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Background. Seasonal influenza virus infection causes a range of disease severity, including lower respiratory tract infection 
with respiratory failure. We evaluated the association of common variants in interferon (IFN) regulatory genes with 
susceptibility to critical influenza infection in children.

Methods. We performed targeted sequencing of 69 influenza-associated candidate genes in 348 children from 24 US centers 
admitted to the intensive care unit with influenza infection and lacking risk factors for severe influenza infection (PICFlu 
cohort, 59.4% male). As controls, whole genome sequencing from 675 children with asthma (CAMP cohort, 62.5% male) was 
compared. We assessed functional relevance using PICFlu whole blood gene expression levels for the gene and calculated IFN 
gene signature score.

Results. Common variants in DDX58, encoding the retinoic acid–inducible gene I (RIG-I) receptor, demonstrated association 
above or around the Bonferroni-corrected threshold (synonymous variant rs3205166; intronic variant rs4487862). The intronic 
single-nucleotide polymorphism rs4487862 minor allele was associated with decreased DDX58 expression and IFN signature (P 
< .05 and P = .0009, respectively) which provided evidence supporting the genetic variants’ impact on RIG-I and IFN immunity.

Conclusions. We provide evidence associating common gene variants in DDX58 with susceptibility to severe influenza 
infection in children. RIG-I may be essential for preventing life-threatening influenza-associated disease.
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Seasonal influenza infection causes high morbidity with an es
timated 140 000–710 000 hospitalizations annually between 
2010 and 2020 [1]. Although influenza infection most often 
causes self-limited and uncomplicated disease, individuals 
with underlying chronic disorders are at higher risk for devel
oping complications, including death. However, healthy chil
dren and adolescents can also develop critical illness 
requiring life support, particularly during pandemics when dis
ease is prevalent in young healthy individuals [2]. In any given 
individual, host genetics and innate and adaptive immunity 
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influence susceptibility to and outcome of influenza virus infec
tion. Among these factors, type I interferon (IFN) and down
stream IFN-regulated responses are important for early 
antiviral host defense by suppressing virus replication. Rare 
variants in genes mediating the type I IFN response (including 
TLR3, IRF7, and IRF9) have been reported in a small number of 
individuals critically ill with influenza virus infection [3–5].

Common variants in IFN-associated genes have also been re
ported to be associated with influenza disease susceptibility in 
children and adults [6], with the strongest support for 
interferon-inducible transmembrane protein 3 (IFITM3) [7]. 
Moreover, different IFN activity levels in early viral infection 
have been associated with different ancestries and correlate 
with cis-expression quantitative trait loci (eQTL), which ex
plains ancestry-associated differences [8]. Therefore, it is im
portant to identify common variants for eQTL as well as rare 
ones for loss-of-function mutations in genes linked to type I 
IFN signaling and clinical outcome.

From an immunologic standpoint, children differ develop
mentally from adults, for example having more plasmacytoid 
dendritic cells that are a major producer of type I IFN responses 
[9]. Therefore, the impact of genetic risk factors for susceptibil
ity to influenza virus infection may differ depending upon age. 
Because of this, we evaluated for potential association of com
mon variants in IFN regulatory genes in a pediatric cohort ad
mitted to the intensive care unit (ICU) with severe disease. 
Children enrolled in a longitudinal asthma study served as 
the comparison cohort, using covariate adjustment for age, 
sex, and ethnicity.

METHODS

Study Populations

The Pediatric Intensive Care Influenza (PICFlu) investigators 
were from 24 North American sites (Supplementary 
Appendix) from the larger Pediatric Acute Lung Injury and 
Sepsis Investigators (PALISI) research network. Children 
(<18 years of age) with confirmed influenza infection admitted 
to the pediatric intensive care units (PICUs) at 24 sites were en
rolled (2008–2016). Influenza virus infection was confirmed 
from clinical testing of respiratory samples [10] and/or by 
research testing on nasopharyngeal samples using multiplex 
polymerase chain reaction–based testing. Children with immu
nosuppressive or severe underlying respiratory, metabolic 
cardiac, neurologic, or other condition(s) predisposing them 
to more severe influenza infection were ineligible.

For the comparison, the Childhood Asthma Management 
Program (CAMP) longitudinal cohort was used (enrollment 
1993–1995). All participants in CAMP were aged 5–12 years 
at enrollment and had mild to moderate persistent asthma 
for at least 6 months in the previous year. The mild to moderate 
severity classification was confirmed using a self-reported diary 

score and peak expiratory flow readings over a 28-day period 
using criteria as previously described [11]. Children with severe 
asthma or other chronic medical conditions were excluded.

Subject recruitment and study procedures for both PICFlu 
and CAMP have been previously described in detail [12, 13]. 
Written informed consent from parents and/or the subject’s as
sent were obtained for each childhood study protocol. Study 
protocols were approved by the institutional review boards 
(IRBs) of Boston Children’s Hospital (PICFlu) and Brigham 
and Women’s Hospital (CAMP) in Boston, Massachusetts 
(IRB numbers X08-11-0534 and IRB-P00037375), and by local 
IRBs at each recruitment site for each study.

Genotyping Data

Genomic DNA from PICFlu patients were extracted from pe
ripheral blood using the Gentra Puregene Blood kit (Qiagen). 
Targeted resequencing using Illumina TruSeq Custom 
Amplicon kit (TSCA; Illumina, San Diego, California) was per
formed to generate genotype information for 69 IFN pathway 
and related genes (Supplementary Table 1). In short, oligonu
cleotide probes were designed to generate 425 bp amplicons us
ing Illumina DesignStudio tool to cover exonic regions and 
some potential regulatory intronic regions of the targeted 
genes. Sequencing libraries were prepared following the 
TSCA library preparation guide using 200 ng of genomic 
DNA. Up to 96 samples were barcoded using Illumina 
TruSeq index primers and the multiplexed libraries were 
pooled for sequencing. Sequencing of amplicons was per
formed using MiSeq V3 Sequencing Kit (Illumina) and run 
on a MiSeq Illumina sequencer at a 2 × 300 bp read-length con
figuration with dual indexing.

The whole genome sequencing data for CAMP were gener
ated as part of the National Heart, Lung, and Blood Institute 
Trans-Omics for Precision Medicine (TOPMed) Program 
[14]. Details regarding the laboratory methods, data process
ing, and quality control are described (TOPMed accession re
leased on dbGaP, accession number phs001726).

After combining genotyping data in both cohorts, we 
included only single-nucleotide polymorphisms (SNPs) with 
<1% SNP missing rate, allele frequency >0.1%, and Hardy- 
Weinberg proportions (P > 10−5) for variant quality control. 
This yielded 1268 variants tested for association with severe in
fluenza virus infection in children.

Gene Expression Measurements

PAXgene RNA vacutainers (PreAnalytix) with 1–2.5 mL whole 
blood, collected within the first 72 hours of ICU admission, 
were incubated at room temperature for 18–24 hours (mini
mum of 2 hours) and frozen at –80°C. Total RNA was extracted 
using the PAXgene Blood RNA kit (Qiagen) and QIAcube in
strument as recommended by the manufacturer, then quality 
checked using the RNA 6000 Nano kit and Agilent 2100 
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Bioanalyzer (Agilent Technologies). Gene expression of vari
ous messenger RNA targets was measured using a 
NanoString custom-designed probe panel according to the 
manufacturer with the modification that an estimated 85 ng 
RNA was run for each sample (NanoString Technologies, 
Seattle, Washington) [15]. Data were quality checked and nor
malized to 6 housekeeping genes (B2M, DECR1, GUSB, 
HPRT1, PPIB, POLG).

The expression levels of 10 type I IFN signature genes (IFI27, 
IFI44L, IFIT1, ISG15, RSAD2, STAT1, STAT2, IRF7, MX1, 
OAS3) were used for the IFN score calculation. The IFN scores 
were calculated by the geometric mean of the NanoString 
counts of selected IFN signature genes for each sample as de
scribed by Kim et al [16]. Gene expression levels for log- 
transformed DDX58 (retinoic acid–inducible gene I [RIG-I]) 
counts and the IFN scores were compared in different subject 
groups using 1-way analysis of variance test.

Statistical Analysis

Demographic characteristics and clinical features between 
groups were compared using t tests or χ2 tests, as appropriate, 
using the R statistical software 4.03. We performed generalized 
logistic regression of 2 cohorts adjusting for age, sex, and 10 
principal components for genetic ancestry under the additive 
model. Association analysis was done by using PLINK 1.9 
(downloaded on 24 January 2020). P values were considered 
significant at the Bonferroni-corrected threshold for testing 

1268 variants (0.05/1268 = 3.94 × 10−5). Linkage disequili
brium (LD) information was estimated using the 1000 
Genomes Project datasets [17, 18]. Two-tailed t tests were 
used in the expression level/IFN-stimulated genes (ISG) score 
comparison between individual groups with different 
genotypes.

RESULTS

The demographic characteristics of the PICFlu (n = 348) and 
CAMP (n = 675) cohorts for patients included in the geno
mics analyses are presented in Table 1. Both cohorts had ap
proximately 60% males, but PICFlu patients were younger 
and had a higher proportion of Hispanic/Latino and a lower 
proportion of non-Hispanic White patients than CAMP. All 
patients in CAMP had a diagnosis of mild to moderate persis
tent asthma with the exclusion of severe asthma or other 
chronic medical conditions. By contrast, most PICFlu patients 
were previously healthy with no underlying diagnoses (n = 
186 [53.5%]) and reported taking no prescription medica
tions. Their most common underlying medical condition 
was mild intermittent asthma or reactive airway disease, re
ported in 24% of patients. Other conditions predisposing to 
severe influenza infection were excluded from enrollment in 
PICFlu.

In PICFlu (Table 1), 82% of patients had influenza A and 
19% had influenza B infection (1% both), with bacterial coin
fection diagnosed within the first 72 hours of hospitalization 
in 112 (32%) patients, most commonly with Staphylococcus au
reus (n = 61 [17.5%]). The majority of patients in the PICFlu 
cohort had life-threatening illness, with 119 (34%) diagnosed 
with acute respiratory distress syndrome. Two hundred fifty- 
four (73%) were intubated and received invasive mechanical 
ventilator support, 33 (9.5%) received extracorporeal mem
brane oxygenation support, and 23 (6.6%) died during 
hospitalization.

Genomic Association and Functional Analyses

Testing the hypothesis that the common variants were enriched 
in the PICFlu cohort compared to the CAMP cohort, the target
ed sequencing of a panel of type I IFN–related response genes 
in the PICFlu cohort compared to corresponding genetic data 
from the CAMP cohort showed that adjustment for race and 
ethnicity using principal components analysis had excellent 
overlap (Figure 1A), and the quantile-quantile plot showed 
that the 2 datasets had the same distributions (Figure 1B). 
Therefore, genotyping bias in the genomic analysis from pop
ulation structure effects was minimal. In the Manhattan plot 
(Figure 1C) evaluating overall pediatric susceptibility to severe 
influenza virus infection, only DDX58 exceeded the 
Bonferroni-corrected threshold in the absence of population 
structure effects (SNP rs3205166, P = 3.84 × 10−5).

Table 1. Demographic Characteristics, Disease Severity, and Clinical 
Outcomes of the Pediatric Intensive Care Influenza and Childhood 
Asthma Management Program Cohorts

Characteristic
PICFlu 
Cohort

CAMP 
Cohort

P 
Value

No. of participants 348 675

Male sex 207 (59.5) 422 (62.5) .38

Age, y, median (IQR) 6.5 (2.5– 
11.2)

8.98 (7.2– 
10.8)

<.001

Ethnic background (self-reported) <.001

White non-Hispanic 188 (54) 467 (69.2)

Hispanic/Latino 91 (26.2) 68 (10)

Black/African-American 
non-Hispanic

42 (12.1) 84 (12.4)

Other 27 (7.8) 56 (8.3)

Influenza Aa 285 (81.9) …

Influenza Ba 67 (19.3) …

Invasive mechanical ventilation 254 (73) …

Hospital stay, d, median (IQR) 10.9 (5.8– 
21.8)

…

Hospital mortality 23 (6.6) …

Data are presented as No. (%) unless otherwise indicated.  

Abbreviations: CAMP, Childhood Asthma Management Program; IQR, interquartile range; 
PICFlu, Pediatric Intensive Care Influenza.  
aFour patients were positive for influenza A and B (for influenza A: 38.8% H1N1pdm2009, 
18.7% H3N1, 4.6% H1N1 seasonal; 18.7% no subtype).
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DDX58 encodes RIG-I, a cytosolic viral RNA sensor that 
recognizes the 5′-diphosphate/triphosphate ends of double- 
stranded viral RNA intermediates to initiate type I IFN sig
naling. Among all common variants in the region of 
DDX58 (Supplementary Table 2), we evaluated the 2 most 
significant SNPs in DDX58 including rs3205166 and 
rs4487862 (intronic variant) for their potential functional 
impact on downstream immune signaling. SNP rs3205166 
is a synonymous variant with a XXX (CADD) score of 0.91 
whereas rs4487862 is an intronic variant with a CADD score 
of 3.68; both variants were not predicted to be associated 
with any potential splicing events, thus having no direct im
pact on the DDX58 gene itself.

For the PICFlu patients, the expression profiles were gener
ated from patients with samples available that were collected 
early during their PICU admission. There was a mild trend 
that individuals with homozygous G/G had slightly higher 
DDX58 expression, but there was no statistical significance 
in DDX58 expression for patients with different genotypes 
of the synonymous variant rs3205166 (homozygous G/G, 

heterozygous G/T, and homozygous T/T). For the other in
tronic variant rs4487862, individuals with the homozygous 
G/G and heterozygous A/G genotypes (average expression 
log value of 2.366 and 2.389) had significantly lower DDX58 ex
pression levels compared to those with the homozygous A/A 
genotype (average expression log value of 2.619; Figure 2A
and Supplementary Figure 1A). Since DDX58 itself is an 
IFN-stimulated gene [19, 20], its expression level reflects feed
back amplification of initial type I IFN responses. Therefore, we 
also examined expression of other IFN-stimulated genes (IFI27, 
IFI44L, IFIT1, ISG15, RSAD2, STAT1, STAT2, IRF7, MX1, 
OAS3) to assess overall type I IFN signaling associated with 
these DDX58 genotypes. A similar pattern was seen in the asso
ciation with cumulative IFN gene signature scores and the 10 
constituent IFN-stimulated genes, where rs4487862 was 
significantly associated with its homozygous minor allele 
(A/A) having the lowest score (Figure 2B, Supplementary 
Figures 1B and 2). These results suggested the potential 
decrement on the DDX58 gene expression itself and on its 
downstream IFN signaling pathway.

Figure 1. Principal components analysis plot showing adjustment for race (A), quantile–quantile plot (B), and Manhattan plot (C ) for generalized logistic regression of 2 
cohorts (PICFlu vs CAMP) adjusting for age, sex, and 10 principal components of genetic ancestry under the additive model. The grey dotted line in the Manhattan plot shows 
a Bonferroni-corrected threshold of .05 (P = 3.90 × 10−5), which only synonymous variant DDX58 rs3205166 exceeds, with intronic DDX58 rs4487862 the dot below it (P = 
.0016). Abbreviations: AFR, African; CAMP, Childhood Asthma Management Program; EUR, European; LAT, Latino; PC, principal component; PCA, principal components anal
ysis; PICFlu, Pediatric Intensive Care Influenza.
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Linkage Disequilibrium Between SNP rs4487862 and the DDX58 Promoter 
Region

Because we found evidence suggesting a link between SNP 
rs4487862 and the DDX58 expression for the biological inter
pretation, we examined other variants in LD with rs4487862. 
Strong LD between rs4487862 and rs3739674 was observed in 
individuals with European ancestry from CAMP or 1000 
Genome projects (D′ = 1.0, R2 = 0.7490 or R2 = 0.8099, respec
tively; Supplementary Figures 3 and 4 and Supplementary 
Table 3). For the SNP rs3739674, cis-regulatory elements are 
present in this region as open chromatin in 95 ENCODE over
laid DNase I datasets, and epigenetic modifications also showed 
marks of active enhancers (histone H3 lysine 4 mono- 
methylation [H3K4me1] and histone H3 lysine 27 acetylation 
[H3K27ac] in Supplementary Figure 5). DDX58 rs3739674 
was also previously reported to be associated with DDX58 ex
pression in lymphoblastoid cell lines (P = 2.80 × 10−10) [21]. 
These data suggest that rs3739674 as eQTL of DDX58 should 
be examined more closely in future studies of influenza virus 

susceptibility. Unfortunately, rs3739674 is an SNP located in 
the promoter region of DDX58, which was not genotyped in 
the PICFlu cohort. Additional follow-up genetic study by whole 
exome sequencing or whole genome sequencing should be per
formed to confirm the association of rs3739674 or any other 
common variants or genes that were missed in this study due 
to technical limitations.

DISCUSSION

The type I IFN cytokine family plays a critical role in the human 
immune response against influenza infection, activating a com
plex regulatory system of innate and adaptive immune respons
es. In the PICFlu cohort, we used targeted sequencing to 
evaluate candidate genes chosen based on evidence that they 
could selectively impair innate immunity to influenza virus; 
these genes included those involved in virus nucleic acid sens
ing, IFN signal transduction or amplification, transcriptional 
regulation by type I IFN, and virus replication restriction [22, 
23]. We also evaluated an additional 9 genes involved in inflam
mation. Among these candidate genes, we identified that com
mon variants in DDX58 (coding for immune signaling 
components of the RIG-I receptor) constituted a significant lo
cus for pediatric susceptibility to severe influenza virus infec
tion. In addition, SNP rs4487862, which was enriched in the 
PICFlu cohort, was linked to lower DDX58 expression and 
IFN gene signature at this locus. Taken together, these results 
provide evidence that the signaling cascade for RIG-I–induced 
IFN production may contribute to influencing pediatric sus
ceptibility to severe influenza virus infection.

In the PICFlu cohort, we previously showed that suppression 
of the RIG-I pathway (as assessed by stimulating whole blood 
ex vivo with the viral ligand polyinosinic-polycytidylic 
acid-low-molecular-weight/LyoVecPoly [Poly I:C]) was associ
ated with worse clinical outcomes including death and pro
longed multiple organ dysfunction [24]. Although we did not 
evaluate the role of rare gene variants in this study, Jorgensen 
and colleagues [25] reported a case of a patient with rare vari
ants in DDX58 that could explain susceptibility to severe influ
enza infection during the 2009 influenza A pandemic. The 
majority of patients in the PICFlu cohort had influenza A infec
tion, which underlies most of the RIG-I literature, but 19% were 
infected with influenza B. Investigators have shown that RIG-I 
is also essential for mounting an effective innate immune re
sponse to influenza B in mice [26]. Recently, SNP rs12551294 
was suggested as lead cis eQTL for DDX58 [8] where upon viral 
RNA recognition, RIG-I leads to a signaling cascade inducing 
antiviral interferon-stimulated genes such as type I IFN [19, 
20]. However, this could not be examined in our cohorts given 
the low representation of subjects with African ancestry in 
which this allele is common. Additional genetic efforts for sim
ilar influenza cohorts with a broad geographic region coverage 

Figure 2. DDX58 (retinoic acid–inducible gene I) expression level (A) and inter
feron gene signature (ISG) score (B) according to genotyping of the DDX58 common 
variants rs3205166 and rs4487862. **P < .01, ***P < .001; ns, not significant.
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will be helpful to identify genotype-phenotype association 
traits.

The strengths of this analysis include the well-phenotyped 
pediatric cohorts in ethnically diverse North American popu
lations. The ascertainment of both cohorts on the basis of in
fluenza or asthma was stringent, so that misclassification of 
severe influenza infection was highly unlikely. Our study 
has several limitations. First, we restricted the genomic anal
ysis to the specified gene panel with very high biologic plau
sibility for the PICFlu cohort and the control CAMP 
cohort. Second, our sample size in the PICFlu cohort is rela
tively small, thus limiting statistical power. We cannot rule 
out the possibility that some individuals in the CAMP cohort 
were hospitalized with severe influenza infection, but this 
would likely bias toward the null for common variant 
analysis. Despite these constraints, we were able to detect an 
enrichment of a common variant in DDX58 above the 
Bonferroni-corrected threshold which was associated with 
differential expression of DDX58 and other downstream 
IFN-regulated genes. Lung function and atopy-related genes 
may also underlie severe influenza infection, and use of the 
pediatric asthma control group may have attenuated these 
associations as well as associations with IFN-related genes un
derlying asthma susceptibility. In addition, we did not have a 
wide range of influenza disease severity in the PICFlu cohort, 
as the majority of patients had life-threatening disease and all 
patients were admitted to an ICU or high-acuity unit and we 
were not able to evaluate the association across a range of 
disease severity. Previously healthy children infrequently 
develop life-threatening influenza disease, and we could not 
identify a sizeable independent validation cohort with this 
clinical phenotype.

In conclusion, RIG-I is important for antiviral host re
sponse to influenza infection, and we show that gene variants 
in DDX58 may influence this response and susceptibility to 
severe disease in children. Understanding RIG-I’s physiolog
ic role in humans may lead to more effective vaccines and 
novel therapeutic techniques targeting this pathway. To bet
ter understand how genetics affects the susceptibility to se
vere pediatric influenza infection, more research in large 
clinically defined cohorts with diverse ethnicities and ages 
is required.
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