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Abstract

A leading cause of physical injury sustained by elderly persons is the event of unintentionally 

falling onto a hard surface. Approximately 32-42% of those 70 and over fall at least once each 

year, and those who live in assisted living facilities fall with greater frequency per year than 

those who live in residential communities. Delay between the time of fall and the time of medical 

attention can exacerbate injury if the fall resulted in concussion, traumatic brain injury, or bone 

fracture. Several implementations of mobile, wireless, wearable, low-power fall detection sensors 

(FDS) have become commercially available. These devices are typically worn around the neck as a 

pendant, or on the wrist, as a watch is worn. Based on features collected from IMU sensors placed 

at sixteen body locations, and used to train four different machine learning models, our findings 

show the optimal placement for an FDS on the body is in front of the shinbone.
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I. Introduction

Among older adults, falls are the leading cause of injury-related morbidity and mortality 

[2]. Recent data show that nearly 30% of community dwelling adults 65 years and older 

fall each year [3], and those who live in assisted living facilities fall with greater frequency 

per year than those who live in residential communities. In 2015, nearly 29,000,000 falls 

were reported, resulting in an estimated 33,000 deaths. Nearly 40% of falls require medical 

attention or restriction of activity [4]. Delay between the time of fall and the time of medical 
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attention can exacerbate injury if the fall resulted in concussion, traumatic brain injury, 

or bone fracture. Several implementations of mobile, wireless, wearable, low-power fall 

detection sensors (FDS) have become commercially available to the public. These devices 

are typically worn around the neck as a pendant [5], or on the wrist as a watch [6], 

and detect when the wearer has fallen and wirelessly notify a 24/7 call center that can 

dispatch emergency services, or call a caretaker or family member in case of severe impact. 

Companies that sell these devices will typically include the following disclaimer with their 

device: “Fall detection does not detect 100% of falls. If Customer is able, Customer should 

press the help button in the event of an emergency. Fall Detection should only be worn 

around the neck to allow for adequate detection of falls.” [7]. It is not clear that a sensor 

worn around the neck or wrist is the optimal body location to detect falls. In this study 

we captured 183 features from sixteen inertial measurement unit (IMU) sensors placed at 

different body locations and used these features to train four different machine learning 

models to classify falls. Our results show the shinbone to be the ideal sensor location.

II. Method and Results

A. Human Subjects Experiments

We conducted human subjects fall experiments in the San Diego State University (SDSU) 

Neuromechanics and Neuroplasticity Laboratory in the School of Exercise and Nutritional 

Science (ENS). Each experiment involved the placement of sixteen Noraxon Inertial 

Measurement Unit (IMU) sensors [8] on participating graduate students and faculty 

members. The specific body locations of sensor placement are shown in Fig. 1. Each 

experiment involved having a participant wear a virtual reality headset and walk along 

a straight path in the laboratory. While walking, the participant would see a virtual 

environment depicting a straight sidewalk in a field, with no obstructions. In the lab, a 

mattress was placed a distance away from the participant. Leading up to the mattress, a cloth 

sheet was placed on the floor, with a student firmly holding one edge of the sheet. The 

participant was instructed to walk forward and, at a time unbeknownst to the participant, the 

student holding the sheet would vigorously pull the sheet, thereby inducing a fall, stumble, 

trip, or no response.

The Noraxon IMU sensors recorded 183 kinematic features that measure orientation of 

anatomical (joint) angles and limb linear acceleration with a 200 Hz sampling rate. These 

sensor measurements were output to comma-separated values (CSV) files which can be 

read using the Noraxon myoRESEARCH software suite (also known as MR3) [9]. Each 

participant scenario can be read and visualized using MR3 to observe changes in limb 

orientation and acceleration in time (Fig. 1) and determine if the scenario resulted in a fall 

or near-fall. Based on visualizing the playback of each participant testcase, each testcase was 

labeled as having resulted in either a fall (binary value 1) or not (value 0). The labeled data 

was then used to train and validate four different machine learning models. Our fall dataset 

is available for download via URL http://iotlab.sdsu.edu/ under the Research section.
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B. Features

The head, upper thoracic, lower thoracic, pelvic, and right and left upper arm, forearm, 

hand, thigh, shank (shinbone), and foot sensors all record course, pitch, and roll in degrees. 

In addition, x-, y-, and z-axis acceleration and rotation components are recorded in units 

of milligal (1 cm s−2) and degrees, respectively. Combined sensor measurements are used 

to measure flexion, abduction, and rotation, in degrees, of the left and right shoulder and 

hip. Extension, radial, and supination are measured for the left and right wrist in degrees. 

Flexion, lateral, and axial measurements in degrees are made for the cervical, lumbar, and 

thoracic regions. A flexion measurement is made for the left and right knees, in degrees. 

A total of 183 linear acceleration, orientation, and anatomical (joint) angle features are 

captured in time, at a 200 Hz sampling rate, and stored in a .csv file for each participant trial.

C. Long Short-Term Memory (LSTM) Model

The transient orientation and acceleration of anatomical structures as a time series spanning 

a segment of time preceding a fall was used to train a recurrent neural network (RNN) using 

the Keras framework on top of TensorFlow. To avoid a vanishing gradient problem, a Long 

Short-Term Memory (LSTM) architecture [10] was configured. Shown in Fig. 3, our model 

consists of two LSTM layers of dimensions 183×25 and 25×20, followed by a single dense 

layer of dimenstion 20×1 with a sigmoid activation. The RNN/LSTM model was trained 

on variable segments of time leading up to, and including, a fall. Each time segment for 

training consisted of a different time length (period), and was fed to the model through one 

iteration (one forward pass and one backward pass of each batch size). The time length of 

input vectors for walking motion that lead to a fall was randomly chosen to lie within the 

range [1.5s, 7s], with a mean time of 3s. For walking motion of non- or near-falls, the range 

was [1.5s, 13s], with a mean time of 7s. The overall mean time length for all walking was 5s.

Results of validating the RNN/LSTM model after training are shown in Fig. 2 as receiver 

operating characteristic curves (ROC) for each sensor. The sensor location that yielded the 

greatest area under curve (AUC) was the “shank” sensor placed on the shin (AUC = 0.92). 

The left and right wrist locations had AUC values of 0.91 and 0.86, respectively.

D. Gradient Boosted Decision Tree Model

Using the XGBoost shallow learning, scalable tree boosting framework [11], we trained a set 

of gradient boosted decision trees using our collected fall data. Fig. 4 shows a plot of the 

first trained decision tree, tree0, in the model, showing the features and feature values for 

each split, as well as the output leaf nodes. An average of the ensemble of all trees yields a 

final classification (fall or no fall). The evaluation metric chosen for validation was auc (area 

under the ROC curve).

Gradient boosting with a binary classifier is considered state of the art for classifying non-

perceptual data, such as sensor measurements. The general idea behind gradient boosting 

is to make a split, yielding set of predictions y’[i], and then compute an error y[i] − y’[i]. 
For a binary classification (i.e. fall or no fall), we map prediction y’[i] to the [0,1] range 

using a logistic function L(x). We can then define a mean-squared-error function J = ∑(y[i] 
− y’[i])2 and a loss function f[i] = ∇J to take a step to minimize J where y’[i] = y’[i] − 
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α f[i], for some α, and then re-iterate. Figs. 5 and 6 show gradient boosted decision tree 

model accuracy and loss as a function of the number of epochs (i.e. the number of entire 

dataset passes through the model). Fig. 7 shows ROC curves depicting the diagnostic ability 

of our gradient boosted decision tree model binary classifier for fall detection. The “shank” 

sensor yielded the greatest area under curve (AUC) of 0.90 at the optimal cutoff for false 

positive rate (FPR). The optimal cutoff is the FPR that yields the greatest Youden Statistic J 
= sensitivity + specificity − 1[12].

E. Binarized Neural Network Model

A Binarized Neural Network (BNN) is a neural network with binary weights and activations 

at run-time constrained to +1 or −1 [13]. We trained a BNN using four BinaryDense 
layers [14] in Keras. Fig. 8 shows an illustration of our implemented BNN model and Fig. 

12 shows a plot of associated ROC curves. The left front tibia sensor position (orange 

colored line in Fig. 12) was found to yield the greatest AUC of 0.82. Using binary weights 

and activations in a binary classifier offers significant advantages when implementing an 

edge inferencing device. Multiply-accumulate operations, such as vector dot product, are 

one of the most frequent low-level linear algebra operations in deep learning inferencing. 

For example, the Xilinx Virtex II Pro 2 and 100 FPGAs utilize 693 and 2012 slices 

(sets of LUTs and flip-flops) to perform IEEE single and double precision floating-point 

computation, respectively [15]. With activations and weights constrained to +1 and −1, 

32-bit floating point multiply-accumulations (MACs) are replaced by 1-bit XNOR-popcount 

operations. Popcount is a binary operation where the input is a (32-bit) word and the output 

is the number of bits in the word set to 1. The standard vector dot product operation is 

replaced in the BNN by the binarized variant that can be implemented using a popcount-

XNOR operation

for each i:

 C += A [row] [i] * B[i] [col]

for each i

C +=popcount(XNOR(A[row][i],B[i][col]))

BNNs provide a power efficient forward pass and require a 32 times smaller memory size 

and 32 times fewer memory accesses than 32-bit deep neural networks (DNNs) [13].

F. Random Decision Forest Model

The fourth machine learning model we examined for fall classification was random decision 

forests. We employed the RandomForestClassifier() model from the sklearn.ensemble 
library [16]. Fig. 9 shows a plot of model accuracy for training and testing data from 

our fall dataset. Optimal classification accuracy was found with 10 trees in the forest (i.e. 

n_estimators=10). Fig. 10 shows a plot of ROC curves demonstrating the diagnostic ability 

of the random forest model to correctly classify falls. The left “shank” sensor position 
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(orange colored line) was found to yield the greatest AUC (.85). The optimal cutoff is the 

FPR that yields the greatest Youden Statistic. Fig. 11 shows a plot of trained tree0 from our 

random forests model with calculated Gini impurity indices [36].

In the gradient boosted trees model, training is performed sequentially to minimize the 

mean-squared-error function J during each iteration. The random forests model, however, 

utilizes a set (10 in our approach) of independent trees where training is performed in 

parallel on all trees and a single classification result is obtained by forming an aggregated 

solution from the ensemble of trees.

G. Fall Dataset Training and Testing

We used an 80:20 split of our collected fall data, 80% for training and 20% for testing. The 

Keras open-source neural-network library running on top of TensorFlow and the XGBoost 

open-source gradient boosting framework was executed on a Supermicro SuperServer 

SYS-4028GR-TR [37] with eight NVIDIA Tesla V100 PCle 16GB GPUs [38].

III. Application

As reported by the World Health Organization’s Global Report on Falls Prevention in Older 

Age, based on research conducted by Blake et al. [3, 19], 35% of persons 65 years and over 

experience at least one unintentional fall per year, due to tripping, dizziness, and blackouts. 

Elderly people are more likely to fall due to loss of handgrip strength used for control 

and stabilization when using walking aids such as walkers and canes. Arthritis, dizziness, 

neuromuscular, cognitive, and foot impairments also contribute to increased prevalence of 

falling by older people when using stairs and steps, or while turning around or reaching for 

objects. Research by Tinetti found that 61% of elderly nursing home residents fell at some 

point during their first year of residence [20], a greater proportion than elderly people who 

live in residential communities. Those assigned to live in assisted living facilities my fall 

more frequently due to greater weakness in their lower extremities, a potential contributing 

factor for their decision to live in such a facility, since facility staff can assist with mobility. 

When an elderly person falls, the resulting impact can result in significant injury due to 

concussion, traumatic brain injury, or bone fracture. Research by Nevitt et al. found that 

over half (55%) of falling incidents by elderly people resulted in minor soft tissue injury, 

while 6% resulted in a major injury requiring emergency hospitalization, such as a bone 

fracture, joint dislocation, or skin laceration requiring suture [21]. Reported by Alexander et 

al., 5.3% of all hospitalizations of older adults are due to fall-induced physical trauma [22]. 

In addition to trauma, falls among elderly persons that result in an emergency room hospital 

visit can pose an adverse economic consequence on the patient, and impose a burden on 

medical, health insurance, and social service providers [23].

When a fall does occur, any delay between the time of fall and the time of medical 

attention can exacerbate injury if the fall resulted in concussion, traumatic brain injury, 

bone fracture, or a major skin laceration that results in bleeding [24-26]. Elderly people 

who fall outdoors in remote locations who are undetected and unable to get up are at risk 

of suffering hypothermia. The fifth leading cause of death among elderly people is due to 

unintentional injury, of which two-thirds are death resulting from a fall [27].
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To accurately detect when a person has fallen, calculate precise geographic coordinates 

of the person, and notify emergency medical or living facility personnel the identity and 

location of the person, a Fall Detection System (FDS) is required to be worn by elderly 

persons who are at risk of falling. Because those who live in assisted living facilities fall 

with greater frequency per year than those who live in residential communities, and because 

GPS signals may be significantly attenuated within buildings, mobile, wireless, wearable, 

low-power, medical devices that use a small field-programmable gate array (FPGA) for 

in-situ fall detection (i.e. edge inferencing) using machine learning models can be realized. 

Such devices can be integrated with pressure, gyroscope, accelerometer, and image sensors, 

that may use, for example, binarized and convolutional neural networks to detect when the 

device wearer has fallen. The device would immediately notify living facility staff of the 

wearer’s physical location, using GPS or indoor trilateration, if the subject is outdoors or 

indoors, respectively [28].

IV. Conclusion

Technologies that perform machine learning in situ to make predictions and take corrective 

actions, in real-time, are beginning to show application in medical device engineering. 

Known as inferencing at the edge, these technologies allow one to perform computationally 

intensive calculations on the device, without needing to transfer sensor measurements to a 

central computational server that performs calculations and then transfer a solution back to 

the device over a wireless connection. Small form-factor FPGAs are now commercially 

available that provide soft or flexible intellectual property (IP) cores that implement 

Binarized Neural Networks (BNNs) that can perform continuous fall detection in the mW 

power range [29].

Published datasets on Activities of Daily Life (ADL) and fall movement, such as those 

developed at universities in the European Union using student test subjects [30, 31] have 

used chest, thigh, trouser pocket, waist, and wrist [32, 33] locations on the body to capture 

accelerometer, gyroscope, and limb orientation sensor features. Existing solutions with 

sensors placed at these locations only achieve an 80% classification accuracy [35].

All four machine learning models we implemented show the left shank body location to be 

the optimal sensor position. The left shank location yielded the greatest AUC in all four 

models. Gradient boosted trees, random forests, and BNN models show similar classification 

performance, likely because each of these models analyze a single point in time, rather than 

a segment of time, as the RNN model does. Our results show the wrist location is a poorly 

performing sensor placement position relative to other body locations.

A possible reason for the superiority of the RNN model may be that the RNN model 

observes a time period, and the changes in lower leg orientation and position in time during 

walking and falling motion provides a temporal feature set that captures the context of a 

sequence of body motions that characterize a fall.

Developers of wearable fall detection systems may wish to consider the shinbone region 

for sensor placement to achieve greater classification accuracy. We have made our 
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respective data available for validation, evaluation, and further collaboration via URL http://

iotlab.sdsu.edu/ under the Research section. The lead author has recently been awarded a 

two-year grant through the National Institute on Minority Health and Health Disparities 

(NIMHD) to conduct a pilot study to develop a prototype wireless, wearable, low-power 

edge inferencing FDS using a very low-power (1 mW scale) FPGA to predict an imminent 

fall and detect when a fall occurs, for elderly at-risk adults. An outcome of the pilot 

project will be to assess real-time performance, sensor comfort, ease of user attachment and 

removal, and feasibility of implementing our RNN model on a small, low power device. We 

plan to conduct human-subjects experiments involving 200 unique participants in year one 

and 190 unique participants in year two.
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Fig. 1. 
Body placement locations of 16 Noraxon IMU sensors [1]. myoRESEARCH 3.14 software 

and myoMOTION sensors.
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Fig. 2. 
RNN model consisting of two LSTM layers followed by a single dense layer.
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Fig. 3. 
Receiver operating characteristic curves (ROC) showing diagnostic ability of our RNN/

LSTM binary classifier for fall detection. The “shank” sensor yielded the greatest area under 

curve (AUC) of 0.92.
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Fig. 4. 
Plot of the first decision tree in the model (index 0), showing the features and feature values 

for each split, as well as the output leaf nodes.
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Fig. 5. 
Gradient boosted decision tree model accuracy as a function of the number of epochs for 

training and testing.
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Fig. 6. 
Loss as a function of the number of epochs for training and testing.
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Fig. 7. 
ROC curves showing diagnostic ability of our gradient boosted decision tree model binary 

classifier for fall detection. The “shank” sensor yielded the greatest area under curve (AUC) 

of 0.90 at the optimal cutoff for FPR.
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Fig. 8. 
Four binary dense layer BNN model for fall detection.

Paolini et al. Page 16

IEEE Glob Commun Conf. Author manuscript; available in PMC 2023 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Random forest classifier model results from training and testing our fall dataset. Optimal 

classification accuracy was found with n_estimators=10.
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Fig. 10. 
ROC curves showing resuts of testing our random forests classifier model. The left “shank” 

(front of left tibia) sensor position (orange colored line) was found to yield the greatest AUC 

(.85).
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Fig. 11. 
Plot of the first decision tree in our random forests model (index 0) showing the Gini 

impurity index in each node. The Gini impurity is a metric that gives the probability of an 

incorrect classification of a randomly selected test datum from our labeled fall dataset, if the 

selected test datum was randomly labeled in either the fall or no-fall class.
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Fig. 12. 
ROC curves showing resuts of testing our BNN model. The left “shank” (front of left tibia) 

sensor position (orange colored line) was found to yield the greatest AUC (.82).
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