present in adjacent k-mers, which is the primary loss of information.

More recently, sketching has been generalized to biological data besides just sets and 

sequences. This is essential in single-cell analysis, given the amount of raw data in that 

domain, and the most relevant trade-off here is between accuracy and speed. Although any 

sketch will lose information with respect to analysis on the original data, sketches can 

be tuned so that certain applications get highlighted. For example, the Geosketch41 and 

Hopper110 methods sketch in such a way as to often improve rare cell type detection; by 

downsampling regions of high cell density in the cell projection plot, the sketch actually 

improves analysis in regions with sparse data, where rare cell types occur as outliers.
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Hardware accelerators

General-purpose computation makes use of computer chips that are designed to be 

fairly good at running standard algorithms. However, each algorithm makes use of 

different compute characteristics; some methods may require randomly accessing large data 

structures, whereas other methods are easily vectorizable and repeatedly perform the same 

operation to many different inputs. General-purpose computing needs to be reasonably good 

at all of these tasks, and so tends to not be great at any one.

Many data science applications involve repeatedly performing the same operation on many 

different inputs; indeed, GPUs and similar hardware accelerators have been instrumental 

in making deep learning feasible, as that involves applying the same vector operations to 

large data vectors repeatedly. Many biological applications are also fairly parallelizable 

(although not to the same degree as deep learning tasks), and over the decades there have 

been many attempts at translating bioinformatics algorithms to accelerators10,111–114. Deep 

learning is a sufficiently massive undertaking that custom chips in the form of TPUs have 

been manufactured115. However, although chips similar to TPUs have been designed for 

genomics114, they have not been manufactured; instead, genomics applications in practice 

make use of existing commodity GPUs and FPGAs111–117. Still, the toolchains surrounding 

GPU bioinformatics are not as well developed or easy to use. Fully exploiting hardware 

accelerators thus currently requires not just expertise on the part of the programmers but 

additional knowledge by end users (or at least the compute infrastructure teams) on how 

to integrate those accelerators in their pipelines. Given those costs, it is often easier to 

solve problematic bioinformatics tasks simply by using additional normal cores. In recent 

years, some new platforms have sought to address the toolchain and user experience 

problems; for example, Illumina Dragen116 and Nvidia Clara Parabricks117 seek to be 

single integrated solutions for an entire pipeline analysis. These solutions only work for 

specific popular workflows at the moment and are rather expensive investments for all but 

the larger sequencing cores, but they illustrate some of the promise of hardware-accelerated 

bioinformatics.

Cloud parallelization

It is relatively straightforward when running a parallelizable analysis to trade off money and 

time. Very often, it is possible to split an analysis across two machines and finish twice as 

fast. However, traditionally, it was necessary to estimate the number of machines needed to 

complete an analysis within a specified amount of time, and then go out, purchase, set up 

and maintain all those computers. If that estimate is incorrect, then the compute servers may 

be overloaded, and this is one of the sources of longer than expected wait times for the end 

user.

One prominent solution to that problem is the ‘cloud’54. Although the cloud is composed 

of many individual machines, nearly all of which could be purchased by individuals, the 

key factor is the ease with which additional resources can be provisioned, at least once 

a user learns a particular cloud platform’s application programming interfaces (APIs)53. 

Instead of purchasing individual machines, individuals rent compute time on cloud servers, 

paying not only for the cloud provider to maintain the machines but also only renting when 
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those machines are needed. Thus, fast analyses can be done by renting more machines with 

higher priority for more money. Notably, this enables large-scale re-analysis of existing 

databases of publicly available data, such as in SERRATUS8. Cloud-based biobanks46–49 

can additionally centralize and reduce storage/computation costs: for analyses performed 

in a shared cloud, only one copy of the underlying data and results needs to exist and be 

accessible; thus, there is less duplication of resources across institutions. Some prominent 

examples of these efforts include the US National Cancer Institute (NCI) Genomic Data 

Commons118, the US National Human Genome Research Institute (NHGRI) AnVIL119 and 

the Common Fund Data Ecosystem120.

Additionally, the cloud gives end users access to a more diverse array of servers, partially 

solving the issues of needing specific hardware for methods. For example, some compute 

servers are designed for high-RAM workloads, whereas others are designed with hardware 

accelerators such as GPUs. If only a limited number of machines can be purchased by a 

sequencing centre, they may not be able to exactly allocate the right number of each type 

of machine; alternatively, they may choose to purchase more generalist machines instead. 

The advantage of renting time on the cloud is that you can, in theory, always rent exactly 

the types of machines that best suit your analysis. For example, on Amazon Web Services, 

DNAnexus and Illumina Dragen, hardware are easily deployed for accelerated sequencing 

pipeline instances. Alternatively, Cloud Life Sciences and Microsoft Genomics are platforms 

built on Google Cloud and Microsoft Azure, respectively.

Domain-specific libraries and languages

Easy to use programming frameworks for deep learning models, such as TensorFlow and 

PyTorch121,122, have had an immense impact on the wide adoption of deep learning, which 

corroborates the importance of user-friendly engineering tools. Ultimately, researchers 

in the field lack good tools for developing and updating software; you typically must 

choose between a software ecosystem that allows rapid development at the expense of 

performance and scalability (for example, Python or R) or low-level languages that have 

higher performance but are harder to develop and maintain (for example, C, C++ or Rust). 

Existing solutions that try to fill the void between these extremes (for example, MATLAB 

or Julia) are primarily geared towards numerical computing rather than computational 

genomics.

As discussed earlier in the ‘Complexity’ section above, one of the challenges pertinent 

to computational genomics is the degree to which many of the smaller tasks in analysis 

pipelines sum up to a significant fraction of the computational cost. Part of the reason that 

deep learning frameworks for accelerators work so well is that there is a clear separation in 

computational cost between the expensive matrix multiplication of training/inference and the 

glue code; thus, it is fine for glue to be in a slower language such as Python. The separation 

is less clear in MATLAB, but engineers very quickly learn to vectorize any time-critical 

code123, and Julia was designed from the ground up to make both numerical computations 

and control flow fast124.

As such, there have been numerous attempts at simplifying the development of 

bioinformatics software. Most of these attempts have been in the form of collections of 
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libraries of computational biology primitives for popular languages: these include SeqAn for 

C++125, Biopython126, Rust-Bio127 and BioJulia128. Indeed, we note that Rust, which makes 

it easier to exploit parallelism, has seen increasing adoption among core bioinformatics 

software developers as multicore machines become ubiquitous127. However, although 

C++, Rust and Julia are extremely performant, relatively few bioinformatics practitioners 

are comfortable with those languages. On the other hand, Python is an extremely widely 

adopted language for genomics — for example, prominently for single-cell data in 

Scanpy129,130 — but it is too high level to have good performance on glue operations.

The other major direction for simplifying the development of bioinformatics software takes 

inspiration from projects such as Julia, instead aiming to design domain-specific languages 

for genomics. One early attempt in this direction was BPipe, a domain-specific language 

specifically focusing on reproducibly defining the pipeline glue holding other software 

together131. Some of the successors for pipeline glue languages include Snakemake132, 

which defines bioinformatics workflows using a variant of Python, or workflow systems133 

such as Galaxy134, which allow for user-friendly construction of pipelines. These workflow 

systems have found widespread adoption in bioinformatics. Another future direction comes 

in the form of more recent domain-specific languages, which try to be one-stop shops for 

developing entire genomics applications, including both pipeline glue and the expensive 

big-ticket analyses such as mapping. SARVAVID135 was designed as a domain-specific 

language that specifically scaled genomics applications by inherently exploiting parallelism, 

which in many other languages requires complicated explicit constructs. More recently, the 

domain-specific language Seq72 was designed to share the syntax and semantics of Python, 

making it easy for practitioners to adopt while adding genomics-specific language constructs 

and having the fast runtime of a compiled language. For the end user, the pipeline glue 

components are likely to be of greater interest, but modern domain-specific languages hold 

the promise of reducing the separation between software developers and end users if both 

adopt the same languages.

Conclusions and future perspectives

In this Review, we have covered typical genomics sequencing pipelines and discussed some 

of the trade-offs researchers will be called upon to make as the relative cost of compute 

in these pipelines increases. Technical trade-offs that software developers face include 

those between computation, storage and communication. User-facing bottlenecks include 

wait time, monetary cost and the more subtle trade-offs in the complexity of development 

and deployment of software and infrastructure, and accuracy of the analysis. We have 

reviewed some of the various new techniques for addressing these trade-offs, focusing on 

data compression, data sketching, hardware accelerators, cloud parallelization and domain-

specific libraries and languages. We also provide user guidance as to how to navigate 

these trade-offs throughout the Review. We conclude that these modern methodologies are 

an essential tool in any genomics toolkit as practitioners weigh which trade-offs they are 

willing to make.

These trade-offs are already a problem for smaller laboratories for whom cloud computing, 

GPUs and high-RAM machines can be prohibitively expensive — in areas relating to deep 
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learning, there is a well-documented compute divide between those who have access to 

advanced resources versus those who do not136,137. However, we think that the consideration 

of trade-offs will become especially important for everyone in the single-cell era, because of 

the raw amount of reads that can be generated from even just a single sample. Furthermore, 

this decision will be continuous, rather than discrete; many methods allow a continuous 

trade-off, for example in accuracy versus compute, so researchers will have to decide how 

much accuracy is ‘enough’, how long they are willing to wait for the computation to 

complete or how much they are willing to pay a cloud provider.

We look to the large new cloud-based biobanks and single-cell data sources generated 

by various consortia and cell atlas efforts. As these projects continue, interoperability and 

standardization questions will be as important as individual computational bottlenecks. 

Indeed, although some fraction of bottlenecks we discussed come from the ‘hard’ tasks of 

genomics, some other large fraction of compute and time is spent on just converting from 

one format to another. The second task of converting formats will become increasingly 

important as the variety of software and goals grows. Moreover, as with bulk genomic 

data, it is essential that analytical tools are robust and well maintained, which entails 

consistent support and improvement to tools beyond what is possible in the conventional 

single-laboratory academic setting.

These same types of considerations are also being faced by other fields where analytical 

and computational costs are a significant proportion of total expense. The specific decisions 

of what trade-offs are beneficial to make will differ, but these kinds of trade-offs are not 

specific to genomics, or even biology at large.
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Glossary

Accelerators
A hardware device or software program that enhances the overall performance of the 

computer. A software accelerator implements as many system functions as possible in 

software and moves performance-critical functions into special-purpose external hardware to 

reduce compute time

Bloom filters
An indexing approach for storing the presence or absence of k-mers in a dataset; they have 

been leveraged to considerably reduce the amount of space and still run in constant time. 

However, they can have high false positive rates (that is, query hits when there are none)

CIGAR strings
(Concise idiosyncratic gapped alignment report strings). The sequence alignment map 

(SAM) file format’s compressed representation of a read alignment to a reference
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Cloud computing
The use of computing resources distributed in the ‘cloud-shaped’ Internet to store, manage 

and analyse data, rather than doing so on a local server or personal computer

Complexity
Algorithm complexity is generally measured as an upper bound on its long-term growth 

rate: how its runtime or space requirements grows as the input size grows, rather than its 

absolute magnitude, and thus constants are omitted. In practice, a set of algorithms can share 

the asymptotic complexity despite some of them being a constant 2, 3 or even 1,000 times 

slower than their counterparts in the set

Compute resources
The amount of compute power (for example, central processing units (CPUs) and memory) 

that can be requested, allocated and used for computing

Domain-specific languages
Computer languages tailored to a specific domain such as genomics

Field-programmable gate arrays
(FPGAs). Hardware accelerators that can be configured/reprogrammed by a customer after 

manufacturing. They enable custom hardware acceleration without needing entirely new 

chips to be manufactured

Graphics processing units
(GPUs). Hardware accelerators that can process many pieces of data simultaneously. 

They were historically used primarily for rendering computer graphics, but the massive 

parallelism makes them useful for applications such as machine learning

Jaccard index
A measure of the similarity between two sets, defined as the size of the intersection divided 

by the size of the union

k-mer
Genomic data normally come in long strings of nucleotides (A, C, G and T). Many genomic 

algorithms process these strings by looking at exact matches of length-k substrings, which 

are known as k-mers

Kryder’s law
Disk drive density doubles every 13 months, determined by the capability of hard drive 

storage media over time

Lossless compression
A procedure that takes advantage of redundancy/repetition to reversibly transform a large 

file into a smaller one — for example, storing the string ‘ACGTACGTACGTACGTACGT’ 

as ‘5*(ACGT)’. Note that although shorter, the transformed string contains all the same 

information as the original

Lossy compression
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Sometimes, we are willing to discard some information when compressing a file. For 

example, if we start with data points ‘12.362, 15.212, 92.786’ we could round the points and 

discard some precision to get ‘12, 15, 93’, which can be stored in less space. However, after 

lossy compression, although we can still reproduce data that look similar to the same kind of 

format as the original, they are no longer an exact replica

Metagenomics
Ordinary genomics studies the genome of a single organism. Metagenomics is the 

simultaneous study of a collection of many different species’ genomes in a single sample, 

typically that of microbial communities

Moore’s law
Computing power (in TeraFLOPS) doubles every 18 months, determined by the number of 

transistors you can pack per unit area on a chip

Multicore
A single computing processor with two or more independent computing units (called cores). 

Running multiple instructions on multiple cores at the same time can increase the overall 

speed of programs

Parallelization
Parallel computing allows numerous calculations to be performed simultaneously, thereby 

accelerating computation. Based on this principle, many large-scale computational tasks can 

then be divided into smaller ones and solved on multiple machines concurrently

Parsing
The input data to a computer program can come in various formats. Before performing 

any type of complicated analysis, programs must first translate those data into an internal 

representation, in a process known as parsing

Random access memory
(RAM). Short-term storage for data the computer is actively using to speed access

Random access
Access to any element of stored data as easily and efficiently as any other

RNA sequencing
A genomic approach for the detection and quantitative analysis of mRNA molecules in a 

biological sample

Scale
Scalability typically refers to how an algorithm handles larger amounts of data; for example, 

an algorithm scales with the amount of data if its runtime and space requirements grow 

slowly enough in required time and size to solve the problem

Single-threaded
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Computation that operates as a single sequential series of operations without any 

parallelization. It is often used as a benchmark for the speed of a method without using 

any types of hardware tricks or multi-threaded acceleration

Sketching
These methods reduce the number of data points considered, while still capturing salient 

features of the underlying data, to minimize the computational resources required for large-

scale analyses. Unlike lossy data compression, it is generally not possible to reproduce 

even an approximate copy of the original data, because the sketch only summarizes a few 

important features

Space-complexity
Computer scientists traditionally measure the amount of computer memory (random access 

memory (RAM)) an algorithm needs to run by asking how the amount of memory needed 

scales with the size of the data. Often, the same types of terms are used as for time-

complexity, and we speak of linear, log-linear or quadratic space algorithms

Technology refresh lifecycle
The cycle of regularly updating compute infrastructure to maximize a system’s performance

Tensor processing units
(TPUs). Systems developed by Google for application-specific integrated circuits to 

accelerate machine learning workflows

Time-complexity
Computer scientists traditionally measure how fast an algorithm is by asking how the 

number of central processing unit (CPU) operations scales with the size of the data. An 

algorithm is linear time if doubling the amount of data to be processed doubles the number 

of CPU operations needed. An algorithm is quadratic time if doubling the amount of 

data quadruples (×4) the number of CPU operations. A log-linear time algorithm is only 

marginally slower than a linear time algorithm, although the exact scaling requires a bit 

more mathematical formalism to describe. Most practical algorithms are either linear or 

log-linear

References

1. Wetterstrand KA DNA sequencing costs: data. National Human Genome Research Institute 
www.genome.gov/sequencingcostsdata (2022).

2. Preston J, VanZeeland A, & Peiffer DA Innovation at illumina: the road to the $600 human genome. 
Nature Portfolio https://www.nature.com/articles/d42473-021-00030-9 (2021).

3. Pennisi EA $100 genome? New DNA sequencers could be a ‘game changer’ for biology, medicine. 
Science 376, 1257–1258 (2022). [PubMed: 35709273] 

4. Regalado A China’s BGI says it can sequence a genome for just $100. MIT Technology Review. 
https://www.technologyreview.com/2020/02/26/905658/china-bgi-100-dollargenome/ (2020).

5. Berger B, Daniels NM & Yu YW Computational biology in the 21st century: scaling with 
compressive algorithms. Commun. ACM 59, 72–80 (2016). [PubMed: 28966343] 

6. Rozenblatt-Rosen O, Stubbington MJT, Regev A & Teichmann SA The Human Cell Atlas: from 
vision to reality. Nature 550, 451–453 (2017). [PubMed: 29072289] 

Berger and Yu Page 19

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.genome.gov/sequencingcostsdata
https://www.nature.com/articles/d42473-021-00030-9
https://www.technologyreview.com/2020/02/26/905658/china-bgi-100-dollargenome/


7. Zheng G Our 1.3 million single cell dataset is ready to download. 10x Genomics. https://
www.10xgenomics.com/blog/our-13-million-single-cell-dataset-is-ready-to-download (2022).

8. Edgar RC et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 
(2022). [PubMed: 35082445] 

9. Marçais G, Solomon B, Patro R & Kingsford C Sketching and sublinear data structures in genomics. 
Annu. Rev. Biomed. Data Sci 2, 93–118 (2019).This work is an excellent in-depth review of 
sketching for algorithm designers.

10. Kurzak J, Bader DA, & Dongarra J, (eds) Scientific Computing with Multicore and Accelerators 
(CRC, 2010 Dec 7).

11. Mernik M, Heering J & Sloane AM When and how to develop domain-specific languages. ACM 
Comput. Surv 37, 316–344 (2005).

12. Van der Auwera GA et al. From FastQ data to high‐confidence variant calls: the genome analysis 
toolkit best practices pipeline. Curr. Protoc. Bioinforma 43, 11 (2013).

13. McKenna A et al. The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 20, 1297–1303 (2010). [PubMed: 20644199] 

14. Banks E Run the germline GATK best practices pipeline for $5 per genome. 
GitHub https://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2018-02-12-
Run_the_germline_GATK_Best_Practices_Pipeline_for_%245_per_genome.md (2020).

15. Illumina. DRAGEN Complete Suite; latest version: 4.0.3 AWS Marketplace. https://
aws.amazon.com/marketplace/pp/prodview-ypz2tpzy6f5xq (2022).

16. Shajii A, Yorukoglu D, Yu YW & Berger B Fast genotyping of known SNPs through approximate 
k-mer matching. Bioinformatics 32, i538–i544 (2016). [PubMed: 27587672] 

17. Ondov BD et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome 
Biol 17, 1–4 (2016). [PubMed: 26753840] 

18. Stein L Genome annotation: from sequence to biology. Nat. Rev. Genet 2, 493–503 (2001). 
[PubMed: 11433356] 

19. Lewis CM Genetic association studies: design, analysis and interpretation. Brief. Bioinforma 3, 
146–153 (2002).

20. Baldi P & Brunak S Bioinformatics: The Machine Learning Approach (MIT Press, 2001).

21. Suhre K, McCarthy MI & Schwenk JM Genetics meets proteomics: perspectives for large 
population-based studies. Nat. Rev. Genet 22, 19–37 (2021). [PubMed: 32860016] 

22. Allis DC & Jenuwein T The molecular hallmarks of epigenetic control. Nat. Rev. Genet 17, 487–
500 (2016). [PubMed: 27346641] 

23. Moses L & Pachter L Museum of spatial transcriptomics. Nat. Methods 19, 534–546 (2022). 
[PubMed: 35273392] 

24. Burgess DJ Spatial transcriptomics coming of age. Nat. Rev. Genet 20, 317–317 (2019). [PubMed: 
30980030] 

25. Berger B & Cho H Emerging technologies towards enhancing privacy in genomic data sharing. 
Genome Biol 20, 1–3 (2019). [PubMed: 30606230] 

26. Gürsoy G et al. Functional genomics data: privacy risk assessment and technological mitigation. 
Nat. Rev. Genet 2021, 1–14 (2021).

27. Cormen TH, Leiserson CE, Rivest RL, & Stein C Introduction to Algorithms (MIT Press, 2022).

28. Tomczak K, Czerwińska P & Wiznerowicz M The Cancer Genome Atlas (TCGA): an 
immeasurable source of knowledge. Contemp. Oncol 19, A68–A77 (2015).

29. Zhang Z et al. Uniform genomic data analysis in the NCI Genomic Data Commons. Nat. Commun 
12, 1226 (2021). [PubMed: 33619257] 

30. BackupWorks.com. LTO Program announces price per gigabyte now less than one penny 
BackupWorks.com https://www.backupworks.com/LTO-programcost-per-gigabyte-milestone.aspx 
(2022).

31. 100,000 Genomes Project Pilot Investigators. 100,000 genomes pilot on rare-disease diagnosis in 
health care — preliminary report. N. Engl. J. Med 385, 1868–1880 (2021). [PubMed: 34758253] 

32. Matange K, Tuck JM & Keung AJ DNA stability: a central design consideration for DNA data 
storage systems. Nat. Commun 12, 1358 (2021). [PubMed: 33649304] 

Berger and Yu Page 20

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.10xgenomics.com/blog/our-13-million-single-cell-dataset-is-ready-to-download
https://www.10xgenomics.com/blog/our-13-million-single-cell-dataset-is-ready-to-download
https://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2018-02-12-Run_the_germline_GATK_Best_Practices_Pipeline_for_%245_per_genome.md
https://github.com/broadinstitute/gatk-docs/blob/master/blog-2012-to-2019/2018-02-12-Run_the_germline_GATK_Best_Practices_Pipeline_for_%245_per_genome.md
https://aws.amazon.com/marketplace/pp/prodview-ypz2tpzy6f5xq
https://aws.amazon.com/marketplace/pp/prodview-ypz2tpzy6f5xq
https://BackupWorks.com
https://www.backupworks.com/LTO-programcost-per-gigabyte-milestone.aspx


33. Jacob B, Wang D, & Ng S Memory Systems: Cache, DRAM, disk (Morgan Kaufmann, 2010).

34. Bonfield JK CRAM 3.1: advances in the CRAM file format. Bioinformatics 38, 1497–1503 (2022). 
[PubMed: 34999766] 

35. Li H et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 
(2009). [PubMed: 19505943] 

36. Cock PJ, Fields CJ, Goto N, Heuer ML & Rice PM The Sanger FASTQ file format for sequences 
with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38, 1767–1771 
(2010). [PubMed: 20015970] 

37. Hernaez M, Pavlichin D, Weissman T & Ochoa I Genomic data compression. Annu. Rev. Biomed. 
Data Sci 2, 19–37 (2019).This work is a canonical review of genomic data compression by many 
of the authors involved in standardization efforts.

38. Loh PR, Baym M & Berger B Compressive genomics. Nat. Biotechnol 30, 627–630 (2012). 
[PubMed: 22781691] 

39. Langmead B & Nellore A Cloud computing for genomic data analysis and collaboration. Nat. 
Rev. Genet 19, 208–219 (2018). [PubMed: 29379135] This article goes more in-depth on cloud 
computing and how that is changing genomic data analysis.

40. Danecek P et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). 
[PubMed: 21653522] 

41. Hie B, Cho H, DeMeo B, Bryson B & Berger B Geometric sketching compactly summarizes the 
single-cell transcriptomic landscape. Cell Syst 8, 483–493 (2019). [PubMed: 31176620] 

42. Hie B et al. Computational methods for single-cell RNA sequencing. Annu. Rev. Biomed. Data Sci 
3, 339–364 (2020).This review discusses some of the newer computational challenges presented 
by scRNA-seq data.

43. Lähnemann D et al. Eleven grand challenges in single-cell data science. Genome Biol 21, 1–35 
(2020).

44. Evans C, Hardin J & Stoebel DM Selecting between-sample RNA-seq normalization methods from 
the perspective of their assumptions. Brief. Bioinforma 19, 776–792 (2018).

45. Google. All networking pricing Google Cloud https://cloud.google.com/vpc/networkpricing 
(2022).

46. Bycroft C et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 
203 (2018). [PubMed: 30305743] 

47. Chen Z et al. China Kadoorie Biobank of 0.5 million people: survey methods, baseline 
characteristics and long-term follow-up. Int. J. Epidemiol 40, 1652–1666 (2011). [PubMed: 
22158673] 

48. Gaziano JM et al. Million veteran program: a mega-biobank to study genetic influences on health 
and disease. J. Clin. Epidemiol 70, 214–223 (2016). [PubMed: 26441289] 

49. Lin JC, Hsiao WWW & Fan CT Transformation of the Taiwan Biobank 3.0: vertical and horizontal 
integration. J. Transl. Med 18, 1–13 (2020). [PubMed: 31900168] 

50. All of Us Research Program Investigators. The “All of Us” research program. N. Engl. J. Med 381, 
668–676 (2019). [PubMed: 31412182] 

51. Baker M & Buyya R Cluster computing: the commodity supercomputer. Softw. Pract. Exp 29, 
551–576 (1999).

52. Goenka SD et al. Accelerated identification of disease-causing variants with ultra-rapid nanopore 
genome sequencing. Nat. Biotechnol 40, 1035–1041 (2022). [PubMed: 35347328] 

53. Marshall P, Keahey K, & Freeman T in 2011 11th IEEE/ACM Int. Symp. Cluster, Cloud and Grid 
Computing 205–214 (IEEE, 2011).

54. Grossman RL The case for cloud computing. IT professional 11, 23–27 (2009).

55. Cormode G & Garofalakis M in Proc. 2007 ACM SIGMOD Int. Conf. Management of Data 
281–292 (2007).

56. Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ Basic local alignment search tool. J. Mol. 
Biol 215, 403–410 (1990). [PubMed: 2231712] 

57. Smith TF & Waterman MS Identification of common molecular subsequences. J. Mol. Biol 147, 
195–197 (1981). [PubMed: 7265238] 

Berger and Yu Page 21

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cloud.google.com/vpc/networkpricing


58. Berger B, Waterman MS & Yu YW Levenshtein distance, sequence comparison and biological 
database search. IEEE Trans. Inf. Theory 67, 3287–3294 (2020). [PubMed: 34257466] 

59. He D et al. Alevin-fry unlocks rapid, accurate and memory-frugal quantification of single-cell 
RNA-seq data. Nat. Methods 19, 316–322 (2022). [PubMed: 35277707] 

60. Kaminow B, Yunusov D & Dobin A STARsolo: accurate, fast and versatile mapping/quantification 
of single-cell and single-nucleus RNA-seq data. Preprint at Biorxiv 10.1101/2021.05.05.442755 
(2021).

61. Sarkar H, Srivastava A & Patro R Minnow: a principled framework for rapid simulation of 
dscRNA-seq data at the read level. Bioinformatics 35, i136–i144 (2019). [PubMed: 31510649] 

62. Regier AA et al. Functional equivalence of genome sequencing analysis pipelines enables 
harmonized variant calling across human genetics projects. Nat. Commun 9, 1–8 (2018). 
[PubMed: 29317637] 

63. Kent WJ BLAT — the BLAST-like alignment tool. Genome Res 12, 656–664 (2002). [PubMed: 
11932250] 

64. Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at 
arXiv 10.48550/arXiv.1303.3997 (2013).

65. Langmead B & Salzberg SL Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 
(2012). [PubMed: 22388286] 

66. Li H Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 
(2018). [PubMed: 29750242] 

67. Grigoryev DN in Big Data Analysis for Bioinformatics and Biomedical Discoveries (ed. Ye SQ) 
15–34 (CRC, 2016).

68. Korsunsky I et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. 
Methods 16, 1289–1296 (2019). [PubMed: 31740819] 

69. Stuart T et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019). 
[PubMed: 31178118] 

70. Endrullat C, Glökler J, Franke P & Frohme M Standardization and quality management in next-
generation sequencing. Appl. Transl. Genomics 10, 2–9 (2016).

71. Yorukoglu D, Yu YW, Peng J & Berger B Compressive mapping for next-generation sequencing. 
Nat. Biotechnol 34, 374–376 (2016). [PubMed: 27054987] 

72. Shajii A et al. A Python-based programming language for high-performance computational 
genomics. Nat. Biotechnol 39, 1062–1064 (2021). [PubMed: 34282326] 

73. Berger B, Peng J & Singh M Computational solutions for omics data. Nat. Rev. Genet 14, 333–
346 (2013). [PubMed: 23594911] This work is an older review of computational challenges and 
solutions in bioinformatics, the topics of which this Review assumes background familiarity with.

74. Rehm HL et al. GA4GH: international policies and standards for data sharing across genomic 
research and healthcare. Cell Genomics 1, 100029 (2021). [PubMed: 35072136] 

75. Alberti C et al. in Proc. IEEE Data Compression Conf. (DCC) 221–230 (2016).

76. Fritz MH, Leinonen R, Cochrane G & Birney E Efficient storage of high throughput DNA 
sequencing data using reference-based compression. Genome Res 21, 734–740 (2011). [PubMed: 
21245279] 

77. Bonfield JK & Mahoney MV Compression of FASTQ and SAM format sequencing data. PloS 
ONE 8, e59190 (2013). [PubMed: 23533605] 

78. Rahman A, Chikhi R & Medvedev P Disk compression of k-mer sets. Algorithms Mol. Biol 16, 
1–4 (2021). [PubMed: 33639968] 

79. Hach F, Numanagić I, Alkan C & Sahinalp SC SCALCE: boosting sequence compression 
algorithms using locally consistent encoding. Bioinformatics 28, 3051–3057 (2012). [PubMed: 
23047557] 

80. Janin L, Schulz-Trieglaff O & Cox AJ BEETL-fastq: a searchable compressed archive for DNA 
reads. Bioinformatics 30, 2796–2801 (2014). [PubMed: 24950811] 

81. Yu YW, Daniels NM, Danko DC & Berger B Entropy-scaling search of massive biological data. 
Cell Syst 1, 130–140 (2015). [PubMed: 26436140] 

Berger and Yu Page 22

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



82. Ferragina P & Manzini G in Proc. 41st Annual Symp. Foundations of Computer Science 390–398 
(IEEE, 2000).

83. Ferragina P, Manzini G, Mäkinen V & Navarro G Compressed representations of sequences and 
full-text indexes. ACM Trans. Algorithms 10.1145/1240233.1240243 (2007).

84. Kuhnle A et al. Efficient construction of a complete index for pan-genomics read alignment. J. 
Comput. Biol 27, 500–513 (2020). [PubMed: 32181684] 

85. Bhaskaran V & Konstantinides K Image and Video Compression Standards: Algorithms and 
Architectures (Springer, 1997).

86. Yu YW, Yorukoglu D, Peng J & Berger B Quality score compression improves genotyping 
accuracy. Nat. Biotechnol 33, 240–243 (2015). [PubMed: 25748910] 

87. Malysa G et al. QVZ: lossy compression of quality values. Bioinformatics 31, 3122–3129 (2015). 
[PubMed: 26026138] 

88. Ochoa I, Hernaez M, Goldfeder R, Weissman T & Ashley E Effect of lossy compression of quality 
scores on variant calling. Brief. Bioinforma 18, 183–194 (2017).

89. Broder AZ in IEEE Proc. Compression and Complexity of SEQUENCES (Cat. No.97TB100171) 
21–29 (IEEE, 1997).

90. Broder AZ, Charikar M, Frieze AM & Mitzenmacher M in Proc. 30th ACM Symp. Theory of 
Computing (STOC ‘98) 327–336 (Association for Computing Machinery, 1998).

91. Jaccard P The distribution of the flora in the alpine zone. N. Phytol 11, 37–50 (1912).

92. Zhao X BinDash, software for fast genome distance estimation on a typical personal laptop. 
Bioinformatics 35, 671–673 (2019). [PubMed: 30052763] 

93. Baker DN & Langmead B Dashing: fast and accurate genomic distances with HyperLogLog. 
Genome Biol 20, 265 (2019). [PubMed: 31801633] 

94. Flajolet P, Fusy É, Gandouet O & Meunier F Hyperloglog: the analysis of a near-optimal 
cardinality estimation algorithm. Discret. Math. Theor. Comput. Sci 10.46298/dmtcs.3545 (2007).

95. Ondov BD et al. Mash Screen: high-throughput sequence containment estimation for genome 
discovery. Genome Biol 20, 1–3 (2019). [PubMed: 30606230] 

96. Stranneheim H et al. Classification of DNA sequences using Bloom filters. Bioinformatics 26, 
1595–1600 (2010). [PubMed: 20472541] 

97. Bradley P et al. Ultrafast search of all deposited bacterial and viral genomic data. Nat. Biotechnol 
37, 152–159 (2019). [PubMed: 30718882] 

98. Wood DE, Lu J & Langmead B Improved metagenomic analysis with Kraken 2. Genome Biol 20, 
1–3 (2019). [PubMed: 30606230] 

99. Jain C, Koren S, Dilthey A, Phillippy AM & Aluru S A fast adaptive algorithm for computing 
whole-genome homology maps. Bioinformatics 34, i748–i756 (2018). [PubMed: 30423094] 

100. Numanagić I et al. Fast characterization of segmental duplications in genome assemblies. 
Bioinformatics 34, i706–i714 (2018). [PubMed: 30423092] 

101. Ekim B, Berger B & Chikhi R Minimizer-space de Bruijn graphs: whole-genome assembly 
of long reads in minutes on a personal computer. Cell Syst 12, 958–968 (2021). [PubMed: 
34525345] 

102. Rautiainen M & Marschall T MBG: minimizer-based sparse de Bruijn Graph construction. 
Bioinformatics 37, 2476–2478 (2021). [PubMed: 33475133] 

103. Marçais G et al. Improving the performance of minimizers and winnowing schemes. 
Bioinformatics 33, i110–i117 (2017). [PubMed: 28881970] 

104. Jain C et al. Weighted minimizer sampling improves long read mapping. Bioinformatics 36, 
i111–i118 (2020). [PubMed: 32657365] 

105. Flomin D, Pellow D & Shamir R Data set-adaptive minimizer order reduces memory usage in 
k-mer counting. J. Comput. Biol 29, 825–838 (2022). [PubMed: 35527644] 

106. Edgar R Syncmers are more sensitive than minimizers for selecting conserved k-mers in 
biological sequences. PeerJ 9, e10805 (2021). [PubMed: 33604186] 

107. Shaw J & Yu YW Theory of local k-mer selection with applications to long-read alignment. 
Bioinformatics 2021, btab790 (2021).

Berger and Yu Page 23

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



108. Orenstein Y, Pellow D, Marçais G, Shamir R & Kingsford C Designing small universal k-mer 
hitting sets for improved analysis of high-throughput sequencing. PLoS Comput. Biol 13, 
e1005777 (2017). [PubMed: 28968408] 

109. Ekim B, Berger B & Orenstein Y in Proc. Int. Conf. Research in Computational Molecular 
Biology (RECOMB) (ed. Schwartz R) 37–53 (Springer LNBI, 2020).

110. DeMeo B & Berger B Hopper: a mathematically optimal algorithm for sketching biological data. 
Bioinformatics 36, i236–i241 (2020). [PubMed: 32657375] 

111. Manavski SA & Valle G CUDA compatible GPU cards as efficient hardware accelerators for 
Smith–Waterman sequence alignment. BMC Bioinforma 9, 1–9 (2008).

112. Herbordt MC, Model J, Gu Y, Sukhwani B & VanCourt T in Proc. 14th Annual IEEE Symp. 
Field-Programmable Custom Computing Machines Vol. 2006 217–226 (IEEE, 2006).

113. Alser M, Shahroodi T, Gómez-Luna J, Alkan C & Mutlu O SneakySnake: a fast and accurate 
universal genome pre-alignment filter for CPUs, GPUs and FPGAs. Bioinformatics 36, 5282–
5290 (2020).

114. Cali DS et al. in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture 
(MICRO) 951–966 (IEEE, 2020).

115. Jouppi NP et al. in Proc. 44th Annual Int. Symp. Computer Architecture Vol. 24 1–12 (2017).

116. Catreux S et al. DRAGEN Sets New Standard for Data Accuracy in Precision FDA 
Benchmark Data. Optimizing Variant Calling Performance with Illumina Machine Learning and 
DRAGEN Graph Illumina https://www.illumina.com/science/genomics-research/articles/dragen-
shines-again-precisionfda-truth-challenge-v2.html (2020).

117. NVIDIA. Genome sequencing analysis NVIDIA https://www.nvidia.com/en-us/clara/genomics/ 
(2022).

118. Heath AP et al. The NCI Genomic Data Commons. Nat. Genet 53, 257–262 (2021). [PubMed: 
33619384] 

119. Schatz MC et al. Inverting the model of genomics data sharing with the NHGRI genomic data 
science analysis, visualization, and informatics lab-space. Cell Genomics 2, 100085 (2022). 
[PubMed: 35199087] 

120. Charbonneau AL et al. Making Common Fund data more findable: catalyzing a data ecosystem. 
Preprint at bioRxiv 10.1101/2021.11.05.467504 (2021).

121. Abadi M et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. 
Preprint at arXiv https://arxiv.org/abs/1603.04467 (2016).

122. Paszke A et al. Pytorch: an imperative style, high-performance deep learning library. Adv. Neural 
Inf. Process. Syst 32, 8026–8037 (2019).

123. Gjendemsjø A An introduction to MATLAB OpenStax CNX http://cnx.org/contents/2100a51e-
a5c9-4e41-9cb6-087b755125ac@3.4 (2007).

124. Perkel JM Julia: come for the syntax, stay for the speed. Nature 572, 141–143 (2019). [PubMed: 
31363196] 

125. Döring A et al. SeqAn an efficient, generic C++ library for sequence analysis. BMC Bioinforma 
9, 11 (2008).

126. Cock PJA et al. Biopython: freely available Python tools for computational molecular biology and 
bioinformatics. Bioinformatics 25, 1422–1423 (2009). [PubMed: 19304878] 

127. Köster J Rust-Bio: a fast and safe bioinformatics library. Bioinformatics 32, 444–446 (2016). 
[PubMed: 26446134] 

128. Ward BJ Fast, open, easy, software for biology BioJulia https://biojulia.net (2022).

129. Angerer P et al. Single cells make big data: new challenges and opportunities in transcriptomics. 
Curr. Opin. Syst. Biol 4, 85–91 (2017).

130. Wolf F, Angerer P & Theis F SCANPY: large-scale single-cell gene expression data analysis. 
Genome Biol 19, 15 (2018). [PubMed: 29409532] 

131. Saledin SP, Pope B & Oshlack A BPipe: a tool for running and managing bioinformatics 
pipelines. Bioinformatics 28, 1525–1526 (2012). [PubMed: 22500002] 

132. Köster J & Rahmann S Snakemake — a scalable bioinformatics workflow engine. Bioinformatics 
28, 2520–2522 (2012). [PubMed: 22908215] 

Berger and Yu Page 24

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.illumina.com/science/genomics-research/articles/dragen-shines-again-precisionfda-truth-challenge-v2.html
https://www.illumina.com/science/genomics-research/articles/dragen-shines-again-precisionfda-truth-challenge-v2.html
https://www.nvidia.com/en-us/clara/genomics/
https://arxiv.org/abs/1603.04467
http://cnx.org/contents/2100a51e-a5c9-4e41-9cb6-087b755125ac@3.4
http://cnx.org/contents/2100a51e-a5c9-4e41-9cb6-087b755125ac@3.4
https://biojulia.net


133. Reiter T et al. Streamlining data-intensive biology with workflow systems. GigaScience 10, 
giaa140 (2021).

134. Blankenberg D et al. Galaxy: a web‐based genome analysis tool for experimentalists. Curr. 
Protoc. Mol. Biol 89, 19 (2010).

135. Mahadik K et al. Sarvavid: a domain specific language for developing scalable computational 
genomics applications. Proc. 2016 Int. Conf. Supercomput 10.1145/2925426.2926283 (2016).

136. Ahmed N & Wahed M The de-democratization of AI: deep learning and the compute divide in 
artificial intelligence research. Preprint at arXiv https://arxiv.org/abs/2010.15581 (2020).

137. Hellendoorn VJ & Sawant AA The growing cost of deep learning for source code. Commun. 
ACM 65, 31–33 (2021).

138. Shendure J & Ji H Next-generation DNA sequencing. Nat. Biotechnol 26, 1135–1145 (2008). 
[PubMed: 18846087] 

139. Pfeiffer F et al. Systematic evaluation of error rates and causes in short samples in next-generation 
sequencing. Sci. Rep 8, 1–4 (2018). [PubMed: 29311619] 

140. Lang D et al. Comparison of the two up-to-date sequencing technologies for genome assembly: 
HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. 
GigaScience 9, giaa123 (2020).

141. Wenger AM et al. Accurate circular consensus long-read sequencing improves variant detection 
and assembly of a human genome. Nat. Biotechnol 37, 1155–1162 (2019). [PubMed: 31406327] 

142. Workman RE et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. 
Methods 16, 1297–1305 (2019). [PubMed: 31740818] 

143. Oxford Nanopore. Oxford Nanopore Tech update: new Duplex method for 
Q30 nanopore single molecule reads, PromethION 2, and more. Oxford 
Nanopore Technologies https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-
new-duplexmethod-q30-nanopore-single-molecule-reads-0 (2021).

144. Zheng G et al. Haplotyping germline and cancer genomes with high-throughput linked-read 
sequencing. Nat. Biotechnol 34, 303–311 (2016). [PubMed: 26829319] 

145. Belton JM et al. Hi-C: a comprehensive technique to capture the conformation of genomes. 
Methods 58, 268–276 (2012). [PubMed: 22652625] 

146. Solomon B & Kingsford C Fast search of thousands of short-read sequencing experiments. Nat. 
Biotechnol 34, 300–302 (2016). [PubMed: 26854477] 

147. Sahlin K & Medvedev P De novo clustering of long-read transcriptome data using a greedy, 
quality value-based algorithm. J. Comput. Biol 27, 472–484 (2020). [PubMed: 32181688] 

148. Mohamed S & Syed BA Commercial prospects for genomic sequencing technologies. Nat. Rev. 
Drug Disco 12, 341 (2013).

149. Eisenstein M Illumina swallows PacBio in long shot for market domination. Nat. Biotechnol 37, 
3–5 (2019). [PubMed: 30605147] 

150. Sundquist A, Ronaghi M, Tang H, Pevzner P & Batzoglou S Whole-genome sequencing and 
assembly with high-throughput, short-read technologies. PloS ONE 2, e484 (2007). [PubMed: 
17534434] 

151. Van Dijk EL, Jaszczyszyn Y, Naquin D & Thermes C The third revolution in sequencing 
technology. Trends Genet 34, 666–681 (2018). [PubMed: 29941292] 

152. Tan G et al. Long fragments achieve lower base quality in Illumina paired-end sequencing. Sci. 
Rep 9, 2856 (2019). [PubMed: 30814542] 

153. Schirmer M et al. Illumina error profiles: resolving fine-scale variation in metagenomic 
sequencing data. BMC Bioinforma 17, 125 (2016).

154. Dohm JC, Peters P, Stralis-Pavese N & Himmelbauer H Benchmarking of long-read correction 
methods. NAR Genomics Bioinforma 2, Iqaa037 (2020).

155. Fullwood MJ, Wei CL, Liu ET & Ruan Y Next-generation DNA sequencing of paired-end tags 
(PET) for transcriptome and genome analyses. Genome Res 19, 521–532 (2009). [PubMed: 
19339662] 

156. Duan Z et al. A three-dimensional model of the yeast genome. Nature 465, 363–367 (2010). 
[PubMed: 20436457] 

Berger and Yu Page 25

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2010.15581
https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-new-duplexmethod-q30-nanopore-single-molecule-reads-0
https://nanoporetech.com/about-us/news/oxford-nanopore-tech-update-new-duplexmethod-q30-nanopore-single-molecule-reads-0


157. Burton JN et al. Chromosome-scale scaffolding of de novo genome assemblies based on 
chromatin interactions. Nat. Biotechnol 31, 1119–1125 (2013). [PubMed: 24185095] 

158. Spies N et al. Genome-wide reconstruction of complex structural variants using read clouds. Nat. 
Methods 14, 915–920 (2017). [PubMed: 28714986] 

159. Loose M, Malla S & Stout M Real-time selective sequencing using nanopore technology. Nat. 
Methods 13, 751–754 (2016). [PubMed: 27454285] 

Related links

BEETL: https://github.com/BEETL/BEETL

BEETL-fastq: https://github.com/BEETL/BEETL

BIGSI: https://github.com/phelimb/BIGSI

BinDash: https://github.com/zhaoxiaofei/BinDash

BPipe: https://github.com/ssadedin/bpipe

CORA: http://cb.csail.mit.edu/cb/cora/

Dashing: https://github.com/dnbaker/dashing

DNAnexus: https://www.dnanexus.com/

DSRC2: http://sun.aei.polsl.pl/dsrc

ESS-Compress: http://github.com/medvedevgroup/ESSCompress

FACS: https://github.com/SciLifeLab/facs

Geosketch: https://geosketch.csail.mit.edu/

Hopper: http://hopper.csail.mit.edu/

Illumina Dragen: https://www.illumina.com/products/by-type/informatics-products/dragenbio-it-
platform.html

Illumina Dragen AMI: https://aws.amazon.com/quickstart/architecture/illumina-dragen/

IsONclust: https://pypi.org/project/isONclust/

Kraken 2: https://github.com/DerrickWood/kraken2

Mash: https://github.com/marbl/mash

MashMap2: https://github.com/marbl/MashMap

MBG: https://github.com/maickrau/MBG

mdbg: https://github.com/ekimb/rust-mdbg/

Minimap2: https://github.com/lh3/minimap2

Nvidia Clara Parabricks: https://www.nvidia.com/en-us/clara/genomics/

Qualcomp: https://sourceforge.net/projects/qualcomp

Quartz: https://quartz.csail.mit.edu/

QVZ: https://github.com/mikelhernaez/qvz

SCALCE: http://scalce.sourceforge.net/

SEDEF: https://github.com/vpc-ccg/sedef

Seq: https://github.com/seq-lang/seq

Sequence Bloom Tree: http://www.cs.cmu.edu/~ckingsf/software/bloomtree/

SneakySnake: https://github.com/CMU-SAFARI/SneakySnake

Winnowmap: https://github.com/marbl/Winnowmap

Berger and Yu Page 26

Nat Rev Genet. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/BEETL/BEETL
https://github.com/BEETL/BEETL
https://github.com/phelimb/BIGSI
https://github.com/zhaoxiaofei/BinDash
https://github.com/ssadedin/bpipe
http://cb.csail.mit.edu/cb/cora/
https://github.com/dnbaker/dashing
https://www.dnanexus.com/
http://sun.aei.polsl.pl/dsrc
http://github.com/medvedevgroup/ESSCompress
https://github.com/SciLifeLab/facs
https://geosketch.csail.mit.edu/
http://hopper.csail.mit.edu/
https://www.illumina.com/products/by-type/informatics-products/dragenbio-it-platform.html
https://www.illumina.com/products/by-type/informatics-products/dragenbio-it-platform.html
https://aws.amazon.com/quickstart/architecture/illumina-dragen/
https://pypi.org/project/isONclust/
https://github.com/DerrickWood/kraken2
https://github.com/marbl/mash
https://github.com/marbl/MashMap
https://github.com/maickrau/MBG
https://github.com/ekimb/rust-mdbg/
https://github.com/lh3/minimap2
https://www.nvidia.com/en-us/clara/genomics/
https://sourceforge.net/projects/qualcomp
https://quartz.csail.mit.edu/
https://github.com/mikelhernaez/qvz
http://scalce.sourceforge.net/
https://github.com/vpc-ccg/sedef
https://github.com/seq-lang/seq
http://www.cs.cmu.edu/~ckingsf/software/bloomtree/
https://github.com/CMU-SAFARI/SneakySnake
https://github.com/marbl/Winnowmap


Box 1

Genomic data acquisition: primary data generation

There are a wide variety of sequencing technologies in use, which not only produce large 

quantities of data but also have considerably different properties (Table 1). Harnessing 

their potential requires an understanding of their differences and substantial changes in 

algorithm design.

Short reads: second-generation sequencing

Second-generation sequencing, which comprises the bulk of sequencing data available 

today, is in the form of short reads of length 200–400 bp. Illumina is the largest 

commercial provider of short-read sequencing technologies148,149. Although second-

generation sequencers generate much shorter reads than earlier first-generation (Sanger) 

technologies, they are also orders of magnitude less expensive150.

However, the largest human chromosome is about 250 million bp long, and even simple 

structural variants, such as transposons, are many thousands of base pairs in length. The 

metadata associated with short reads, especially in the form of ‘paired ends’ where two 

reads are linked together spatially (because they are two ends of a single physical DNA 

fragment of length ~1,000 bp), can help with analysis, but many algorithms for analysing 

genomes have thus had to be customized for interpreting many short overlapping reads.

Long reads: third-generation sequencing

Recent single-molecule sequencing technologies produce long reads (for example, Pacific 

Biosciences (PacBio) high fidelity (HiFi) and Oxford Nanopore Technologies (ONT)), 

which are sometimes long enough to span repetitive parts of a genome, thus addressing 

one of the main limitations of second-generation technologies151. Many algorithms 

and code written for second-generation sequencing assume short reads of 200–400 bp, 

whereas they may not scale well for long-read technologies, which are able to access 

lengths greater than 10,000 bp (10 kbp).

Furthermore, each technology has its own distinct error profile. Illumina second-

generation sequencers have ~0.24% error152, primarily in the form of substitutions, rather 

than insertions and deletions (indels)153. On the other hand, raw reads from ONT and 

PacBio continuous long read (CLR) platforms both had error rates greater than 5%, 

but PacBio has a much higher rate of insertions whereas ONT errors are more evenly 

distributed between substitutions, insertions and deletions154. These error profiles and 

rates are also still evolving as companies perfect their methodologies: newer PacBio 

HiFi circular consensus sequencing and ONT Minion Duplex can reduce error rates to 

<1%141,143.

Linking distance reads

Other modern techniques can produce additional information linking together reads155. 

Even early on, Illumina short reads came in tagged pairs, spaced about 1,000 bp apart. 

Alternatively, Illumina’s Hi-C technology was initially developed to interrogate the 3D 

structure of chromosomes145,156. It generates data linking together pairs of much more 
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distant reads but does not provide information about the distance between them or 

their relative orientation. The inference of distances between reads along the genome 

requires algorithms that analyse the read distributions, and specifically the density of 

pairs linking together separate regions157. More recently, the ‘read cloud’ or ‘linked 

read’ approach158, developed by 10x Genomics (now discontinued) and BGI’s Complete 

Genomics, generates collections of sequencing reads that all originate from the same 

region of the genome, but without providing any additional information linking specific 

reads to each other or to specific locations along a chromosome. This additional data can 

be extremely helpful in the de novo reconstruction of nearly complete genomes.

Real-time data generation

Traditionally, secondary processing of the reads takes place after the sequencing is 

finished. However, this is no longer always the case. Nanopore-based sequencing devices 

are capable of generating data in real time, producing a signal as individual DNA 

molecules pass through a pore in a membrane; thus, computation is now a major 

bottleneck. Even the algorithms that are used to convert the electrical signal into a 

read-out of the molecule as a string of nucleotides can barely keep up with the data 

generation159, let alone the more complex algorithms needed to use the resulting data 

to address biological questions. For example, many analyses require the sequences to be 

compared with other sequences in large reference databases, yet the algorithms used for 

real-time analyses, such as those used in ONT’s Read Until adaptive sampling, are not 

guaranteed to produce the same output. This is thus a very real user-facing trade-off, in 

that if they want real-time results, the user cannot use the most accurate algorithms.
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Box 2

Genomic data analysis: secondary processing steps

Reads from a sequencer

The sequencer outputs a set of reads. Coloured dots represent distinctive substrings that 

can be used to work out the locations of the reads in the genome. For display purposes, 

we simplified the picture and only show up to two dots per read. Additionally, mutations 

and sequencing errors may cause these substrings to not be present, so differences in (or 

lack of) coloured dots on a sequence can be interpreted as genetic variants (see the figure, 

part a).

De novo assembly

De novo assembly is the task of reconstructing the original genome from reads without 

any kind of guiding reference. Relative to reference-based methods, de novo assembly 

is less prone to reference biases, but is also more expensive. Genome assembly methods 

are experiencing a resurgence due to long-read technologies increasing overlap relative 

to short-read sequencing. The output is a graph because bubbles form when two reads 

that assemble to the same position differ, depicted in the assembly graph figure as a read 

lacking a coloured dot (see the figure, part b).

Read mapping

Read mapping locally aligns each read to a similar location; it is generally much faster 

than assembly and can be easily parallelized as each read is mapped separately. In most 

sequencing pipelines, mapping reads to a reference genome is the first step performed. In 

the figure, the coloured dots are used to align reads to matching positions on the genome 

(see the figure, part c).

Variant calling

This step determines the genetic variants present in a sample. Traditional methods rely 

on finding differences between mapped reads and the reference, which are good for small 

mutations but not appropriate for large structural changes. Alternatives include assembly-

based methods, and k-mer substring-based methods. We use the mapped locations from 

the figure, part c to find the coloured dots not present on the reference, the latter of which 

are the variants present in the sequenced genome; thus, the sequenced genome is the 

reference from the figure, part c plus the additional dots for the variants (see the figure, 

part d).

Phasing/haplotyping

Many species have similar copies of chromosomes, which presents additional challenges 

for methods based around finding similar locations in a genome. Phasing is the task of 

disambiguating the multiple copies (or haplotypes), for example, to identify which allele 

(coloured dot) came from which haplotype (see the figure, part e).
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Fig. 1 |. Overview of genomic analysis pipelines.
a, Biological data sources. Before any analysis takes place, raw data must be gathered. 

Traditionally, bulk sequencing mixes together DNA or RNA from many cells in a sample — 

sometimes from a single individual, sometimes from an entire microbiome. More recently, 

the emerging technology of single-cell RNA sequencing (scRNA-seq) allows for collecting 

and amplifying genomic samples from individual cells. b, Chemistry-driven primary data 

generation (sequencing). A sequencer is a machine that takes a physical sample and outputs 

digital information in the form of a set of limited-length nucleotide strings called ‘reads’ (for 

example, ACGT) with associated metadata. In the early days, Sanger sequencing produced 
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reads of length ~800 bp, but it was the advent of ‘second-generation sequencing’ with 

reads of ~100–200 bp that have brought costs down sufficiently to produce analytical 

bottlenecks. Additionally, newer ‘third-generation’ technologies are still expensive, but can 

access lengths in the >1000 bp range. c, Algorithmic secondary processing. Our focus in this 

Review is on ‘secondary processing’, which is all of the computational methodology used 

to reconstruct genomic facts about the biological sample from the output of the sequencer 

— for example, to reconstruct the genome of an individual — but not to specifically resolve 

biological hypotheses. These secondary processing steps are where the majority of the 

current computational bottlenecks lie (see Box 2 for more details on the various elements 

and workflows). d, Statistical tertiary processing. ‘Tertiary processing’ uses the output of 

secondary processing to answer biological questions. For example, determining the genomic 

variants present in a sample would be secondary processing, but in tertiary processing 

a researcher may perform a genome-wide association study (GWAS) on those variants 

to find disease associations. Often, this type of analysis is largely statistical. Although 

there is substantial computation involved, especially with the rise of deep learning, the 

computational challenges here are fewer compared with secondary processing.
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Fig. 2 |. Genomic compression and sketching.
There now exist many different processing techniques for reducing transmission 

requirements, but they involve different kinds of trade-offs, including reductions in 

transmission size, decompression requirements, compute time and accuracy of the 

downstream analysis. a, Lossless compression. Data are compressed, creating a smaller 

squashed version, but the data still need to be decompressed back to the original into order 

to run computations, which takes a lot of time, as represented by the multiple computers. 

b, Compressive genomics. Data are compressed so as to operate directly on the compressed 

representation, increasing speed (represented by the single computer for analysis) without 
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loss of accuracy because the decompression step can be skipped. (Note that there is also a 

lossy version of compressive genomics, which improves the compression ratio at the cost of 

accuracy, but here we only illustrate lossless compressive genomics.) c, Lossy compression. 

This method allows for some error in the reconstruction to reduce the compressed file 

size (depicted in the green modification to the filing cabinet), which may alter the final 

results of analysis after decompression (hence the green ‘error’). d, Data sketching. The 

need for reconstruction can be avoided through a sketch (which completely transforms the 

data irreversibly, depicted visually as desaturation), but significantly reduces the file size 

and computation time, which may alter the analysis results (hence the red ‘error’). The 

central difference between sketching and compression is that because compressed data can 

be decompressed into the same format as the original, the same downstream analysis tools 

can be used; for sketching, the downstream tools must be modified to operate on sketched 

data, but sketching can often improve upon space savings over even lossy compression.
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