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ABSTRACT

Speech requires successful information transfer within cortical-basal ganglia loop circuits to
produce the desired acoustic output. For this reason, up to 90% of Parkinson’s disease patients
experience impairments of speech articulation. Deep brain stimulation (DBS) is highly
effective in controlling the symptoms of Parkinson’s disease, sometimes alongside speech
improvement, but subthalamic nucleus (STN) DBS can also lead to decreases in semantic and
phonological fluency. This paradox demands better understanding of the interactions between
the cortical speech network and the STN, which can be investigated with intracranial EEG
recordings collected during DBS implantation surgery. We analyzed the propagation of
high-gamma activity between STN, superior temporal gyrus (STG), and ventral sensorimotor
cortices during reading aloud via event-related causality, a method that estimates strengths and
directionalities of neural activity propagation. We employed a newly developed bivariate
smoothing model based on a two-dimensional moving average, which is optimal for reducing
random noise while retaining a sharp step response, to ensure precise embedding of statistical
significance in the time—frequency space. Sustained and reciprocal neural interactions
between STN and ventral sensorimotor cortex were observed. Moreover, high-gamma activity
propagated from the STG to the STN prior to speech onset. The strength of this influence was
affected by the lexical status of the utterance, with increased activity propagation during word
versus pseudoword reading. These unique data suggest a potential role for the STN in the
feedforward control of speech.

INTRODUCTION

Speech requires the precise coordination of vocal articulators by specialized brain areas
(Bouchard et al., 2013; Collard et al., 2016; Conant et al., 2014). Evidence that articulation
is disrupted in neurological disorders affecting the basal ganglia strongly implicates these
regions in the motor aspects of speech production. For example, impairments like hypophonia
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Basal ganglia:

A group of subcortical nuclei
associated with a variety of functions
including control of motor
movements, cognition, and emotion.

Parkinson’s disease (PD):

A degenerative disorder that mainly
affects the motor system
characterized by the death of
dopamine-producing cells in the
substantia nigra.

Deep brain stimulation (DBS):

A neurosurgical procedure involving
the placement of electrodes into the
brain that treats disease symptoms
through electrical stimulation.

Subthalamic nucleus (STN):

Part of the basal ganglia associated
with action selection. Deep brain
stimulation of the STN is used to treat
patients with Parkinson’s disease.

Superior temporal gyrus (STG):
Part of the brain’s temporal lobe
responsible for the sensation of
sound and processing of speech.

Event-related causality (ERC):

A statistical method that estimates the
strengths and directionalities of
neural activity propagations between
nodes in a network.

Neurobiology of Language

and hypokinetic dysarthria are present in up to 90% of patients with Parkinson’s disease (PD;
llles et al., 1988; Liotti et al., 2002; Metter & Hanson, 1986; Miller et al., 2007). Other studies
indicate roles for the basal ganglia in linguistic processes beyond motor control of speech such
as lexical retrieval, verbal fluency, speech pitch and speed variation, action-verb naming, and
the comprehension of syntax and grammar (Duffy, 2012; Grossman et al., 1992, 1993, 2012;
Hochstadt, 2009; Péran et al., 2009; Simard et al., 2011; Terzi et al., 2005; Yarnall et al., 2014;
Yu et al.,, 20710). In fact, deep brain stimulation (DBS) of the subthalamic nucleus (STN) has
been shown to decrease both semantic and phonological fluency in patients with PD, directly
implicating the basal ganglia in linguistic processing (Deep-Brain Stimulation for Parkinson’s
Disease Study Group, 2001; Kleiner-Fisman et al., 2006; Klostermann et al., 2008; Skodda,
2012; Vos et al., 2021). Other studies have reported improvements in speech function follow-
ing DBS that depend on lead location within the STN (Jorge et al., 2020). Better understanding
the role of the basal ganglia in speech production will improve neurolinguistic models and
models of speech motor control and may lead to more effective speech treatments for related
neurological diseases (Smith & Caplan, 2018).

The parallel circuit model posits that information from diverse areas of the cortex respon-
sible for sensorimotor, associative, and limbic processes progress through anatomically and
functionally distinct cortical-basal ganglia loops (Alexander et al., 1986; Moore & Bloom,
1978). Broad areas of the cortex send excitatory projections to the striatum, the primary input
nuclei of the basal ganglia, where neural communication diverges into direct and indirect
pathways to reach the primary output nuclei of the basal ganglia (Harris et al., 2019). A third
pathway, the hyperdirect pathway, carries cortical inputs directly to the STN and has been
implicated in behaviors such as action selection, action focusing, and motor learning
(Desmurget & Turner, 2010; Nambu et al., 2002; Turner & Desmurget, 2010; Wichmann
et al., 1994; Zaghloul et al., 2012). New evidence from mapping cortical evoked potentials
generated through stimulating the STN suggests the presence of a sensory hyperdirect pathway
from the superior temporal gyrus (STG) to STN, positioning the STN to contribute to the inte-
gration of sensory and motor information in the control of speech (Jorge et al., 2022).

Intraoperative recordings collected during DBS implantation surgery offer a unique oppor-
tunity to directly assess functional connections between the STG and STN during speech pro-
duction. To this end, we analyzed the dynamics of activations during an overt reading task, in
simultaneous recordings from STN, the ventral sensorimotor cortex, and posterior STG. Words
and pseudowords were analyzed to investigate whether the influence of the STN varied as a
result of lexicality (Deep-Brain Stimulation for Parkinson’s Disease Study Group, 2007;
Kleiner-Fisman et al., 2006; Klostermann et al., 2008; Skodda, 2012; Woolnough et al.,
2022). We analyzed the dynamics of these activations during an overt reading task, in simul-
taneous recordings from STN, the ventral sensorimotor cortex, and posterior STG. Words and
pseudowords were used to investigate whether the influence of the STN varied as a result of
lexicality (Deep-Brain Stimulation for Parkinson’s Disease Study Group, 2001; Kleiner-Fisman
et al., 2006; Klostermann et al., 2008; Skodda, 2012; Woolnough et al., 2022).

We used the event-related causality (ERC) technique to provide an estimate of the direction-
ality, intensity, and frequency content of task-related interactions between neural recording
sites (Korzeniewska et al., 2008). The ERC technique hinges upon the idea that distributed
neuronal sites can become causally interacting through the propagation of their oscillatory
activity. This is because oscillations provide an effective means of controlling the timing of
neuronal firing, allowing the temporal coordination of information transfer across brain regions
(Buzsaki & Draguhn, 2004; Engel et al., 2001; Fries, 2005; Varela et al., 2001). Even single
neurons are endowed with these complex dynamics, and their intrinsic ability to resonate
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and oscillate at multiple frequencies suggests that the precise timing of their oscillatory activity
within neuronal networks represents information (Buzsaki & Draguhn, 2004; Engel & Fries,
2010; Hutcheon & Yarom, 2000; Llinas, 1988). This information can be processed and trans-
ferred by flexible cell assemblies, defined as distributed networks of neuronal groups, that are
transiently synchronized by dynamic connections (Engel et al., 2001; Varela et al., 2001). The
ability of neuronal assemblies to synchronize depends on the coupling strength and the
distribution of natural frequencies and are the result of the physical architecture of neuronal
networks. These network oscillations bias input selection and temporally link neurons into
assemblies (Buzsaki & Draguhn, 2004; Engel & Fries, 2010; Nunez, 1995). The synchronous
activity of oscillating networks is viewed as the critical “middle ground” linking single-neuron
activity to behavior (Engel et al., 2001; Hasselmo et al., 2002; Somers & Kopell, 1993;
Steriade, 2007; Traub et al., 1999; Whittington & Traub, 2003). Indeed, cognitive function
results from synchronized networks (Engel et al., 2001; Gray et al., 1989; Kahana et al.,
2007; Llinas & Ribary, 1993; Varela et al., 2001).

In order to study integration through synchronization, one needs to focus on the temporal
dynamics of neural networks in the millisecond range synchronization (Varela et al., 2007).
For this reason, we applied the ECR to the 60-180 Hz frequency (high-gamma) range of
neuronal oscillations. As high-gamma oscillations represent a general index of neuronal pop-
ulation firing rates, they are perfectly suited for studying the dynamics of subcortical-cortical
network interactions (Ray et al., 2008). Analysis of the fine network dynamics measured by
ERC during word production tasks previously showed that perisylvian language sites (includ-
ing the middle temporal gyrus and STG) interact with different areas of the sensorimotor cortex
dependent on the modality of speech, suggesting that the excellent time—frequency resolution
of ERC should well capture the dynamics of cortical-STN communication during word produc-
tion (Alhourani et al., 2020; Flinker et al., 2015; Korzeniewska et al., 2011). Consistent with
this expectation, neuronal oscillations, as increases in neuronal oscillations within this fre-
quency range have been observed in the cortex during motor and word production tasks
and in STN during movement initiation and inhibition. Neural activity in this frequency range
also displays coherence between STN and motor cortex. These considerations strongly suggest
that subcortical-cortical communications in this frequency range influence speech production
(Benitez-Burraco & Murphy, 2019; Briicke et al., 2008; Crone, Boatman, et al., 2001; Crone
et al., 1998; Crone, Hao, et al., 2001; Fischer et al., 2020; Jenkinson et al., 2013; Lachaux
et al., 2012; Muthukumaraswamy, 2010; Pantev, 1995; Ray et al., 2003, 2008). The current
study complements this past work through its novel examination of relationships between
areas implicated in sensory aspects of speech and the STN during the overt reading of words
and pronounceable nonwords. Our recent modification of the ERC method ensured precise
embedding of the results in the time—frequency space (Korzeniewska et al., 2022), allowing
us to distinguish between speech planning and production epochs of the task. Our findings
contribute important new information related to the integration of sensory and motor informa-
tion in the control of speech production.

MATERIALS AND METHODS

Subjects

Subjects were native English speakers with PD undergoing awake stereotactic neurosurgery for
implantation of DBS electrodes in the STN, as recommended by a clinical multidisciplinary
movement disorders surgery board. All subjects provided informed consent prior to surgery in
order to participate in the study. This study was conducted according to a protocol approved
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by the University of Pittsburgh Medical Center Internal Review Board (IRB Protocol
# PRO13110420).

In addition to clinical subcortical mapping, subjects were implanted with subdural elec-
trode arrays over the left lateral sensorimotor cortex that were removed after intraoperative task
completion. The safety of this research technique has been demonstrated in over 500 patients
( ; ). It was the surgeon’s standard procedure to implant
the left DBS lead first. Language dominance laterality was not determined pre-operatively,
although it is typically assumed that most people (including non-right-handed subjects) have
left-hemisphere language lateralization ( ; ).

Recordings from 11 patients were subjected to screening for appropriateness for the ERC
analysis, including suitable cortical and STN electrode coverage and significant task-related
high-gamma frequency local field potential (LFP) modulation. Data from 10 recording sessions
across four subjects (3 male/1 female, age: 70.25 + 3.94 years old, duration of disease: 7.50 +
0.43 years, mean + SEM) who met the criteria for ERC analysis were investigated. All subjects
completed Unified Parkinson’s Disease Rating Scale (UPDRS; ) testing
within a four-month period prior to DBS implantation surgery. Dopaminergic medication
was withdrawn the night before surgery. Subjects’ demographic and clinical characteristics
are provided in

Behavioral Paradigm

Subjects performed the overt reading task during surgical pauses in the subcortical mapping of
the STN on the first (left) side, in up to four recording sessions (each reflecting a different depth
within the STN) per patient. Each session was composed of 60 trials with alternating words and
pseudowords.

Visual stimuli were created and presented by custom code running in the MATLAB
environment ( ) using Psychophysics Toolbox extensions ( ).
Stimuli consisted of single consonant-vowel-consonant (CVC) words or pseudowords pre-
sented on a computer screen and subjects were familiarized with the task before undergoing
surgery ( ). A total of 240 stimuli (120 words and 120 phonotactically
legal pseudowords) were constructed. To control for articulatory complexity and prevent
potential learning effect confounds from repeated testing sessions, four presentation lists were
constructed across which stimuli were pseudorandomized and balanced along a number of

Table 1. Demographic and clinical characteristics of patients included in the study.
UPDRS speech  UPDRS score
Education Duration of  Hoehn and score® (off total (off

Subject Gender Age Handedness (yr) disease (yr)  Yahrstage® medication) medication)
1 Male 68 Left 16 8 2 1 50
2 Male 82 Right 16 8 2 2 36
3 Female 71 Right 16 8 2 1 24
4 Male 60 Right 13 6 2 1 39
Mean + SE - 70.25 £ 3.94 - 1525 +0.65 7.50+0.43 2.00 = 0.00 1.25 +0.22 37.25 £ 4.63

Note. UPDRS = Unified Parkinson’s Disease Rating Scale.

a

b

Neurobiology of Language
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Multivariate autoregressive

model (MVAR):

A modeling technique that
recognizes patterns in time series
data. The output variable depends on
its previous values.
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psycholinguistic parameters, such as phonological and orthographic neighborhood density,
bigram frequency, and phonotactic and biphone probability ( ). On each
trial, subjects were presented with a white cross against a black background during an inter-
trial interval, after which a green fixation cross (preparatory cue) appeared on the screen for
250 ms instructing the subject to get ready. This was followed by a variable interstimulus
interval (ISI; 500-1,000 ms) during which the screen remained black. Following the ISI delay,
the stimulus was presented on the screen and subjects were instructed to read it out loud. The
stimulus remained on the screen until subjects made their response, after which the experi-
menter manually advanced the presentation to the next trial. Subjects were instructed to respond
as quickly as they could following each stimulus appearance. Overt pronunciation of words and
pseudowords was chosen to provide online speech onset timing and error data (allowing us to
remove error trials) and to confirm that targeted psycholinguistic effects were indeed present
( ). Speech onset for word trials, speech onset for pseudoword trials, and speech
onset for both word and pseudoword trials together (referred to as “pooled trials”) defined
epochs of interest that were used in ERC analysis.

Subthalamic Nucleus and Cortical Recordings

Subjects were awake and anesthetic agents had been withheld for a period of at least 30 min
prior to the performance of the overt reading task. No additional medications were delivered
while subjects performed the task.

Subjects were temporarily implanted with subdural electrode arrays over the cortical surface of
the left hemisphere, which were passed through the existing surgical burr hole after the dura was
opened, but prior to the insertion of micro-electrode guide tubes. Burr hole locations were deter-
mined solely by the standard clinical procedure of selecting the safest entry point for the intended
DBS trajectory. Subject 1 and Subject 4 were implanted with 6- and 28-channel elec-
trode strips, respectively. Subject 2 and Subject 3 were implanted with 54- and 36-channel

electrode strips, respectively. Electrode strip contact sizes were 1, 2, or 4 mm
diameter and center-to-center spacing was 3, 4, or 10 mm. The placement of the electrode strips
was targeted over ventral sensorimotor cortex by using stereotactic coordinates to mark the scalp
over this region and advancing the subdural strips in the direction of this overlying visual marker.

A referential montage was used with the reference electrode placed in the scalp and a
ground electrode placed on the skin overlying the acromion process. STN LFPs were recorded
at a sampling rate of 44 kHz and bandpass filtered from 0.075 Hz to 10 kHz. The electrocor-
ticographic (ECoG) signals was acquired at 30 kHz using the Grapevine-Neural Interface Pro-
cessor ( ).

The superior and inferior boundaries of the STN were determined by the neurophysiologist
and neurosurgeon based on characteristic STN single-unit neuronal activity obtained from
three microelectrodes simultaneously advanced through the STN in 0.1 mm increments.
The dorsolateral STN was targeted for treatment of motor symptoms in PD, as previously
described ( ). LFP data were acquired for up to four different
depths within the STN per patient during separate runs of the overt reading task, with each task
session capturing three unique STN recording sites. According to the assumptions of the ERC
method (described in detail below) we estimated a different ERC multivariate autoregression
(MVAR) model to each session, and considered each session as having a distinct electrode set.
As a result, LFP data from a total of 30 STN recording sites were obtained across all analyzed
subjects, noting that for the most superficial recording sites within the STN, the electrode may
have been just superior to the dorsal border of STN.
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Electrode Localization

The electrodes were localized using a custom method to align pre-operative MRI, intraoperative
fluoroscopy (512 x 512 pixels, OEC 9900; General Electric, 2022), and post-operative computed
tomography (CT), as described previously (Lipski et al., 2017; Randazzo et al., 2016). Briefly, CT
and MRI scans were co-registered using mutual information in the Statistical Parametric Mapping
(SPM12) software package (Ashburner et al., 202 1) and rendered into 3D skull and brain surfaces
using Osirix Version 7.5 and Freesurfer Version 5.3 software (Dale et al., 1999; Rosset et al., 2004).
The co-registered images and fluoroscopy images were aligned using common landmarks: The
subject’s stereotactic frame pins, implanted depth electrodes, and skull outline. Parallax effects in
the fluoroscopic images were accounted for using the measured distance from the radiation
source to the subject’s skull. Following surface-to-fluoroscopic image alignment, a 3D location
for each electrode was projected from the fluoroscopic image onto the cortical surface, and based
upon cortical parcellations for each subject’s anatomy, electrodes were assigned to a cortical
gyrus (Alhourani et al., 2020; Desikan et al., 2006). Electrodes could then be grouped into ana-
tomical regions, and only those localized to the precentral gyrus, postcentral gyrus, and STG were
included for further analysis, in addition to STN contacts. Electrode locations were registered to a
common brain space using the Brainstorm MNI ICBM152 template, which is documented and
freely available for download online under the GNU general public license (hitps;/neuroimage
.usc.edu/brainstorm; Fonov et al., 2009, 2011; Nasiotis et al., 2019; Tadel et al., 2011).

DBS electrodes were semi-automatically localized and transformed into a standard tem-
plate for group visualization using the Lead-DBS toolbox (Horn et al., 2019; Horn & Kiihn,
2015). In brief, post-operative CT scans were linearly co-registered with pre-operative MRI
scans and normalized to Montreal Neurological Institute (MNI) space. MNI-defined coordi-
nates of electrode contact locations were extracted for all analyzed subjects, color-coded
per stimuli-type, and visualized in Figure 1.

ventral-dorsal (mm)

-14 16
-18 -5 <]
medial-lateral (mm) anterior-posterior (mm) % .‘

Figure 1. Recording sites in four studied patients during the behavioral paradigm. (Left panel) All recording sites, projected onto an MNI brain
atlas. (Right panel) Sites demonstrating significant event-related high-gamma power augmentation in pseudoword (red), word (blue), and
pooled pseudoword and word trials (vertically split red/blue). (Center insert) Sites demonstrating significant event-related high-gamma power
augmentation in subthalamic nucleus (STN, the same color-coding).
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Audio Recordings

Subjects’ vocal responses were recorded using an omnidirectional microphone (either Audio-
Technica model ATR3350iS Mic, frequency response 50—18000 Hz; or PreSonus model PRM1
Precision Flat Frequency Mic, frequency response 20-20000 Hz). The microphone was posi-
tioned approximately 8 cm from the subject’s mouth and oriented at an angle of approximately
45 degrees. In the cases where the PreSonus PRM1 microphone was used, a Zoom H6 digital
recorder was required to record the audio signal at a sampling rate of 96 kHz. In all cases,
the signal was simultaneously recorded using a Grapevine—Neural Interface Processor
( ) at a lower sampling rate of 30 kHz. The audio recordings were synchronized
with visual cue events and with the neural recordings using digital pulses delivered to a Neuro-
Omega system ( ) via a USB data acquisition unit (model USB-
1208FS; ). Audio recordings were segmented and transcribed
offline using the International Phonetic Alphabet in a custom designed graphical user interface
implemented in MATLAB.

Electrophysiological Data Preprocessing

Data processing was performed using the SPM12 ( ) and Fieldtrip tool-
boxes implemented using custom scripts ( ). A subject’s recorded signal
was aligned with the presentation of the green cross cue for baseline epoching, and with sub-
ject’s articulation of the initial consonant for speech response-aligned epoching. All trial epochs
were visually inspected for any artifacts. Channels with extensive artifacts from movement,
powerline, or environmental sources were visually identified and removed from further analy-
ses, and any contaminated segments were rejected. Signals were re-referenced using a common
average reference, which minimizes the contribution of components present in all signals, high-
lighting the interactions within the studied system. Signals were forward-backward band-pass
filtered using a finite impulse response filter at 60-180 Hz to extract the high-gamma signal and
to reassure zero-phase distortion. Filter characteristics were designed to capture high-gamma
responses while avoiding line noises from 60 Hz and its harmonic.

Data Selection

Trials were included in the analysis if it was possible to unambiguously identify a subject’s
spoken response and a subject’s response included the stimuli’s targeted phonemes. On
the basis of these criteria, seven (1.17%) out of a total of 600 recorded trials were rejected.
Selection of LFP channels for ERC analysis was based on the results of spectral analyses dem-
onstrating statistically significant event-related power augmentation in high-gamma frequen-
cies (60-180 Hz) during the same task in the same patient, as determined using a two-sided
t test comparing each time point post-stimulus presentation to the mean of all time points of
baseline in each frequency ( ). Only electrodes that displayed signif-
icance in the above high frequency band using this method were eligible for ERC analysis.
Using this method, out of a total of 124 electrodes placed on the cortex and 30 DBS recording
sites across the analyzed subjects and sessions, 53 cortical sites significantly activated (42.7%
of implanted electrodes) and 10 STN sites (33.3%) were significantly activated during speech
response, for the pooled (word and pseudoword) trials. In separate word and pseudoword
analyses, a total of 36 (29.0%) and 46 (37.1%) cortical electrodes, respectively, exhibited
significant event-related high-gamma activity. Both word and pseudoword analyses each
had 10 (33%) STN DBS sites with significant activity.
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Granger causality:

A statistical hypothesis test for
determining whether one time series
past results are able to forecast
another series’ future results.

’

Electroencephalography (EEG):

A method that uses electrodes to
record voltage fluctuations within
and around neurons in the brain.
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Behavioral Data Analysis

Reading latency (i.e., the time required for subjects to start articulation from the time of stim-
ulus onset to the time of speech onset) was calculated for all analyzed word and pseudoword
trials. The time required for subjects to articulate the first consonant (C1), vowel (V), and sec-
ond consonant (C2) of a given trial’s CVC stimuli was calculated from the recorded session
audio, averaged across trials, sessions, and subjects. Statistical differences between reading
latencies and CVC metrics were assessed using Wilcoxon signed-ranked tests.

Event-Related Causality Analysis

To evaluate the spatial-temporal patterns of neural interactions between recordings sites of
multichannel ECoG and LFP data, we utilized ERC (Korzeniewska et al., 2008), a method suc-
cessfully used over years in studying articulation and word production (Korzeniewska et al.,
2008, 2011, 2020, 2022; Nishida et al., 2017; Wang et al., 2021), as well as subthalamic-
cortical networks (Alhourani et al., 2020). Using this method, previous studies revealed
participation of STN in motor planning, in modulation of ongoing movement, and in somato-
sensory integration. Therefore, it is a suitable tool to investigate the potential role of STN in
speech. Moreover, the advantage of the ERC method is that it does not require any a priori
model of network interactions.

ERC is a metric based on Granger causality that is designed to estimate the directionality,
intensity, and time course of statistically significant event-related changes in causal interac-
tions or neural activity propagations among recording sites. According to Granger causality,
for signal y to be considered causally influenced by signal x, knowledge of x’s past must be
able to significantly improve the prediction of y’s present (Granger, 1969). To evaluate the
causality between more than two time series, as in multichannel electroencephalography
(EEG), an MVAR model is fitted to the recorded signals. The model assumes that the value
of the x at a time t depends on its p previous values and the random component e(f). The
MVAR process for vector signal x(t) consisting of multiple signals can be expressed as

x(t) ==Y Ap(t=j) +e() )

where the coefficients in each matrix Aj are calculated by solving the Yule-Walker equations
(Walker, 1931; Yule, 1927). To ensure that the observed interactions are direct ones, not
spurious causalities, the ERC method is built upon direct directed transfer function, indicating
only direct propagations and excluding the influence of indirect ones as mediated by other
recording sites (Blinowska, 2017; Korzeniewska et al., 2003). The intensity and spectral con-
tent zy(f, t) of the causal influence of channel | onto channel k (I — k) is estimated by

|hk/(fat)||ck/(fat)|
VSl (R0 Fleu(h0)

where hy(f, t) is an element of transfer function matrix, a measure of the directed relationship
between channel | and channel k, while cy(f, t) is an element of partial coherence matrix, a
measure of direct relationship between the channels. Therefore z,(f, t) shows whether a signal
component at a given frequency fin channel k is shifted in time with respect to a signal com-
ponent of the same frequency in channel /, and whether the shifted components are coherent
and are not explained by components of other channels. zy(f, t) takes values from 0 to 1. Zero
indicates a lack of direct causal relationships. The nonzero values of zy(f, t) are interpreted as
a flow of activity from channel /to channel k (I — k). To follow the temporal course of brief
changes in signal propagation between brain regions, while ensuring the local stationarity of

74 (ft) = @
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the signals, we used an algorithm enabling the estimation of neural activity propagation for
multiple realizations of the same stochastic process (i.e., many trials/repetitions of the task)
in a short sliding time window ( ).

To ensure enough data points for MVAR modeling, we estimated the sufficient number of
EEG samples by the inequality

K(p+1)

N < 01 3)

where K denotes the number of channels, N; is the length of the time window (number of
samples per one repetition epoch), and n; is the number of trials/repetitions. To ensure the
good fit of MVAR model to recorded signals, the model order was determined using Akaike
information criterion ( ).

For each subject and each recording session, signals were segmented into 520 ms of pre-
stimulus baseline (longest available epochs of no activity ISI) or 1 s post-stimulus response
epochs (long enough to include entire spoken response) aligned to speech onset, implemented
in custom analysis interface software ( ). MVAR coefficients and the
intensities of the causal influence z(f, t) were computed for 140 ms long windows (as indicated
by Akaike criterion), shifted by 5.6 ms (to ensure smooth coverage of the analyzed signals).

The short time window algorithm uses all repetitions of an event to provide MVAR estimator
for zy(f, t), to find a statistical significance of a change in zy(f, t) relative to the pre-stimulus
baseline. Therefore, we employed a bivariate smoothing model based on two-dimensional
moving average to access statistical significance and to ensure precise embedding of the results
in the time—frequency space ( ). The moving average is optimal for
reducing random noise while retaining a sharp step response, it allows precise indication of time
of the change in zy(f, t), and provides an efficient smoothing estimator for statistical testing
( ). Only task-related increases in ERC were analyzed. Decreases in ERC were not
taken into consideration because the physiological interpretation of flow decreases during
event-related task performance is not straightforward ( , , ).

While recordings were collected from four subjects, ERC analyses were conducted over 10
sessions on a session-by-session basis, where STN recordings in different sessions from an indi-
vidual patient are taken from different regions within the STN. Statistically significant ERC
values (as compared with a 520 ms pre-stimulus baseline) for speech-aligned recordings at
the level of the single subject were also statistically tested for group significance. A two-sided
t test was used to test for the null hypothesis of zero differences between ERC means, where
the normalizing standard error was the standard deviation of the estimated mean difference.
The threshold for statistical significance was set at a = 0.05 (95% confidence interval) after
using false discovery rate correction to control for multiple comparisons (

). A more expansive description of the ERC-specific statistical methods used
in this study can be found in

The number of analyzed directed connections within and between recording sites in all
patients is shown in

Data and Code Availability

All analyses were performed, using either Psychophysics Toolbox extensions ( )
or in-house developed code, and implemented in MATLAB ( ). All code and
the data for the behavioral and the ERC analyses are available upon request.

61



abenbue jo ABojoiqoinapn

29

Table 2.  Number of analyzed directed connections summed over all patients.

Pooled words and pseudoword trials Word trials Pseudoword trials

Number of Number of Number of

directed directed directed

connections PreCG PoCG STG STN connections PreCG PoCG STG STN connections PreCG PoCG STG STN
PreCG 38 90 0 26 PreCG 18 22 0 16 PreCG 32 76 0 18
PoCG 90 46 48 40 PoCG 22 8 32 22 PoCG 76 44 38 34
STG 0 48 38 26 STG 0 32 24 22 STG 0 38 38 26
STN 26 40 26 0 STN 16 22 22 0 STN 18 34 26 0

Note. Connections are all theoretically possible propagations between recording sites revealing task-related activation. PreCG = precentral gyrus (primary motor cortex), PoCG = postcentral
gyrus (primary somatosensory cortex), STG = superior temporal gyrus (auditory cortex), STN = subthalamic nucleus.
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Lexicality-modulated influence of auditory cortex on subthalamic nucleus

RESULTS

Behavioral Responses

A lexicality effect was observed for several aspects of the speech response ( ). The mean
reading latency for word trials was statistically shorter than the latency during pseudoword
trials (p < 0.001, Wilcoxon signed-rank tests), suggesting that pseudowords require additional
or encumbered processing and thus require longer to read ( ;

; ). The duration of articulation of CVC stimuli phonemes were
also calculated from audio recordings. The mean duration of both the first (C1) and second
(C2) consonants of word trials were significantly shorter (p = 0.001 and p = 0.008, respec-
tively) than those of pseudoword trials. The mean duration of vowel articulation was signifi-
cantly longer (p = 0.007) for word trials than for pseudoword trials. The mean duration of the
subjects’ spoken responses was significantly shorter for words (p = 0.02). Calculated speech
latencies were used in subsequent analyses to ground the event triggers for speech onset, and
the average duration of C1, V, and C2 articulation was used as reference epochs (as shown in

, below, and in ).

Subthalamic-Cortical Interactions During Reading Aloud

We used ERC to estimate the directionalities and magnitudes of statistically significant
increases in propagation of high-gamma activity between STN and cortical recording sites,
with respect to speech onset (time = 0 ms). Because an MVAR model encompassing all
recorded signals would include signals unrelated to the investigated process, analyses were
limited to sites revealing event-related augmentation of spectral power. We observed statisti-
cally significant increases in high-gamma propagation between STN and all studied cortical
areas over the course of the overt reading task in pooled (combined word and pseudoword)

trials, at the level of single sites in individual subjects’ sessions ( ), as well as in group
analyses ( ), suggesting sustained cortical-STN engagement over the majority of the
task. shows that the significance of ERC flows does not result merely from the group-

ing of results across subjects. All regions of interest displayed significant, reciprocal interac-
tions with the STN at the level of the individual subject. These flows are asymmetric on a
session-by-session basis, depending on the recording location within the STN. Flows are
greatest between recording sites within STG, and we observed numerous and varied parallel

Table 3. Latencies of speech onset in the reading tasks and durations of first consonant (C1), vowel (V), and second consonant (C2), shown
as means + SEM.

Speech latency First consonant (C1) Vowel (V) Second consonant
(ms) duration (ms) duration (ms) (C2) duration (ms)
Words 736 + 34%** 93 + 3** 217 £ 5 170 = 5%
Pseudowords 818 + 50 105 + 4 203 + 4%* 187 £ 5
Pooled words and 795 + 31 97 +£3 207 = 4 177 =5

pseudowords

Note. Statistical differences between words and pseudowords were calculated using Wilcoxon signed-rank tests, with the significantly shorter of a pair denoted
by number of asterisks.

*p<0.05. % p<0.01.** p < 0.005.
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Session 4

Subject 3
Session 2

Subject 3
Session 3

Figure 2. Examples of event-related causality (ERC) of high-gamma propagation integrated over
the =500 to —300 ms time interval prior to speech onset (the time interval of significant increase
in high-gamma propagation from superior temporal gyrus to subthalamic nucleus for these subjects)
for pooled pseudoword and word trials plotted over a lateral view of the brain (left panel) and their
enlarged schematic representation (right panel). Arrow width and color both correspond to the
strength of ERC propagation. Only sites used for estimating ERC flows are shown, and 15% of
the smallest ERCs are not shown for clarity. Labeled electrodes: S = subthalamic nucleus, P =
primary somatosensory cortex, T = superior temporal gyrus.

interactions between the STG and primary somatosensory cortex, both of which were antic-
ipated from our speech task (Hamilton et al., 2021). Notably, interactions between the STG
and STN are significant at the individual subject level at approximately 400 ms prior to
speech onset (three examples shown in Figure 2), and were in one subject reciprocal (Figure 2,
middle row).

The results of the group-level pooled (words and pseudoword trials) ERC analysis is shown
in Figure 3. Aligning to speech onset revealed significant (p < 0.05) unidirectional propaga-
tions from precentral gyrus to STN, peaking 250 ms before speech onset (Figure 3, top),
followed by a second, larger increase in propagation midway (approximately 250 ms)
through articulation of the vowel phoneme. Significant reciprocal interactions between
STN and postcentral gyrus were likewise observed throughout almost the whole duration
of the trial, with significant flows originating in STN aligning approximately with the onset
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Figure 3. Event-related causality (ERC) as a function of time for high-gamma activity propagation
between the subthalamic nucleus (STN) and cortical recording sites, averaged over pooled word
and pseudoword trials of all patients. Purple traces represent mean ERC with confidence intervals
(aligned to speech onset t = 0 ms). Purple asterisks (*) along the top of each plot indicate time points
of significant increases in high-gamma propagation as compared to pre-stimulus baseline. Colored
time intervals denote the average durations of consonants (C1 and C2) and vowel (V) articulation.
Interactions that exhibited no significant increases in ERC at the level of group-pooled statistics at
any point of the time period are not included. (ERC propagation integrated over the time period
denoted by vertical dotted lines is schematically represented in Figure 7 in the Discussion.) PreCG =
precentral gyrus, PoCG = postcentral gyrus, STG = superior temporal gyrus.

and subsequent duration of V and C2 articulation (Figure 3, center). As observed at the indi-
vidual subject level, at the group level, a short duration propagation (~50 ms) from STG to
STN preceded speech onset by approximately 450 ms (Figure 3, bottom; see also Figure 7 in
Discussion).
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Reading Words vs. Pseudowords

Further exploration of STG-STN interactions revealed significant lexicality effects in high-
gamma propagations on both the single patient level (Figure 4 and Figure 5) and the group-
analysis level (Figure 6) from STG to STN prior to the start of articulation, with greater
propagation when subjects read words than when they read pseudowords. From recordings
on the individual patient level, we observed mixed effects of lexicality on these interactions
(Figure 4 and Figure 5). Depending on where the recording sites were located within STN,
reciprocal, albeit uneven, propagations were observed between the STG and STN during word
reading, noting that ERC analysis displays only significant (p < 0.05) flows (Figure 4, bottom
row). A second region in the STN exhibited flows from STG to STN during word reading
bottom row), and exhibited no significant flows at all during pseudoword reading
(Figure 5, top row). Note that individual subject figures (Figure 2, Figure 4, and Figure 5)
may display significant flows at time epochs that do not show significance at the group level
(Figure 3 and Figure 6). By definition, ERC is tested using the statistical method and approach
as shown in Korzeniewska et al. (2022). For a single subject we used all selected trials to
obtain one short direct directed transfer function (SdDTF) value for words, and one SADTF
value for pseudowords per time-frequency point, thus it was only possible to compare these

(Figure 5,
5,

Pseudowords

Max

Subject 3

Words Session 3

Figure 4. An example of stronger high-gamma propagation from superior temporal gyrus (STG)
into subthalamic nucleus (STN) during word compared to pseudoword reading in individual subject
(Subject 3, Session 3). Event-related causality (ERC) of high-gamma propagation integrated over
—160 to —15 ms time interval (the time interval of significant increase in high-gamma propagation
from STG to STN for this subject) for pseudowords (top) and words (bottom) plotted over a lateral
view of the brain (left panel) and their enlarged schematic representation (right panel). Arrow width
and color both correspond to the strength of ERC propagation. Only sites used for estimating ERC
flows are shown, and 15% of the smallest ERCs are not shown for clarity. Labeled electrodes: S =
STN, P = primary somatosensory cortex, T = superior temporal gyrus.
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Figure 5. An example of high-gamma stronger propagation from superior temporal gyrus (STG)
into subthalamic nucleus (STN) during word compared to pseudoword reading in individual subject
(Subject 3, Session 1). Event-related causality (ERC) of high-gamma propagation integrated over
—350 to —200 ms time interval (the time interval of significant increase in high-gamma propagation
from STG to STN for this subject) for pseudowords (top) and words (bottom) plotted over a lateral
view of the brain (left panel) and their enlarged schematic representation (right panel). Arrow width
and color both correspond to the strength of ERC propagation. Only sites used for estimating ERC
flows are shown, and 15% of the smallest ERCs are not shown for clarity. Labeled electrodes: S =
STN, P = primary somatosensory cortex, T = superior temporal gyrus.

values to the baselines, containing more time points in one frequency. We tested significance
of ERC at the group level (Figure 6), which revealed significantly greater propagations from the
STG to the STN during word reading, approximately 150 ms prior to speech onset. Immedi-
ately preceding this observation (approximately 50 ms earlier relative to speech onset), signif-
icantly greater neural interactions during word versus pseudoword trials within the STG were
observed at the group level (Figure 6, center) and at the individual patient level (Figure 5),
supporting the STG’s role in lexical processing (Simos et al., 2000; Simos et al., 2002).
These data suggest that information transfer from auditory cortex to the basal ganglia is impor-
tant during reading aloud and is related to the lexicality of what is read. The lexicality-
modulated propagations occurred at a much later time point than the STG to STN interactions
observed in the pooled analyses, perhaps suggesting that we are observing two different phe-
nomena. The earlier neural flow, visible for the pooled data analysis, did not pass the signif-
icance level when trials were differentiated by lexicality (and trial numbers were reduced
accordingly). Propagations within primary motor cortex were also significantly greater for
word trials than for pseudoword trials before and after speech onset (Figure 6, bottom), partic-
ularly during vowel articulation, which was not observed for propagation between precentral
gyrus and STN.
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Figure 6. Event-related causality (ERC) as a function of time for high-gamma activity propagation,
averaged over word (blue traces) and pseudoword trials (red traces) of all patients. Black asterisks (*)
denote significant differences between word trials and pseudoword trials. Colored time intervals
denote the average durations of consonants (C1 and C2) and vowel (V) articulation. (ERC propa-
gation integrated over the time period of pre-speech significant differences is schematically repre-
sented in Figure 8, below.)

DISCUSSION

Speech involves cognitive and motor processes across a large system of cerebral areas. The
basal ganglia has been implicated in speech processing, although the manner in which sub-
cortical sites, including the STN, participate in speech networks is still poorly understood. Our
findings provide evidence of sustained, and at times reciprocal, propagation (ERC flows) of
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ventral-dorsal (mm)

Figure 7. A schematic of high-gamma propagation integrated over —450 to —400 ms prior to speech onset (denoted by vertical dotted lines in
Figure 2)—that is, the interval of significantly stronger propagation from superior temporal gyrus to subthalamic nucleus (STN), as compared to
pre-stimulus baseline. The width of the arrows represents the magnitudes of increases in high-gamma propagation, as compared to pre-
stimulus baseline. Magenta = from STN into cortex, cyan = from cortex into STN. Only statistically group-significant increases in high-
gamma propagation are shown.

high-gamma (60-180 Hz) activity between cortical language areas and the STN during a spo-
ken word production task at the single recording session, subject, and group levels, which is
schematically represented in Figure 7. Moreover, our findings suggest that STG, primary motor
cortex, and primary somatosensory cortex activity directly influence STN, and that the lexical-
ity of read words and pseudowords modulates this influence prior to the onset of articulation.
These findings were substantiated through ERC’s emphasis on direct network node
interactions.

Psycholinguistic models have identified specific cognitive lead-in processes that may pre-
cede the motor processes driving articulation (Coltheart et al., 1993, 2001; Coltheart & Rastle,
1994; Guenther & Vladusich, 2012; Gupta & Macwhinney, 1995; Indefrey, 2011; Indefrey &
Levelt, 2000, 2004; Price et al., 1997; Quaglino et al., 2008; Schomers & Pulvermiiller, 2016).
Importantly, many of these cognitive processes are thought to be influenced by whether the to-
be-produced utterance is a known word (and therefore also a familiar motor sequence) or a
pseudoword (a pronounceable but novel motor sequence). For instance, to generate a phonol-
ogical representation for a visually presented word, the dual route perspective of reading
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proposes that while real words can be read aloud through access to the mental lexicon, the
pronunciation of written pseudowords must be created by grapheme-to-phoneme conversion
( , ; ). The resulting novel phonological rep-
resentations likely require additional processing in posterior STG before their phonetic artic-
ulatory realization, or at least incur an encumbered lexical search therein ( ;

). It therefore takes longer to plan the production of pseudowords,
as reflected in elevated response latencies ( ) ( ;

; ). Interestingly, even after a phonetic articulatory realization
has been achieved, lexicality effects can still be at play. For instance, errors in covert speech
show a lexicality bias, which has been attributed to the greater difficulty in internally moni-
toring and repairing impending speech errors that are lexically valid (e.g., Spoonerisms such as
saying “darn-bore” instead of “barn-door”).

The complexity of cognitive processes that occur prior to articulation makes a definitive
interpretation of our results premature. However, they are consistent with the speculations
of , who hypothesized that the hyperdirect STG-STN pathway could play
an important role in the feedforward control of speech. This hypothesis was based on predic-
tions from speech production models and general theories about basal ganglia function. For
instance, the gradient order directions into velocities of articulators (GODIVA) computational

model ( , ) hypothesizes that projections originating in the
supplementary motor areas and passing through the basal ganglia serve as gates on the outflow
of motor commands ( ; ; ).

These projections provide GO signals that signal speech motor patterns to be put into action
by primary motor cortex and implicate the basal ganglia in the planning and motor loops
involved with both articulation and speech motor program learning. The GODIVA model fur-
ther hypothesizes that the basal ganglia is involved in cortical initiation of phonological rep-
resentations across the entire articulatory arc, from phoneme-level motor programs within
larger syllabic and supra-syllabic motor sequences that drive articulatory movements during
speech, to the chunking of isolated movements into the action sequences that permit the
achievement of particular articulatory goals ( , ;

; ). Our results suggesting a feedforward gamma propagation to the
STN that peaks before shifts in articulation, including the onset and offset of speech and pho-
neme transitions ( ), generally supports these concepts.

The interactions we observed between STG and STN are also consistent with another
aspect of the GODIVA model, which uses the auditory context from perception of one’s
own utterance to determine the precise instant in time to initiate a motor program as the utter-
ance is concluding ( ; , ). Thus, signals
from the auditory cortex to the basal ganglia might include both auditory state and auditory
error signals. An alternative explanation may be that the STG is responsible for storing pho-
nological representations, projecting auditory input to premotor cortex to help develop speech
sound maps. Through this route, the STG and its speech sound map are predicted to be
engaged during both production (in a self-monitoring capacity) and perception of acquired

speech sounds, consistent with the dual stream model ( ). Periods of elevated
propagations from STG to STN may reflect the STG’s role in phonological form access or word
retrieval, which are also necessary for self-monitoring ( ; ). These

results are consistent with the hypothesis that the basal ganglia are involved in self-monitoring
(error prediction, evaluation, and corresponding behavioral compensation mechanisms) in
motor and cognitive contexts ( ; ;

; ; ).
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We also found that STN activity was directly influenced by propagations from the STG
approximately 150 ms before the start of articulation (Figure 4, bottom row, and Figure 6,
top). This timing aligns with the expected activation of the initiation map of GODIVA’s feed-
forward control subsystem (Guenther & Hickok, 2015a). Additional evidence for the basal
ganglia’s influence in this late stage of articulatory preparation comes from patients with PD,
who have difficulty executing voluntary movements and often exhibit hypokinetic dysarthria,
characterized by speech freezing and reduced speech volume (Duffy, 2012). Importantly,
STG propagations to the STN at this later time point were greater for words than for pseudo-
words (Figure 6, top, and Figure 8). This could reflect the STG’s encoding of lexical struc-
ture. Perhaps, as subjects read each word, they activate a phonological output lexicon
within the STG and load an existing, established acoustic representation, which, in turn,
influences the STN's gating of the associated motor mapping (Gvion & Friedmann, 2016;
Simos et al., 2000; Simos et al., 2002). Increasing the output of the STN subsequently
increases the output of the basal ganglia, and ultimately acts to inhibit the motor cortex,
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Figure 8. A schematic of a difference in intensity of high-gamma propagation for words vs. pseudowords, integrated over =208 to =117 ms
prior to speech onset, as denoted by earliest and latest time points of statistical significance (black asterisks in Figure 6). The width of the
straight and circular arrows represents increases in magnitudes of high-gamma propagation for words as compared to pseudowords. The
straight arrow denotes propagation from superior temporal gyrus (STG) into subthalamic nucleus. Circular arrows denote propagations
between recording sites located within STG and within primary motor cortex accordingly.
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so this result may be interpreted as word-reading-related motor gating initiated by the
STG, which is not cued when pseudowords are encountered. Since we previously showed
that gamma activity in the STN was greater for the pseudoword condition, other cortical
regions, such as the inferior frontal gyrus, may have greater influence on the STN during
pseudoword production. Indeed, view on production monitoring are consis-
tent with the idea that lexical-level representations may contribute to speech monitoring.
Further, this notion of gating by the STN during speech production, where one might expect
greater conflict for nonwords as compared to words, would result in higher thresholds (and
thus speech latencies such as in the results shown in ) for the initiation of speech
production. Essentially, Nozari stated that conflict monitoring ( ) is
based upon the idea that in situations with one clearly correct response one representation
will have a higher activation than others, and conflict occurs when several representations
have similar levels of activation, resulting in higher likelihoods of generating errors (

). The natural dynamics of the speech production system, such as the mapping of
semantic representations to lexical items by the STG, result in conflict (

), and decisions regarding how much conflict is high enough to be detected as an error
is a task nicely suited to a decision making framework ( ). Nozari proposed that
the information generated during primary production processes can be used to gauge the
probability of speech production errors, and that the probability of an error could be
reduced by applying appropriate control. The STN fits nicely into such a role, potentially
by acting to delay production until the mapping processes have converged more closely
on a certain representation, allowing moment-by-moment adjustments to speech plans to
optimize performance ( ). When competition at the lexical-level is high, conflict
signals by the STN, in conjunction with the STG, may prolong the selection process until
conflict falls below a certain level through competitive selection ( ), similar to
what we see in our speech latencies in . This conflict-based model also cleanly com-
plements the goal of adjustment of speech performance defined by Levelt’s theories of
speech monitoring ( ).

Additionally, the observed lexicality effects may suggest the involvement of the STN, and its
interaction with cortical sites, in the acquisition and processing of new motor plans for artic-
ulatory gestures, as our pseudowords require the unpracticed production of a syllable (and
thus decreased output from the basal ganglia to permit it) and linguistic models consider

speech processing to be chunked at the syllable level ( ). The direct and
indirect pathways of the basal ganglia have been proposed to mediate a competition that
selects the proper movement among competing alternatives ( ). We posit that the

STN could play a dual modulatory role in this framework. First, the STN may generate a brak-
ing signal for rapid inhibition of unwanted (particularly in the case of known words) chunked
movements by providing diffuse excitatory input to the basal ganglia output nuclei, thereby
inhibiting motor programs in the cortex via inhibition of the thalamus. Second, the STN
may interact with the globus pallidus to modulate motor programs involved in a given speech
sequence, such as scaling selected movements and signaling the imminent completion of a
given movement. We showed that STN propagations to primary motor cortex peaked prior
to the start of articulation, consistent with the idea that the STN may participate in selecting
articulatory gestures or stored syllabic plans. Interestingly, STN to primary motor cortex prop-
agation was not significantly different for words versus pseudowords. While one might have
expected to see articulation-related differences in propagation from the STN, overly conserva-
tive statistical corrections for multiple comparisons or the study’s low trial and electrode count
may have been too limiting. Novel strings of articulatory gestures (such as those produced in
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response to nonword or pseudoword stimuli) have previously been shown not to elicit
enhanced neural activity in primary motor cortex, so that may be also reflected here in primary
motor cortex interactions with STN ( ).

Our ERC results further substantiate a role for the STN generally in sensory processing,
suggesting that sequential neural interactions in gamma activity between primary somatosen-
sory cortex and STN occur just before speech onset ( , center). Recent studies support
the idea that the STN is a hub for the integration of sensory information within the cortical-
basal ganglia network ( , ; ;

). The bidirectional neural interactions between the STN and primary somatosensory
cortex in the gamma frequency range are consistent with evidence from STN-to-cortical
spike-phase coupling and ERC analyses during hand-gripping, that suggest the presence of
information transfer between sensory cortex and the STN ( ;

).

There are aspects of our data that limit interpretation of the ERC results. It is important to
note that the implantation of STN electrodes in our subjects was performed solely according to
clinical needs. Therefore, the number of STN sites revealing ERC were limited by the electrode
locations unique to each session in each subject. This limitation was mitigated by using group
statistical analyses subsequent to statistical analyses in single patients (

). However, it is possible that the STN is strongly influenced by activity in other cortical
areas during production of pseudowords, such as the inferior frontal gyrus, where a recent
study revealed increased activation to pseudowords compared to words (

). We were unable to investigate the mediating effects of other cortical sites (e.g., inferior
frontal gyrus, supplementary motor area, or ventral precentral gyrus) on STN activity in this
study because research electrodes were not present in more anterior cortical regions. Addition-
ally, our results were collected from patients with PD, a disease that affects auditory processing
of voice and speech, and thus the extent to which these findings represent interactions in the
non-PD brain is unknown. PD has been found to alter the statistical relationship between LFP
phase and spike timing in global brain networks and, as many brain functions are known to
depend on this mechanism for task performance, its disruption in the cortical-basal ganglia
motor circuit could result in pathological impairment of articulation in our subjects (

). Previous studies of STN LFPs have suggested the possibility of high frequency phase-
amplitude interactions as a PD biomarker, which, given our interest in the high-gamma fre-

quency band, may be impacting our results ( ; ).
PD patients also exhibit excessive cortical coupling of the phase of beta activity to gamma
amplitude ( , ). However, correlation of beta and gamma power

with PD symptom severity was not significant in these patients ( , ;

). Moreover, beta activity decreases dramatically during GO

responses ( ), resulting in an absence of detectable beta activity propagation

and making physiological interpretation of beta ERC difficult ( , ,

). Taking these constraints into account, we did not perform the ERC analysis on beta
band activity.

In summary, this unique study of simultaneously recorded cortical and subthalamic activity
during reading aloud demonstrates that high-gamma activity propagates between auditory cor-
tex and the STN, supporting the idea that the STN is a hub, dynamically integrating sensory
information for speech and other motor plans. Understanding the role of the cortical-basal
ganglia network in speech production will improve models of speech motor control and
may lead to more effective treatments for neurological speech disorders.
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