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Background. Persistent immune activation is thought to contribute to heightened atherosclerotic cardiovascular disease 
(ASCVD) risk among people with human immunodeficiency virus (PWH).

Methods. Participants (≥18 years) with or without human immunodeficiency virus (HIV) and without history of clinical 
ASCVD were enrolled. We hypothesized that increased macrophage-specific arterial infiltration would relate to plaque 
composition and systemic immune activation among PWH. We applied a novel targeted molecular imaging approach 
(technetium-99m [99mTc]–tilmanocept single photon emission computed tomography [SPECT]/CT) and comprehensive 
immune phenotyping.

Results. Aortic 99mTc-tilmanocept uptake was significantly higher among PWH (n = 20) than participants without HIV (n = 10) 
with similar 10-year ASCVD risk (P = .02). Among PWH, but not among participants without HIV, noncalcified aortic plaque 
volume related directly to aortic 99mTc-tilmanocept uptake at different uptake thresholds. An interaction (P = .001) was seen 
between HIV status and noncalcified plaque volume, but not calcified plaque (P = .83). Systemic levels of caspase-1 (P = .004), 
CD14–CD16+ (nonclassical/patrolling/homing) monocytes (P = .0004) and CD8+ T cells (P = .005) related positively and CD4+/ 
CD8+ T-cell ratio (P = .02) inversely to aortic 99mTc-tilmanocept uptake volume.

Conclusions. Macrophage-specific arterial infiltration was higher among PWH and related to noncalcified aortic plaque volume 
only among PWH. Key systemic markers of immune activation relating to macrophage-specific arterial infiltration may contribute to 
heightened ASCVD risk among PWH.
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Atherosclerotic cardiovascular disease (ASCVD) is increased 
among people with human immunodeficiency virus (PWH) 
[1–3]. We and others have hypothesized that persistent mono
cyte activation among PWH [4, 5] contributes to accelerated 
atherogenesis through downstream arterial inflammation. We 
previously utilized fluorine-18 fluorodeoxyglucose (18F-FDG) 

positron emission tomography/computed tomography (PET/ 
CT) to quantify aortic arterial inflammation, demonstrating 
that PWH have higher aortic 18F-FDG uptake [6]. 18F-FDG up
take on PET/CT, however, represents metabolically active cells 
and is not macrophage-specific at the receptor level [7].

Subsequently, we performed the first-in-human application 
of the macrophage-specific radiotracer, technetium-99m 
diethylenetriamine penta-acetic acid–mannosyl–dextran 
(99mTc-tilmanocept) to determine feasibility for assessment of 
vascular inflammation [8]. 99mTc-tilmanocept is currently US 
Food and Drug Administration (FDA)–approved for the iden
tification of lymph nodes in select solid tumors and binds to the 
macrophage cell surface mannose receptor, CD206, through its 
dextran backbone, conferring the radiotracer its specificity to 
CD206+ macrophages [9, 10]. CD206+ macrophages are tradi
tionally classified as M2 macrophages. However, in recent years, 
dichotomous classifications of macrophages into either 
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classically differentiated (M1) or alternatively differentiated 
(M2) have come into question given that macrophages can 
change their phenotype/polarization in response to their micro
environment [11, 12]. Additionally, CD206+ macrophages can 
be found at a higher density within thin-cap (high-risk) 
fibro-atheromatous plaque compared to plaques with a thick fi
brous cap, which are less prone to rupture [13].

To identify potential mechanisms of accelerated atherogen
esis among PWH, we assessed differences in aortic CD206+ 

macrophage-specific arterial infiltration (assessed using 
99mTc-tilmanocept single photon emission computed tomogra
phy [SPECT]/CT) in relationship to atherosclerotic plaque 
composition and systemic immune activation indices, compar
ing groups with and without human immunodeficiency virus 
(HIV) with similar ASCVD risk. The immune parameters in
vestigated for this study were selected because of either their as
sociation to atherogenesis in the general population (including 
NOD-like receptor protein family pyrin domain containing 3 
[NLRP3] inflammasome activation) [14, 15] and/or immune 
dysfunction among PWH (including monocyte activation 
[16] and T-cell senescence) [17, 18]. We hypothesized that 
PWH would have a higher level of aortic macrophage-specific 
arterial infiltration in relation to noncalcified aortic plaque and 
select systemic markers of immune activation and immune cell 
subpopulations.

METHODS

Study Design and Participants

People with and without HIV group-matched based on age, 
body mass index (BMI), and ASCVD risk scores were recruited 
from the Boston area between September 2015 and August 
2021 (Supplementary Figure 1). Eligible participants were 
≥18 years of age and had no history of myocardial infarction, 
angina, coronary artery stenting or surgery, current or recent 
treatment with anti-inflammatory medications (including 
prescription systemic steroids, anti-inflammatory/immuno
suppressant medications and/or statins), and no contraindica
tions to aortic CT angiography or SPECT/CT. Participants with 
HIV were eligible if receiving antiretroviral therapy (ART) 
without a change in regimen within 3 months of enrollment 
and a CD4 count >50 cells/mm3 but were not required to be 
virally suppressed. Evaluable SPECT/CT data were available 
for 20 PWH and 10 participants without HIV. The first 6 par
ticipants with HIV were recruited with known subclinical ath
erosclerosis to establish feasibility of 99mTc-tilmanocept 
SPECT/CT to investigate vascular inflammation [8]. The re
mainder of the participants enrolled (14 PWH and 10 partici
pants without HIV) were recruited without regard to the 
presence of subclinical atherosclerosis. One participant with 
HIV displayed abnormally low liver uptake of 
99mTc-tilmanocept as well as high 99mTc-tilmanocept signal 

throughout the heart and aorta, consistent with reduced hepat
ic clearance and high blood-pool activity. At the time of imag
ing, this subject did not have a confirmed diagnosis of liver 
disease but subsequently has received a diagnosis of cirrhosis 
thought to be secondary to viral hepatitis. To be conservative, 
this participant’s high aortic 99mTc-tilmanocept activity was ex
cluded from our data analysis. Additionally, 1 participant with
out HIV who underwent SPECT/CT imaging did not have an 
evaluable thoracic CT angiography due to a technical error 
and was thus not included in subsequent analyses. This study 
was approved by Mass General Brigham Institutional Review 
Board and registered at ClinicalTrials.gov (NCT02542371). 
All subjects provided written informed consent.

99mTc-Tilmanocept SPECT/CT
99mTc-tilmanocept SPECT/CT was performed using a Symbia 
T6 SPECT/CT system. For further details, see Supplementary 
Methods. Approximately 2 mCi (50 μg) (median, 1.9 [inter
quartile range, 1.7–2.1] mCi) of 99mTc-tilmanocept was inject
ed subcutaneously at a uniform injection site among study 
participants; the subcutaneous route of administration was 
chosen given that it is the FDA-approved route of administra
tion for 99mTc-tilmanocept. Due to the spatial resolution of 
SPECT imaging and prognostic capabilities of thoracic aortic 
atherosclerosis [19], the thoracic aorta was chosen as the 
vessel of interest. Approximately 180 minutes after the 
99mTc-tilmanocept injection, participants underwent 90 min
utes of thoracic SPECT imaging acquisition. Study procedures 
regarding the timing of SPECT image acquisition after injec
tion are described in our prior publication [8]. CT imaging ac
quisition occurred directly after SPECT imaging acquisition. 
All SPECT/CT scans were read, blinded to HIV status, by a sin
gle reader (M. Q. W.) to reduce variability. For each participant, 
we calculated the total volume within the aortic volume of in
terest that was at or above a range of radioactivity thresholds. 
These measures gave an indication of both the severity and ex
tent of aortic 99mTc-tilmanocept uptake. Given the novelty of 
this approach and the complex nature of macrophage infiltra
tion into plaque, we assessed 99mTc-tilmanocept uptake across 
a range of thresholds reflecting increasing tilmanocept uptake 
to further quantify differences in global aortic uptake activity 
between study cohorts. These thresholds were set at 3–6 times 
the background 99mTc-tilmanocept activity of the muscle. 
Percentage of the total volume at or above each activity thresh
old level was also computed. Image analysis was performed us
ing AMIDE software (http://amide.sourceforge.net/).

CT Angiography

Iodinated contrast-enhanced CT angiography of the thoracic 
aorta (ascending, arch, descending, and thoracic aorta to the 
level of the diaphragm) was performed using a second- or 
third-generation dual-source CT scanner (SOMATOM 
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Definition Flash or SOMATOM Force, Siemens; 
Supplementary Methods). Noncalcified plaque was defined as 
having a Hounsfield unit (HU) cutoff of <130, whereas calcified 
plaque was defined as having a HU cutoff of ≥130 [20].

Immune Phenotyping

Plasma levels of the following circulating markers of immune ac
tivation were assessed using commercially available enzyme- 
linked immunosorbent assay kits (Supplementary Table 1): 
caspase-1, CXCL10/interferon-γ–induced protein 10 (IP-10), 
CCL2/monocyte chemoattractant protein 1 (MCP-1), high- 
sensitivity interleukin 6 (hsIL-6), interleukin 18 (IL-18), 
lipoprotein-associated phospholipase A2 (Lp-PLA2), soluble 
CD14 (sCD14), oxidized low-density lipoprotein (oxLDL), and 
soluble CD163 (sCD163). All samples were run in duplicate 
with assay controls and standard curves. Flow cytometry was per
formed using ethylenediaminetetraacetic acid–coagulated whole 
blood using a BD FACSAria IIIu System, which was stained within 
120–240 minutes from the time of collection [4]. Monocyte (clas
sical: CD14+CD16–; inflammatory/intermediate: CD14+CD16+; 
nonclassical/patrolling/homing: CD14–CD16+), and lymphocyte 
subpopulations (CD4+ and CD8+ T lymphocytes) were identified 
(Supplementary Methods and Supplementary Figure 2).

Metabolic Phenotyping

Fasting lipid levels and medical history were prospectively ob
tained. Ten-year ASCVD risk score was determined [21].

Statistical Analysis

The primary endpoint was the between-group difference in aor
tic 99mTc-tilmanocept uptake (macrophage-specific arterial infil
tration) on SPECT/CT among participants with or without HIV. 
Secondary endpoints included assessment of the relationship be
tween aortic 99mTc-tilmanocept uptake and aortic atherosclerot
ic plaque volume as well as the relationship between aortic 
99mTc-tilmanocept uptake and measures of immune activa
tion/inflammation. For our primary endpoint analysis, a repeat
ed measures analysis of variance (ANOVA) including all 
observations with the percentage aortic volume above a 
given threshold of 99mTc-tilmanocept uptake, controlling for 
sex, was used. The relationship between aortic atherosclerotic 
plaque volume and aortic volume at a given threshold of 
99mTc-tilmanocept uptake was determined in a series of linear 
mixed-effects regression models using restricted maximum like
lihood estimation with aortic volume with 99mTc-tilmanocept 
uptake as the dependent variable, individual (enrollment num
ber) as a random effect, and independent fixed effects of HIV sta
tus, 99mTc-tilmanocept uptake threshold, aortic plaque volume, 
and an interaction term for HIV status and plaque volume, in 
models for each plaque type (calcified and noncalcified). The re
lationship between aortic 99mTc-tilmanocept uptake and im
mune parameters as well as aortic plaque volume and immune 

parameters, respectively, was also assessed in similar modeling. 
Sensitivity analyses were performed excluding any participant 
with aortic plaque volume >1000 mm3 to determine if the signif
icant relationship found between aortic atherosclerotic plaque 
volume and 99mTc-tilmanocept uptake was driven by partici
pants with higher atherosclerotic plaque volumes. One partici
pant with HIV was excluded as an outlier in primary and 
secondary endpoint analyses given that his aortic atherosclerotic 
plaque volume was 4 standard deviations above the mean of par
ticipants with HIV. Given that this was an exploratory analysis, a 
formal sample size calculation was not performed. Statistical 
tests were performed using JMP software (version 15 and 16; 
SAS Institute) and SAS version 9.4.

RESULTS

Demographic Parameters

Study participants had a mean age of 56 ± 7 years. Participants 
with and those without HIV did not differ with respect to race, 
BMI, lipid levels, or current smoking status. Ten-year ASCVD 
risk score was similar between groups (7.3 ± 4.7% for PWH vs 
8.1 ± 5.3% for participants without HIV; P = .70). Among 
PWH, the mean ± standard deviation duration of HIV infec
tion was 22 ± 9 years, CD4+ T-cell count was 633 ± 269 cells/ 
mm3, and baseline log viral load was 1.28 (1.28–1.42 [inter
quartile range]) copies/mL, with 95% of PWH having a viral 
load below the limit of detection (<20 copies/mL). Aortic pla
que volume tended to be higher among participants with HIV 
(Table 1).

Systemic Levels of Markers of Immune Activation and Immune Cell 
Subpopulations

PWH had significantly higher levels of CCL2/MCP-1, 
CXCL10/IP-10, caspase-1, percentage of circulating mono
cytes, and number of CD14–CD16+ (nonclassical/patrolling/ 
homing) monocytes and CD8+ T cells, as well as lower CD4+ 

T cells and median CD4+/CD8+ T-cell ratio (Table 2).

Aortic 99mTc-Tilmanocept Uptake on SPECT/CT

Aortic 99mTc-tilmanocept uptake was characterized by the per
centage of aortic volume with activity at or above specific thresh
olds: 3–6 times the background muscle 99mTc-tilmanocept 
uptake, as described in the Methods. A curve was generated 
for each participant with the percentage uptake across each 
threshold (Figure 1A and 1B). In a repeated-measures 
ANOVA controlling for sex, aortic 99mTc-tilmanocept uptake 
was higher among PWH than in participants without HIV (P 
= .02), particularly at the higher thresholds of 5, 5.5, and 6 times 
background activity (Figure 1B).

Aortic 99mTc-Tilmanocept Uptake in Relation to Atherosclerotic Plaque

In our multivariable regression modeling with aortic 
99mTc-tilmanocept uptake as the dependent variable, the 
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interaction term for HIV status and aortic plaque volume was 
significant for the model of noncalcified plaque (overall model 
R2 = 0.72, interaction term: β-estimate = 27 mm3, P < .001 for 
interaction), but not for calcified plaque (overall model R2 = 
0.79, interaction term: β-estimate = 5 mm3, P = .83 for interac
tion; Supplementary Table 2). Furthermore, the relationships 
between noncalcified aortic plaque volume and aortic volume 
of 99mTc-tilmanocept uptake at or above each threshold were 

significant among PWH (all P < .01) but not among those with
out HIV (Table 3; Figure 2).

Sensitivity Analysis for Aortic Plaque Volume

A sensitivity analysis was performed, excluding any partici
pants with aortic plaque volume >1000 mm3. With this sensi
tivity analyses, the interaction term for noncalcified plaque and 
HIV status remained significant (overall model R2 = 0.77, inter
action term: β-estimate = 29 mm3, P < .0001 for interaction), 
and the interaction term for calcified plaque remained nonsig
nificant (overall R2 = 0.74, interaction term: β-estimate = 
−7 mm3, P = .76 for interaction). Furthermore, noncalcified 
plaque volume continued to relate significantly to aortic vol
ume of 99mTc-tilmanocept uptake at every threshold among 
PWH but not among participants without HIV 
(Supplementary Table 3). Total, noncalcified, and calcified aor
tic plaque volume also related to systemic levels of markers of 
immune activation and immune cell subpopulations 
(Supplementary Table 4).

Aortic 99mTc-Tilmanocept Uptake in Relation to Systemic Levels of 
Markers of Immune Activation and Immune Cell Subpopulations

Among all participants, aortic volume with 99mTc-tilmanocept up
take related positively to caspase-1 (β-estimate = 137.4 mm3, P = 
.004) but inversely to CCL2/MCP-1 (β-estimate = −161.2 mm3, 
P = .0001) (Table 2). Aortic volume with 99mTc-tilmanocept 
uptake, however, did not relate to systemic levels of sCD14 and 
sCD163 (Table 2). Moreover, among all participants, there was a 
significant relationship between the percentage of monocytes 
and aortic volume of 99mTc-tilmanocept uptake (β-estimate = 
2028.9 mm3, P = .04). With respect to monocyte subpopulations, 
the number of circulating CD14+CD16– (classical) monocytes 
(β-estimate = 66.9 mm3, P < .0001) and the number of 
CD14–CD16+ (nonclassical/patrolling/homing) monocytes 
(β-estimate = 554.2 mm3, P = .0004) related positively to aortic 
volume with 99mTc-tilmanocept uptake. With respect to lympho
cyte subpopulations, aortic volume with 99mTc-tilmanocept 
uptake related inversely to the percentage of CD4+ T cells 
(β-estimate = −240.3 mm3, P = .04) and positively to the percent
age of CD8+ T cells (β-estimate = 343.8 mm3, P = .009). Notably, 
the CD4+/CD8+ T-cell ratio related inversely to aortic volume 
with 99mTc-tilmanocept uptake (β-estimate = −3166.8 mm3, 
P = .02). The percentage of circulating monocytes, absolute num
ber of CD14+CD16– (classical) monocytes, percentage of CD4+ T 
cells, and absolute number of CD8+ T cells differed in relationship 
to arterial inflammation by HIV status with a positive interaction 
term in regression modeling (Table 2).

DISCUSSION

Among a relatively small cohort, we demonstrated significantly 
higher thoracic aortic 99mTc-tilmanocept uptake on SPECT/CT 
across different uptake thresholds among PWH, reflective of 

Table 1. Baseline Characteristics Among Participants With and Without 
Human Immunodeficiency Virus

Characteristic

Participants  
With HIV  
(n = 20)

Participants 
Without HIV  

(n = 10)
P 

Value

Baseline demographics

Age, y 55 ± 7 58 ± 4 .12

Sex, %

Male 80 (16/20) 80 (8/10) 1.00

Female 20 (4/20) 20 (2/10)

Race, %

White 50 (10/20) 70 (7/10) .52

Black 40 (8/20) 30 (3/10)

Asian 5 (1/20) 0 (0/10)

Other 5 (1/20) 0 (0/10)

10-year ASCVD risk score, %a 7.3 ± 4.7 8.1 ± 5.3 .70

BMI, kg/m2 25.7 ± 4.7 27.6 ± 5.3 .34

Total cholesterol, mg/dL 185 ± 33 188 ± 36 .85

LDL-C, mg/dL 111 ± 27 107 ± 33 .73

HDL-C, mg/dL 49 (42–54) 57 (45–73) .06

Triglycerides, mg/dL 103 (77–178) 104 (77–160) .79

Current HTN, % 15 (3/20) 10 (1/10) .70

Current smoking, % 30 (6/20) 30 (3/10) 1.00

HIV-specific parameters

Duration since HIV diagnosis, y 22 ± 9 …

CD4+ T-cell count, cells/mm3 633 ± 269 …

Log HIV viral load, copies/mL 1.28 (1.28– 
1.42)

…

HIV viral load, copies/mLb 19 (19–27) …

Aortic atherosclerotic plaque volume on CTAc

Total (noncalcified and calcified) 
aortic plaque volume, mm3

284.5 (0.0– 
578.6)

109.1 (0.0–350.1) .45

Noncalcified aortic plaque 
volume, mm3 (HU <130)

79.8 (0.0– 
481.0)

28.1 (0.0–206.0) .42

Calcified aortic plaque volume, 
mm3 (HU ≥130)

97.6 (0.0– 
262.4)

34.3 (0.0–114.1) .32

Normally distributed data are reported as mean ± standard deviation. Nonnormally 
distributed data are reported as median (interquartile range). Between-group differences 
of baseline demographic characteristics were assessed using a Student t test, Wilcoxon 
rank-sum test, or χ2 test as appropriate. Aortic atherosclerotic plaque volume was 
quantified on thoracic CTA. Calcified and noncalcified plaque volumes are presented with 
a threshold of ≥130 HU differentiating calcified from noncalcified plaque.  

Abbreviations: ASCVD, atherosclerotic cardiovascular disease; BMI, body mass index; CTA, 
computed tomography angiography; HDL-C, high-density lipoprotein cholesterol; HIV, 
human immunodeficiency virus; HTN, hypertension; HU, Hounsfield units; LDL-C, 
low-density lipoprotein cholesterol.  
aLDL-C level was imputed as 70 mg/dL for the 10-year ASCVD risk score calculation for 1 
study participant without HIV due to an LDL-C of <70 mg/dL.  
bFor participants with HIV whose viral load was undetectable, a value of 19 copies/mL was 
imputed given that the lower limit of detection for the HIV viral load assay was 20 copies/mL.  
cOne participant with HIV was not included because his total aortic plaque volume was 4 
standard deviations above the median total aortic plaque volume among participants with 
HIV. Furthermore, 1 participant without HIV did not complete his CTA and thus did not 
have aortic plaque volume data available.
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increased CD206+ macrophage-specific arterial infiltration in 
this population, compared to participants without HIV. 
Noncalcified plaque volume directly related to aortic 
99mTc-tilmanocept uptake across different uptake thresholds 
among PWH but not among participants without HIV. 
Aortic volume with 99mTc-tilmanocept uptake also related pos
itively to systemic caspase-1 and CD14–CD16+ (nonclassical/ 
patrolling/homing) monocyte levels but was inversely related 
to the CD4+/CD8+ T-cell ratio. Our results highlight key differ
ences in CD206+ macrophage-specific arterial infiltration in 
PWH, limited to noncalcified atherosclerotic plaque, and dem
onstrate key systemic levels of markers of immune activation 
and immune cell subpopulations, such as the NLRP3 inflam
masome and T-cell senescence, which were significantly related 
to arterial inflammation.

Aortic volume with 99mTc-tilmanocept uptake on SPECT/CT 
was significantly higher among participants with than 
those without HIV, particularly at higher uptake thresholds. We 
previously published on ex vivo studies demonstrating a high de
gree of co-localization and specificity between immunofluores
cent probes of tilmanocept and CD206 in the aortic wall [8]. 

Thus, given that 99mTc-tilmanocept binds to CD206+ macrophag
es, our current findings suggest that CD206+ macrophage-specific 
arterial infiltration is higher among asymptomatic PWH on ART 
compared to participants without HIV with similar ASCVD risk 
scores. Macrophages play a key role in atherogenesis and are often 
classified as either classically differentiated (M1) or alternatively 
differentiated (M2). M2 macrophages, in particular, express 
high levels of CD206 on their surface and have multiple roles 
within atherosclerotic plaque, including tissue remodeling, 
phagocytosis of apoptotic cells, and the secretion of low levels 
of the proinflammatory cytokines IL-1β and IL-6 and high levels 
of the anti-inflammatory cytokine IL-10 [22]. Despite these di
chotomous classifications, macrophages may change their pheno
type/polarization depending on their microenvironment, 
resulting in significant changes in their transcriptome [23–27]. 
Moreover, histopathological studies have demonstrated that 
CD206+ macrophage-specific arterial infiltration is higher within 
high-risk atherosclerotic plaque compared to plaque less prone to 
rupture [13].

Although participants with and without HIV had similar 
ASCVD risk scores, CD206+ macrophage-specific arterial 

Figure 1. Aortic technetium-99m (99mTc)–tilmanocept single photon emission computed tomography (SPECT/CT) imaging among participants with or without human 
immunodeficiency virus (HIV). A, Aortic99mTc-tilmanocept SPECT/CT. Representative axial SPECT/CT cuts from a participant with HIV (left) and a participant without HIV 
(right). Higher signal-to-background ratio (ie, 99mTc-tilmanocept uptake signal-to-background ratio [SBR]) is depicted by red-orange on SPECT/CT images whereas a lower 
SBR is depicted by blue-purple on SPECT/CT images. The SPECT/CT image from the participant with HIV demonstrates a higher level of aortic 99mTc-tilmanocept uptake. 
B, Aortic99mTc-tilmanocept uptake on SPECT/CT. The percentage of aortic volume with 99mTc-tilmanocept on SPECT/CT is demonstrated across different thresholds (3–6 times) at or 
above muscle activity. Each line (red for participants with HIV and blue for participants without HIV) connects the data for a single participant. Participants with HIV had a significantly 
higher percentage aortic volume with 99mTc-tilmanocept uptake across different thresholds above muscle activity compared to participants without HIV (P = .02).
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infiltration related significantly to aortic plaque volume among 
participants with HIV but not among participants without HIV. 
Furthermore, among PWH, arterial inflammation was differen
tially related to aortic plaque volume based on plaque subtype 
with a significant relationship found with noncalcified plaque 
and not with calcified plaque. The data from this study extend 
prior work identifying the potential significance of increased 
rupture-prone [28] noncalcified plaque in PWH [29] to in
creased arterial inflammation through macrophage-specific im
aging. Though aortic plaque volume did not differ by group, we 
performed a sensitivity analysis to ensure our results were not 
driven by the higher aortic plaque volume seen among some 
of the participants with HIV and demonstrated similar results.

CD206+ macrophage-specific arterial infiltration also signifi
cantly related to systemic levels of a key marker of NLRP3 in
flammasome activation, caspase-1, in our study cohort. 
Caspase-1, which was higher among our participants with 

HIV, plays a central role in the generation of proinflammatory 
cytokines in response to NLRP3 inflammasome activation 
[14, 30, 31]. General population studies [32] and animal studies 
[33] suggest that NLRP3 inflammasome activation promotes 
atherogenesis. Furthermore, caspase-1 also plays a role in 
CD4+ T-cell depletion in HIV by triggering pyroptosis—a high
ly inflammatory form of programmed cell death [34]. In Toribio 
et al, systemic caspase-1 levels did not relate to aortic 18F-FDG 
PET uptake, unlike in the current study, where we did find a sig
nificant relationship between aortic 99mTc-tilmanocept uptake 
and systemic caspase-1 levels [15]. Differences in the imaging 
techniques and study populations (PWH newly initiated on 
ART in the prior study vs chronically treated with ART in cur
rent) could have contributed to these observed differences. Our 
study also found an inverse relationship between systemic levels 
of a proinflammatory cytokine involved in monocyte recruit
ment to the endothelium, CCL2/MCP-1 [35], and CD206+ 

Table 3. Aortic Volume With 99mTc-Tilmanocept Uptake Across Different Thresholds in Relation to Aortic Noncalcified Plaque Volume

99mTc-Tilmanocept Uptake Threshold

Participants With HIVa 

(n = 18)
Participants Without HIVb 

(n = 9)

R2 β-Estimate P Value R2 β-Estimate P Value

3× muscle activity 0.46 64.8 .002 0.008 9.0 .81

3.5× muscle activity 0.43 57.4 .003 0.0001 −1.0 .98

4× muscle activity 0.41 49.5 .004 0.009 −6.8 .81

4.5× muscle activity 0.43 42.8 .003 0.03 −7.0 .68

5× muscle activity 0.44 34.1 .003 0.08 −7.6 .45

5.5× muscle activity 0.44 25.9 .003 0.05 −3.1 .56

6× muscle activity 0.44 19.5 .003 0.14 −2.4 .32

R2, β-estimate, and P value from simple (bivariate) linear regression modeling at the indicated uptake threshold and HIV status, with 99mTc-tilmanocept uptake as the dependent variable and 
aortic noncalcified volume as the independent variable. Bivariate regression analyses results for the aortic noncalcified volume with Hounsfield unit <130 are shown. P values <.05 were 
considered significant and are bolded.  

Abbreviations: 99mTc, 99m-technetium; HIV, human immunodeficiency virus.  
aOne participant with HIV was not included because his total aortic plaque volume was 4 standard deviations above the median total aortic plaque volume among participants with HIV. Another 
participant with HIV was not included because he had high levels of 99mTc-tilmanocept uptake, which were thought to be likely due to decreased hepatic clearance.  
bOne participant without HIV did not complete his computed tomography angiography and thus did not have aortic plaque volume data available.

Figure 2. Aortic volume with technetium-99m (99mTc)–tilmanocept uptake across different thresholds in relation to aortic noncalcified plaque volume. The relationship 
between aortic volume with 99mTc-tilmanocept uptake and aortic noncalcified plaque volume is demonstrated here. Each vertical set of circles represents the aortic volume 
with 99mTc-tilmanocept uptake at a given threshold as a function of the aortic noncalcified plaque volume for each participant. Furthermore, linear regression lines for each 
uptake threshold are also shown. Using linear regression modeling, aortic volume with 99mTc-tilmanocept uptake across different thresholds related significantly to aortic 
noncalcified plaque volume among participants with human immunodeficiency virus (HIV) (and not among participants without HIV). *P < .05.
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macrophage-specific arterial infiltration. Furthermore, our 
study did not find a significant relationship between systemic 
levels of the markers of monocyte activation, sCD14 and 
sCD163—markers that have been associated with ASCVD 
among PWH in prior studies [16, 36]. While histopathologic stud
ies have demonstrated that CD163 macrophages co-localize with 
CD206 macrophages within atherosclerotic plaque, it is unclear 
whether systemic levels of sCD163 relate to CD206+ 

macrophage-specific arterial infiltration [13]. Thus, the absence of 
significant relationships between systemic markers of monocyte ac
tivation, such as sCD163, and CD206+ macrophage-specific arterial 
infiltration in our current study may suggest that only select mark
ers of immune activation associate with tissue level CD206+ macro
phage infiltration. Together, these findings highlight the need for 
additional studies that target NLRP3 inflammasome and monocyte 
activation, respectively, to understand the physiologic relevance of 
the directionality and significance of these relationships with re
spect to C206+ macrophage-specific arterial infiltration and down
stream atherogenesis among PWH.

In addition to systemic markers of immune activation, 
CD206+ macrophage-specific arterial infiltration also related 
to select systemic levels of immune subpopulations such as non
classical/homing (CD14–CD16+) monocytes. Nonclassical/ 
homing monocytes are also referred to as patrolling monocytes 
given that the high expression of the cell surface adhesion recep
tor CX3CR1 allows them to patrol the vascular endothelium 
and, while doing so, facilitate the removal of damaged endothe
lial cells [37, 38]. In addition to being found within the luminal 
side of the vascular endothelium, nonclassical monocytes also 
have been found within atherosclerotic plaque [39]. Higher lev
els of nonclassical monocytes among PWH may occur in re
sponse to inflammatory stimuli, such as lipopolysaccharide 
and oxLDL [40]. Furthermore, studies have suggested that 
CD16+ monocytes, including nonclassical monocytes, may be 
more susceptible to HIV viral entry and viral replication, facil
itating viral persistence among PWH on ART [41].

Arterial inflammation among our study cohort also related 
to systemic CD8+ T-cell levels and the CD4+/CD8+ T-cell ratio. 
CD8+ T cells have both proatherogenic (through the release of 
proinflammatory cytokines and cytotoxicity toward cells in
volved in lesion stability) and anti-atherogenic effects (through 
its cytotoxicity of antigen presenting cells and inhibition 
of CD4+ T-cell polarization to a proatherogenic phenotype), 
depending on their cytokine and/or chemokine receptor 
expression [42]. Furthermore, pathological studies have dem
onstrated that CD8+ T-cell infiltration in the vascular intima 
increases with atherosclerotic disease severity [43] and consists 
of highly activated CD8+ T cells [44]. Among PWH on ART, 
CD8+ T cells remain elevated despite CD4+ T-cell recovery 
[45]; CD8+ T-cell dysregulation through T-cell exhaustion 
and senescence is thought to contribute to this persistent eleva
tion of CD8+ T cells [17] and, in turn, a lower CD4+/CD8+ 

T-cell ratio. The CD4+/CD8+ T-cell ratio is a key marker of im
mune recovery, with lower levels reflective of immune senes
cence [18]. Senescent T cells have been implicated in 
atherosclerosis due to their proinflammatory cytokine profile 
and secretion of granzymes and perforin that result in the lysis 
of vascular smooth muscle cells and endothelial cells [46].

Our study was limited by its cross-sectional study design and 
recruitment from 1 geographic region. The relatively small 
sample size may have precluded the detection of small differ
ences in demographic parameters and secondary endpoints re
lated to immune parameters and atherosclerotic plaque but was 
sufficient to detect significant differences in our prespecified 
primary endpoint of CD206+ macrophage-specific arterial in
filtration across HIV status. The results from this study are 
hypothesis-generating but provide key biological insights into 
advanced atherogenesis in people with HIV. These limitations 
notwithstanding, our study is the first to apply the novel non
invasive targeted imaging modality, 99mTc-tilmanocept 
SPECT/CT, to investigate CD206+ macrophage-specific arterial 
infiltration among PWH on ART in relationship to detailed as
sessment of plaque type and immunophenotyping, comparing 
participants with HIV and without HIV, across a range of in
creased uptake thresholds.

It is currently unknown whether CD206+ macrophage-specific 
arterial infiltration, reflected by 99mTc-tilmanocept SPECT/CT 
uptake, represents uptake among resident-tissue vs monocyte- 
derived macrophages or both of these macrophage subtypes. 
Furthermore, it is also unknown whether CD206+ 

macrophage-specific arterial infiltration is compensatory or caus
al to atherosclerotic plaque development. Future studies applying 
this novel imaging strategy, including both in vivo and ex vivo 
studies, may elucidate this and thus provide insights into how per
sistent systemic immune activation among PWH contributes to 
accelerated atherogenesis in the setting of HIV infection as well 
as other inflammatory conditions. Additionally, studies investigat
ing the relationship between circulating CD206+ monocytes and 
CD206+ macrophage-specific arterial infiltration are also needed. 
Preclinical and recent clinical studies have investigated the use of 
fluorescently labeled tilmanocept [47–50], which could potentially 
be used together with other imaging modalities such as PET to im
age other vessels, including the coronary vasculature. Clinical ap
plications in the development of this imaging modality could 
include use of 99mTc-tilmanocept SPECT/CT imaging to follow 
dynamic changes in CD206+ macrophage-specific arterial infiltra
tion in relation to changes over time in immune function and in 
response to targeted interventions to reduce immune activation.

These data suggest that increased CD206+ macrophage-specific 
arterial infiltration of noncalcified plaque may be a unique mech
anism of increased cardiovascular disease risk in PWH. Use of this 
CD206+ macrophage-specific imaging modality may help to iden
tify future targets for novel immunomodulatory therapies to re
duce ASCVD risk among PWH.
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