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Abstract

De novo protein design enhances our understanding of the principles that gov-
ern protein folding and interactions, and has the potential to revolutionize bio-
technology through the engineering of novel protein functionalities. Despite
recent progress in computational design strategies, de novo design of protein
structures remains challenging, given the vast size of the sequence-structure
space. AlphaFold2 (AF2), a state-of-the-art neural network architecture,
achieved remarkable accuracy in predicting protein structures from amino acid
sequences. This raises the question whether AF2 has learned the principles of
protein folding sufficiently for de novo design. Here, we sought to answer this
question by inverting the AF2 network, using the prediction weight set and a
loss function to bias the generated sequences to adopt a target fold. Initial
design trials resulted in de novo designs with an overrepresentation of hydro-
phobic residues on the protein surface compared to their natural protein fam-
ily, requiring additional surface optimization. In silico validation of the
designs showed protein structures with the correct fold, a hydrophilic surface
and a densely packed hydrophobic core. In vitro validation showed that 7 out
of 39 designs were folded and stable in solution with high melting tempera-
tures. In summary, our design workflow solely based on AF2 does not seem to
fully capture basic principles of de novo protein design, as observed in the pro-
tein surface's hydrophobic vs. hydrophilic patterning. However, with minimal
post-design intervention, these pipelines generated viable sequences as
assessed experimental characterization. Thus, such pipelines show the poten-
tial to contribute to solving outstanding challenges in de novo protein design.
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1 | INTRODUCTION

De novo protein design aims to create stable, well-folded
proteins with sequences distant from those found in
nature and potentially new functions. To date, de novo
proteins remain challenging to design because the solu-
tion space expands exponentially with each additional
amino acid in the sequence. Therefore, it is crucial to
develop new computational methods that capture the
underlying principles that govern protein structure,
allowing for efficient exploration of the structure-
sequence space and the design of more complex protein
folds and functions.

To date, computational protein design has seen signif-
icant advances in creating proteins with novel folds and
functionalities such as enzymes (Jiang et al., 2008;
Rothlisberger et al., 2008), protein—protein interactions
(Gainza et al., 2022; Koday et al., 2016; Marchand
et al, 2022), protein switches (Giordano-Attianese
et al., 2020; Langan et al., 2019), and vaccines (Correia
et al., 2014; Sesterhenn et al., 2020; Yang et al., 2021).

A classical approach in computational design is fixed
backbone design, where a novel sequence is fitted to an
existing protein topology from the Protein Data Bank
(Berman et al., 2000). Backbone and side-chain rotamer
conformations of the residues are sampled and scored
with various scoring functions allowing the creation of
new protein structures and functions such as zinc finger
domains (Dahiyat and Mayo, 1997), protein sensors
(Feng et al., 2015; Glasgow et al., 2019), enzymes (Jiang
et al., 2008; Rothlisberger et al., 2008; Siegel et al., 2010),
and small molecule binders (Tinberg et al., 2013).

Fragment assembly design methods have been exten-
sively used to generate diverse backbones from scratch.
This method assembles structural protein fragments into
the desired fold which has proven successful in the
design of de novo beta barrels (Dou et al., 2018), TIM bar-
rels (Huang et al., 2016), jellyroll structures (Marcos
et al., 2018), and various alpha-beta proteins (Correia
et al.,, 2014; Koga et al., 2012). Fragment assembly has
also successfully designed novel protein folds that were
not found in nature (Kuhlman et al., 2003).

De novo proteins generated with fragment assembly
have also been functionalized by constructing topologies
that stabilize a functional motif. This method has resulted
in the design of biosensors and vaccine candidates
(Sesterhenn et al., 2020; Yang et al., 2021). However, this
method is completely dependent on fragments extracted
from native proteins that are included in limited libraries
and are also notoriously inefficient in generating good
quality backbones if structural constraints are not applied.

Recently, de novo protein design has taken an excit-
ing turn with the emergence of deep learning tools for

protein modeling, allowing the generation of proteins
without relying on fragment libraries that explore diverse
solutions of the sequence-structure space. With an
increase in sequence and structural data combined with
significant progress in deep learning, these techniques
have transformed protein structure prediction and design
(Ovchinnikov and Huang, 2021). For example, deep
learning has proven to be an excellent tool for sampling
the backbone conformational space through, for example,
Generative Adversarial Networks (Anand et al., 2022)
and Variational Auto-Encoders (Eguchi et al., 2022; Guo
et al., 2021). Deep learning methods can also be used for
sequence generation given a target backbone; through
the interpolation between sequence and structural data,
sequences that fit a target topology can be found (Anand
et al., 2022; Dauparas et al., 2022; Ingraham et al., 2019).

The trRosetta structure prediction network (Yang
et al., 2020) was recently applied for sequence generation
given a target structure. This was achieved by using the
error gradient between the sequence and the target con-
tact map to optimize a Position Specific Scoring Matrix
(PSSM; Henikoff and Henikoff, 1996; Norn et al., 2020).
Protein folding network sequence generation was fol-
lowed by removal of the structure constraints and only
optimizing for protein stability. This method allows the
network to “hallucinate” a sequence and structure differ-
ent from those in nature (Anishchenko et al., 2021). Hal-
lucination involves optimizing a randomly initialized
amino acid sequence to a loss function. Experimental
data confirmed that several hallucinated proteins adopted
the target fold. Additionally, it was shown that a scaffold
could be hallucinated to stabilize a functional site, sup-
porting the desired structure (Tischer et al., 2020). The
latest version of this hallucination pipeline uses a more
accurate prediction pipeline using RoseTTAfold (RF;
Baek et al., 2021). Additionally, an inpainting step was
used to optimize designs by randomly masking and pre-
dicting the most likely amino acids. This method success-
fully designed de novo proteins with active sites,
epitopes, and protein binding sites (Wang et al., 2022).

Recently, AlphaFold2 (AF2), an end-to-end structure
prediction network, reached unprecedented accuracy
levels close to experimental methods for structure deter-
mination (Jumper et al., 2021). AF2 predicts 3D atom
coordinates of the protein structure given a Multiple
Sequence Alignment (MSA) and structures of homologs
(templates). Although the network was trained on MSAs
containing co-evolutionary signals and templates as
inputs, AF2 can accurately predict protein structures of
de novo proteins from a single sequence alone (Pereira
et al., 2021). This indicates that AF2 can generalize to de
novo designed protein sequences, potentially providing a
new tool for protein design.
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New ideas for harnessing the power of AF2 followed
shortly after its release. The first attempts started with an
initialized sequence from a generative model and applied
a greedy algorithm to optimize the designs for various
loss functions (Jendrusch et al., 2021; Moffat et al., 2021).
These AF2-based design pipelines were used to design
monomers, oligomers and protein switches which were
validated using various in silico metrics. In recent
research, it was also demonstrated how symmetric pro-
tein homo-oligomers could be designed through the help
of deep network hallucination using AF2. A backbone
was hallucinated using AF2 and the sequence is rede-
signed using protein MPNN, a message-passing graph
neural network that improves design success rates
(Dauparas et al.,, 2022; Ingraham et al., 2019; Wicky
et al., 2022). However, the conformational search of these
pipelines is solely based on stochastic Markov Chain
Monte Carlo (MCMC) methods and is, therefore, compu-
tationally expensive.

We hypothesized that we could devise an efficient
design strategy by inverting the AF2 structure prediction
network. Hence, a structural loss is backpropagated
through AF2 to generate amino acid sequences compati-
ble with a target fold. Through error gradient backpropa-
gation combined with MCMC optimization, we explored
several protocols to generate sequences given a target
structure using AF2-based pipelines we call AF2-design.
We analyzed the generated sequences both in silico and
in vitro, showing that our AF2-based protocol can be lev-
eraged for de novo protein design.

2 | RESULTS
2.1 | AF2-design methodological
approach

The general goal of protein structure prediction networks
such as AF2 is to predict the tertiary structure given the
sequence. Here, we propose using AF2 for the inverse
problem, generating protein sequences given a target
backbone. One inversion strategy is error backpropaga-
tion (Simonyan et al., 2014), where given a target protein
structure, the input sequence is optimized to a loss func-
tion. Inspired by the trDesign method (Norn et al., 2020),
we developed an AF2-design pipeline as illustrated in
Figure la. The first step was to initialize an input
sequence and predict its structure. Since we started with
non-natural sequences, natural homologs are unavailable
and, therefore, MSAs and structural templates are dis-
abled in the AF2 network (also referred to as single
sequence mode).

After predicting the structures of these sequences, the
structural error is computed using the Frame Aligned
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Point Error (FAPE; Jumper et al., 2021). The FAPE loss is
similar to the root mean square deviation, however, there
is no alignment of the complete structure, making it inde-
pendent of the orientation and rotation of the structure.
The backbone atoms of each residue, which are repre-
sented as frames, are aligned and the C-alpha distances
between the predicted and target structure are computed
(Figure 1b). Since the FAPE loss was the primary loss
component during training, we reasoned that backpropa-
gating this loss would result in the most accurate genera-
tion of protein sequences.

AF2 consists of five neural networks, each of which
has been trained with different parameters, resulting in
the generation of five structural models per input
sequence. The advantage of using multiple networks is
that it reduces the risk of overfitting to a single model,
which means that the designed sequences will be in
agreement with all the structural models generated by
the five networks. The error gradients in the input
sequence are calculated and combined to create an
N x 20 matrix that contains the average error gradient
for each residue. The size of the matrix depends on the
length of the sequence (N), and the error gradient indi-
cates how much each residue contributes to the overall
loss. This allows us to apply a gradient descent
(GD) algorithm to find a sequence optimized to our loss
function. The GD algorithm is used to update a PSSM by
updating the entries in the direction of the negative gra-
dient, which means it moves them in a way that reduces
the value of the loss function. It can be thought of as the
optimization of a probability distribution of the amino
acids to a structure. After each round, the most probable
amino acids are selected from the PSSM and used in the
next iteration as the input. To test the performance of
AF2-design, we sought to de novo design a collection of
protein folds. Specifically, we attempted to generate new
sequences that would adopt the folds of top7, protein A,
protein G, ubiquitin, and a four-helix bundle (Figure S1
and Table S1). Throughout our design trajectories with
AF2-design, we observed that the initial input sequence
significantly impacts the rate of structural convergence of
AF2-design. When initializing the design protocol with a
poly-alanine or a random sequence, AF2-design did not
converge within 500 iterations for any of the attempted
folds (Figure 1c). One possible explanation is that when
predicting the structure of a poly-alanine, the resulting
structure may be disordered, meaning that the predicted
positions of the atoms are highly uncertain. This results
in an error gradient that is very noisy, which means that
the direction and magnitude of the error changes rapidly
and unpredictably. As a result, the optimization algo-
rithm may have difficulty finding a smooth, continuous
trajectory toward a folded conformation, which is the
desired end state. We hypothesized that this problem
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AlphaFold-based pipeline for sequence design. (a) The design pipeline consists of two sequence optimization methods,

gradient descent (GD) and Markov Chain Monte Carlo (MCMC)-based optimization. In the GD optimization step, the design process is
initialized with a secondary-structure biased sequence, where the structure is predicted upon each sequence change (blue arrows). Next,
sequence information from the AlphaFold2 (AF2) network is extracted by backpropagating the error gradient between the predicted and
desired target structures (red arrows). This error gradient is then used to optimize a Position Specific Scoring Matrix (PSSM) where the
amino acids with the highest probability are used as the input to the next optimization round. After several rounds of gradient-based
optimization, the sequence with the lowest error (Frame Aligned Point Error [FAPE] loss) is selected and used for further MCMC-based
optimization to decrease the distance between the target and the predicted protein structure (green arrows). Random mutations are
introduced to the sequence in the refinement step and accepted based on the Metropolis criterion. (b) The FAPE loss is computed by taking
the Euclidean distance between the C-alpha coordinates after alignment to each of the residue frames. (c) Example of design trajectories of
the top7 fold using different initialization sequences. SSE sequence initialization was the only approach that converged to the correct folds

within 500 iterations.

could be solved by introducing sequences that favor the
local secondary structure propensity; hence we proposed
a Secondary Structural Element (SSE) initialization strat-
egy (Figure S2). In the starting sequence, the amino acid
identities are assigned according to which SSE they are
expected to form: helical residues get assigned alanines,
beta-sheets valines, and loops with glycines (Costantini
et al., 2006). This strategy led to convergence to the cor-
rect fold within 500 iterations for all the tested design

targets. However, since AF2 is deterministic in inference
mode, in AF2-design the same designed sequence will be
obtained for each run with the same input. To address
this issue, we randomly mutate 10% of the amino acids in
the starting sequence for each design trajectory, resulting
in the generation of diverse sequences. Additionally, we
do not allow the use of cysteines in the designed
sequences to avoid an overrepresentation of these resi-
dues and disulfide bonds.
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In addition to GD optimization, we also implemented
a MCMC search algorithm. The MCMC search algorithm
randomly samples mutations each step and accepts or
rejects these mutations based on the loss function. When
we compare MCMC with GD we find that the design per-
formance differs per fold. GD has the advantage of speed,
for example, it is 1.5 times faster in each mutation step
for a 92 residue protein and is not dependent on random
sampling of mutations as is the case for MCMC. We
observed that GD allows for a quick convergence within
the sequence space, but further improvement in TM
scores could be achieved (Zhang and Skolnick, 2004,
2005) by adding an MCMC optimization step (Figures 1a
and 2a). We hypothesized that this extra MCMC step
allows the escape from local minima where GD con-
verges. During MCMC optimization, four random posi-
tions in the sequence are chosen and mutated every
iteration. We sample amino acids from a probability
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distribution of natural protein compositions for the muta-
tions, identical to the trDesign approach (Anishchenko
et al., 2021). Finally, the designs with the lowest FAPE
loss are selected and relaxed in an AMBER force field to
improve structure quality by removing steric clashes
(Hornak et al., 2006).

An additional surface design step was performed with
Rosetta to increase solubility and prevent aggregation by
removing solvent-exposed hydrophobic amino acids.
Accordingly, surface residues are randomly mutated to
hydrophilic amino acids and optimized using the Rosetta
energy function (Alford et al, 2017). The refined
sequences are then predicted using both AF2 and
RF. The final designs are selected based on both TM-
score (>0.6 for AF2 and 0.5 for RF-generated models)
and AF2 confidence in the predicted structure (AF2
pLDDT >60). The pLDDT threshold of 60 represents a
balance between having a sufficient number of designs
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Features of AlphaFold2 (AF2) designed sequences. (a) TM-scores of designed sequences using Markov Chain Monte Carlo

(MCMC), gradient descent (GD) optimization and a combination of both (GD + MCMC). Blue-TM-scores after MCMC design; red-TM-
scores after GD design; green-TM-scores after GD design followed by MCMC optimization. For each fold, 20 rounds of GD and MCMC
optimization were performed. A combination of GD and MCMC optimization significantly improves the TM scores compared to MCMC and

GD only designs. (b) Evaluation of the sequence diversity obtained within the top7 designs. The designed sequences have a low sequence

similarity (between 10% and 30%) when compared to one another and to the native sequence. (c) Structure prediction of the AF2 designed
sequences using AF2 and RF. In most instances, RF predicts lower TM-scores than AF2. (d) Fraction of hydrophobics on the surface before
the surface redesign step. All the designs have more hydrophobic residues on their surface than their target fold. When comparing the

designs to their protein family, we find that the designs of protein A and protein G have slightly more hydrophobics on their surface than

similar folds found in nature. Top7 and 4H are de novo proteins hence do not have a protein family, additionally, 4H is a backbone model
designed with the TopoBuilder and as such there is no sequence to be compared to.
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for in vitro testing while enabling an exploration of the
utility of this metric for design selection.

2.2 | Computational evaluation of
designed sequences

To test the performance of AF2-design, five distinct folds
were selected as design targets. The attempted folds were:
top7, one of the first de novo proteins (Kuhlman
et al., 2003); protein A, ubiquitin, and protein G, small
globular folds; 4H, a 4-helix bundle designed by Topo-
Builder (Yang et al., 2021; Figure S1). For each target
fold, 20 designs were generated using 500 iteration trajec-
tories of MCMC and GD or both, after which the struc-
tural similarity between designs and target is evaluated
using TM-score (Figure 2a).

By combining the GD and MCMC design stages, a
good balance between speed and performance was
achieved, resulting in improved TM-scores for all designs
(Figure 2a, green boxes). To assess the sequence diversity
of the generated designs, we performed an all against all
comparison of the designed and native sequences and
observed a low sequence similarity between 20% and 30%
(Figures 2b and S3). Additionally, we sought to evaluate
the designed sequences for structural accuracy using
structure prediction tools. We used RF, a structure pre-
diction network developed and trained independently
from AF2 (Baek et al., 2021) and compared the results to
AF2 predictions. Generally, RF predictions of the
designed sequences showed lower TM scores than AF2
(Figure 2c), this is likely related to the fact that the
sequences were generated with AF2. Therefore, orthogo-
nal prediction tools may be valuable help to identify the
best designs. In further analysis of the designs, we
noticed a slight overrepresentation of hydrophobic amino
acids on the surface in three out of the four folds where
comparisons could be established (Figure 2d). In general,
the presence of hydrophobic amino acids at the surface of
the protein is seen as unfavorable for the solubility of the
designs. Hence, a Rosetta surface redesign step was per-
formed on the AF2-designed sequences to correct the
exposed surface hydrophobics. The resulting sequences
were validated by AF2 and RF predictions and the best
designs were selected for experimental characterization.
When comparing the final models to the presurface rede-
sign models, we noticed that the BLAST e-values
increased, indicating that the proteins became even less
similar to those found in nature (Figure S4).

The designs characterized experimentally were gener-
ated both by GD-MCMC optimization as well as MCMC-
only design pipelines; trajectories are shown in Figures S5
and S6. Next, the designs were filtered on AF2 TM scores

>0.6, RF TM scores >0.5, and AF2 confidence (pLDDT)
> 60 of the predicted structures resulting in 39 designs
(Table S1-3). The predicted structures of the designs
closely resemble their target folds as shown by structural
superpositions (Figures 3a, S7, S8) and the TM scores
(Figure 3b). At the sequence level, the designs explore
novel sequence space as observed by the high e-values
derived from sequence alignments performed with
BLAST on nonredundant protein sequences (Figure 3c)
(Gish and States, 1993). In summary, our AF2-design
pipelines can efficiently explore the non-natural sequence
space given a predefined fold and can be validated using
orthogonal structure prediction networks.

2.3 | Invitro characterization of
designed sequences

We next sought to biochemically characterize the
AF2-designed sequences. Thirty-nine designs were cloned
and expressed in E. coli (11 top7, 5 protein A, 9 protein G,
6 ubiquitin, and 8 4H designs). Twenty-five designs were
expressed solubly and purified by affinity and size exclu-
sion chromatography (SEC; 3 top7, 5 protein A,
7 protein G, 6 ubiquitin, and 4 4H designs). Ultimately,
only three of the five target folds yielded proteins with
acceptable biochemical behavior (protein G, top7, and
4H), meaning that the designs were soluble, folded and
had defined oligomeric species in solution. Nine designs
from these folds displayed monodisperse peaks indicating
monomeric or dimeric states in solution as shown by
SEC coupled to multiangle light scattering (Figures 4 and
S9). The oligomeric states observed in solution were
single-species monomeric (4H_1) and mixed species
between monomer/dimer (top7_1, protein G_1). Several
designs showed similar secondary structure content to
the original proteins, as assessed by CD spectroscopy.
The designs based on de novo backbones (top7 and 4H)
showed very high thermal stability with all but one
design having melting temperatures (Ty) over 90°C
(Figures 4 and S9). The original top7 was also a hyper-
stable protein (T, > 90°C; Kuhlman et al., 2003); this is
an interesting observation given that the designs have
only 12.4% of shared sequence identity, suggesting that
such backbone may be prone to sequences conferring
high thermal stability. The protein G designs showed
cooperative unfolding with Ty,s of 49°C and 46°C, respec-
tively, which are considerably lower than the wildtype
protein G (T, = 89°C; Ross et al., 2001).

In light of the experimental results obtained, we
sought to learn which metrics could be the best predic-
tors for folded designs. We trained a simple logistic
regression model for folded and nonfolded classification
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FIGURE 3 Overview of the structural and sequence properties of the AlphaFold2 generated designs. (a) Alignment of the best design
prediction vs. the reference structure (gray) according to the TM-score. top7-blue, Protein A-orange, Protein G-green, Ubiquitin-red and
4H-purple. (b) TM-scores of the final designs with a minimum above 0.60. (c) The distribution of the nearest e-value of all designs.

based on TM-score, pLDDT, Rosetta energy score (ddG), taken as merely indicative. We tested our model using
and packing score. It is important to highlight that our  stratified k-fold cross-validation in which the test set of
dataset is extremely small and this analysis should be each fold contained one positive and one negative
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FIGURE 4 Experimental characterization of the designs. (a) The superimposed structures of the design predicted by AlphaFold2
(colored) versus the original (gray) structure. (b) The SEC-MALS measurements indicated that protein G_1 and top7_10 appear in
monomeric and dimeric forms, whereas 4H_1 appears purely as a monomer. The expected Molecular Weight (MW) of the designs was
7.7 kDa for protein G_1, 11.7 kDa for protein top7_10, and 11.2 kDa for protein 4H_1. (c) The CD spectra of the designs showed that the
designs were folded. (d) Temperature melting curves per design. Full experimental characterization of all folded designs can be found in

Figure S9.

example (for each fold, the test set contained a unique
positive sample and a random negative sample). After
training and validating our model, we obtained a mean
training AUC of 0.86 (£0.02) on the training set and 0.88
(+0.33) on the testing set. Analyzing the logistic regres-
sion coefficients, we concluded that the most important
features are AF2 and RF TM-score and AF2 pLDDT
(Figure 5a-c). The RF TM-score showed the most signifi-
cant impact on the folded classification. Unexpectedly, a
high AF2 TM-score showed to correlate with the
unfolded designs. This correlation is likely an effect of fil-
tering on AF2 TM-score in combination with our small
sample size. These results indicate that increasing the RF
TM-scores and AF2 pLDDT filters might increase success
rates in obtaining folded designs in vitro. However, and
as mentioned above, the number of designs is small and
more computational and experimental data is necessary
for more robust conclusions. When inspecting the per
residue pLDDT of protein G and ubiquitin-like fold
designs, we found regions of the designs with low confi-
dence (ubiquitin) or noticeable lower on the unfolded
designs compared to the folded ones (protein G,
Figure 5d). This observation is consistent with the find-
ings reported by Listov et al., where per residue pLDDT
scores were also utilized as an indicator of problematic

areas in designed proteins (Listov et al. 2022). In conclu-
sion, we obtained seven soluble and well-folded proteins
out of 39 designs. Our analysis points to some quality
indicators derived from structure prediction networks for
selecting folded designed sequences.

3 | CONCLUSION

Machine learning approaches have had a transformative
impact on protein structure prediction. Historically, pre-
dicting structure from sequence has been considered an
essential requirement for protein design endeavors. How-
ever, design exercises pose a much more complex chal-
lenge due to the vast sequence space and the restricted
subset that encodes particular folds. With this challenge
in mind, we tested if the state-of-the-art structure predic-
tion network AF2 could be repurposed for design using
several sequence-structure generation and selection
workflows. Several important observations arose from
our studies for the generated designs: (I) the networks
converged relatively fast (small number of steps) into the
target folds and showed dependency on the starting
sequence; (IT) a substantial amount of designs generated
lacked the observed/expected hydrophobicity patterns in



GOVERDE ET AL.

(@)

1.0 .
folded: 7

e Top7 x 4

® Protein G R

’ 4Hf Ided: 0% xx o
unfolded: x

x Top7 S e, %
Protein A

» Protein G , »

= Ubiquitin ’ "

*x 4H ’

RF TM-score
o o
(o)) oo
\

o

i

\
\

I

[N}

\
\

0.2 0.4 0.6

AF TM-score

0.8 1.0

~
o
~

e 9o o o o =
N O N U N ©
oG & v o wu &

Logistic Regression Coefficients
g

e
N
A

<
Lo@\v“ co‘e

W
AT T

& @

QO © © ©
€ (@ &
S5 0 g O
N o
*F

FIGURE 5

THE
PROTEIN 9 of 14
% SOCIETY_WI LEY

folded: ‘s
e Top7 ’
® Protein G 4
® 4H 7 %
unfolded: -
x Top7 i
Protein A ‘, *
* Protein G .,
* Ubiquitin ,
* 4H ’

RF pLDDT
o
(o))

1

a

\
\

0 20 40 60 80 100

AF pLDDT
(d)

100

90

80

pLDDT

704

60
mm Protein G folded
Protein G unfolded

50

0 10 20 30 40 50
Residue number

In silico analysis of folded and nonfolded designs. (a) TM-scores of AlphaFold2 (AF2) predicted models versus RF predicted

models. (b) Confidence in the models as predicted by AF2 and RF. (c) Logistic regression coefficients for a model trained on features of all
folded and nonfolded designs. The AF2 and RF TM-score, and AF2 pLDDT have the strongest impact on the classification. (d) Per residue
confidence of protein G designs as predicted by AF2. For two of the non-folded designs, AF2 predicted the two beta sheets at the C-terminal
end with lower confidence than the other beta strands in the structure. The per residue pLDDT for all designs can be found in Figures S10

and S11.

soluble proteins and displayed a high proportion of
hydrophobic residues in solvent-exposed areas, despite
this lack of agreement with the fundamental physico-
chemical properties of proteins the prediction network
still produced structures very similar to those of the target
folds; (III) upon refinement of the sequences with
Rosetta, specifically of surface positions, 7 out of
39 designs were soluble, folded and stable in solution.
Our results demonstrate that a combination of AF2 and
RosettaDesign can be used for de novo protein design.
However, despite our efforts, we were unable to generate
successful designs for protein A and ubiquitin fold
in vitro. Several factors may have contributed to this,
including the suitability of AF2's training procedure for
sequence generation. For instance, during training, 15%
of the input sequences in the multiple sequence align-
ment (MSA) are masked, which may force AF2 to be
insensitive to several unfavorable residues in the
designed sequence (Jumper et al. 2021). Designing the

small core of Ubiquitin and protein A requires a meticu-
lous approach, which our design protocol was likely
unable to accomplish. This may also explain the observed
strong correlation between RF structures and successful
designs, as RF recognizes some of these sequences as
incorrect. We speculate that a different training protocol
that recognizes and mispredicts some of the incorrect
sequences may lead to improved design success. In a
recent study, Wicky et al. demonstrated that the use of
proteinMPNN in combination with AF2-based design
pipelines led to the generation of proteins with high suc-
cess rates. Specifically, the sequence was redesigned
using proteinMPNN followed by structure prediction
with AF2, resulting in a significant increase in the num-
ber of expressed and folded designs (Wicky et al. 2022).
These findings highlight the potential benefits of incorpo-
rating multiple neural networks to validate each other,
ultimately enhancing the chances of successful protein
design. Hence, in the next iteration of this pipeline, it
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would likely be beneficial to use the error gradient-based
AF2-design protocol to generate high-quality backbones
followed by a proteinMPNN sequence generation step.
Followed by structure prediction by AF2 and RF, having
three independent networks involved in the design pro-
cess should increase the success rate of our designs and
allow the fast design of complex protein folds.

The exploration of the non-natural sequence space
given a protein topology is useful for the design of new
functional proteins. Such functional design could be
achieved within our pipeline by adding sidechain losses
allowing control the configuration of binding sites, as has
also been shown by Wang et al. (2022). This framework
has potential uses for designing small molecule binding
sites, catalytic sites and protein—protein interactions
(PPIs). Additionally, for PPI design, the ability of AF2 to
predict multimers can be used to sample binder
sequences that can be optimized given a positional loss
and confidence through error backpropagation. Addition-
ally, a network capable of predicting PPIs, like the MaSIF
framework (Gainza et al. 2020), could be used as an extra
filter or replace the loss function entirely. This should
allow for the design of sequence to function in an end-to-
end fashion. To conclude, this work demonstrates that
inversion of structure prediction networks allows for the
design of de novo proteins and holds promise for tackling
complex problems such as protein binder and functional
site design.

4 | METHODS

41 | Loss function

AF2's loss function was built of several components of
which the FAPE loss was the major contributor for the
training of the structural module. The FAPE loss mea-
sures the L2 norm (Euclidean distance) of all predicted
C-alpha atoms compared to the ground truth, making the
loss invariant to rotations and translations. Hence, we
chose the FAPE loss to calculate the error gradients guid-
ing our sequence search (Jumper et al. 2021). The FAPE
loss can be clamped by an L1 norm, which sets a cap of
10 A between two C-alpha positions, allowing for more
precise local positioning and reducing the impact of long-
range errors on the overall loss.

4.2 | Gradient descent optimization

We initialized the target amino acid sequences based on
the secondary structure of the residue derived from the
target fold. The secondary structure assignments were
then encoded in sequences using alanines for helix,

valines for beta sheet, and glycines for loop residues. This
introduces a bias toward the correct local structure, aid-
ing faster convergence of the design trajectories. To
ensure sequence diversity of the generated designs we
randomly mutate 10% of the amino acids in the initial
sequence of each design trajectory.

The starting sequence is then one-hot-encoded and
passed through the AF2 network. AF2 consists of five dif-
ferently tuned networks to generate five structural
models, in our design pipeline we make use of all the five
generated models. Next, we compute the mean FAPE of
the models and calculate the mean error gradient of the
input by taking the average value for each entry in the
matrix, resulting in a matrix of shape N x 20, N being
the number of residues in the sequence. An empty PSSM
of shape N x 20 is initialized with a starting value of 0.01
assigned to the input residues. We used the ADAM opti-
mizer (Kingma and Ba 2017) to update the PSSM with
the normalized error gradient. After the update the PSSM
is put through a softmax function, converting the matrix
into a probability distribution of the amino acids per posi-
tion. Next, the most probable amino acid identities per
position are selected using the argmax function and used
to construct the new input sequence for the next itera-
tion. Additionally, we set the values for cysteine in the
PSSM to negative infinity resulting in designed sequences
without cysteines.

4.3 | Markov chain Monte Carlo
optimization

As starting inputs we use SSE-initialized sequences or the
designed sequences from GD runs. In each iteration, we
mutate four random residues in the sequence to an
amino acid sampled from a natural amino acid distribu-
tion (Anishchenko et al. 2021). We predict the structure
using AF2 with three recycles, enabling more accurate
predictions (Mirdita et al. 2022). Recycling entails utiliz-
ing the network’s outputs as inputs, allowing for iterative
refinement of the prediction. Next, we calculate the mean
FAPE loss between the predicted structures and target
fold and use a Metropolis-Hastings algorithm to accept or
reject the mutated sequence (Hastings 1970). If the intro-
duced mutations result in a reduction of the FAPE loss,
the new sequence is accepted. If not, the sequence can be
accepted based on the following metropolis criterion:

e(best loss—current loss)*f >X ~ U(O, 1)
Where X is sampled from a uniform distribution

between 0 and 1 and g is set to an initial value of 80 and
doubled every 250 steps, making it unlikely that
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structures with a much higher loss are accepted. The
Metropolis-Hastings search allows us to escape from local
minima while exploring the sequence space.

44 | Hardware settings

For the design pipeline one Nvidia Tesla V100 (32GB)
was used. The prediction of a protein with a sequence
length of 92 (top7) and calculation of the gradients takes
~6 s for one iteration without recycling. For MCMC opti-
mization one iteration took ~9 s using 3 recycles.

4.5 | Model settings

We initialized our AF2 network configurations using the
settings of “model_5_ptm.” Additionally, since we run
AF2 in single sequence mode, we disabled MSAs and
template processing in the settings, reducing runtime and
memory usage. We run all five components of the AF2
network in parallel, speeding up the prediction time five-
fold compared to the original AF2 pipeline.

4.6 | Computational design protocol

The five protein folds chosen as design targets were: top7
(1QYS, 2.5 A x-ray)-a 92 residue de novo protein with a
fold unknown to nature; protein A (1DEE, 2.7 A X-ray)-a
small three helix bundle with 54 residues; protein G
(1FCL, NMR)-a mixed alpha/beta protein with 56 resi-
dues; ubiquitin (1UBQ, 1.8 A x-ray)-a mainly beta pro-
tein with 76 residues; 4H (Rosetta model)-a de novo
design with 84 residues constructed using TopoBuilder
(Yang et al. 2021) and Rosetta FunFolDes (Bonet
et al. 2018).

We employed our AF2-design pipeline using
500 rounds of GD and 1000-6000 steps of MCMC optimi-
zation. Of the experimentally validated and folded
designs 1QYS_1 and 1QYS_10 were obtained purely
through MCMC optimization.

After AF2 sequence generation a Rosetta fixed back-
bone design protocol was used to redesign the surface
residues. The surface residues were defined as residues
with Solvent Accessible Surface Area (SASA) > 40 A2,
and were allowed to mutate to hydrophilic or charged
amino acids common in their respective secondary struc-
tural element: “DEHKPQR” for helices, “EKNQRST” for
beta sheets and “DEGHKNPQRST” for loops. For relaxa-
tion and scoring of the designs the REF15 energy func-
tion was used (Alford et al. 2017). The TM-scores and C-
alpha RMSDs between design and target structure were
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determined using TM-align (Zhang and Skolnick 2005).
The sequence similarity is defined as the number of posi-
tions at which the corresponding residue is different. The
validation using RF was performed without MSAs or
structural templates.

4.7 | Protein expression and purification
The designs were ordered as synthetic gene fragments
from Twist Bioscience with the addition of a C-terminal
6-His-Tag and cloned into a pET11b vector using Ndel
and BIpI restriction sites. The designs were transformed
into XL-10-Gold cells and the DNA was extracted and
validated by Sanger sequencing. The validated DNA
sequences were transformed into BL21 DE3 cells and put
in 20 mL of LB medium with 100 pg/mL Ampicillin over-
night at 37°C as starting cultures. The next day, 500 mL
of Auto-Induction medium with 100 pg/mL Ampicillin
was inoculated with 10 mL overnight culture and grown
at 37°C to OD of 0.6 then the cultures were grown for
~20 h at 20°C. Bacteria were pelleted by centrifugation
and resuspended in lysis buffer (100 mM Tris-Cl pH 7.5,
500 mM NacCl, 5% Glycerol, 1 mM Phenylmethanesulfo-
nyl fluoride, 1 pg/mL lysozyme and 1:20 of CelLyticTm B
Cell Lysis Reagent). The resuspensions were put at room
temperature on a shaker at 40 rpm for 2 h and then cen-
trifuged at 48’300 g for 20 min. We filtered the superna-
tant with a 0.2 pm filter and loaded the mixture on a
5 mL HisTrapTm FF column using an AKTApure system
and a predefined method regarding Cytiva's recommen-
dations with that column. We used 50 mM Tris-HCl
pH 7.5, 500 mM NaCl, 10 mM Imidazole as was buffer
and processed the elution with 50 mM Tris-HCI] pH 7.5,
500 mM NacCl, 500 mM Imidazole. We collected the main
fraction released through the elution step and injected it
on a Gel Filtration column Superdex 16/600 75 pg filled
with PBS. The peaks corresponding to the size of the
design were collected and concentrated to a concentra-
tion of approximately 1 mg/mL for further analysis. Fold-
ing and secondary structure content was assessed using
circular dichroism in a Chirascan V100 instrument from
Applied Photophysics. Melting temperature determina-
tion was performed by ranging the temperature from
20°C to 90°C with measurements every 2°C using a wave-
length of 208 nm and 222 nm.
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