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Abstract
The transcriptomic regulation induced by isotretinoin (13-cis retinoic acid) is still a matter of debate as short-term expo-
sures of immortalized sebocytes with isotretinoin produced conflicting results. Based on translational evidence, it has been 
hypothesized that oral isotretinoin treatment upregulates the expression of the transcription factor p53. Twenty-five patients 
suffering from acne vulgaris were treated with isotretinoin (0.6 mg/kg body weight) for 6 weeks. Biopsies from back skin 
were taken before and after isotretinoin treatment for the determination of p53 expression by immunohistochemical staining, 
quantification of p53 protein concentration by enzyme-linked immunosorbent assay and TP53 gene expression by quantita-
tive reverse transcription real time PCR. Fifteen socio-demographically cross-matched healthy volunteers served as controls. 
Isotretinoin treatment significantly increased the nuclear expression of p53 in sebaceous glands of treated patients compared 
to pre-treatment levels and p53 levels of untreated controls. Furthermore, the p53 protein and gene expression significantly 
increased in the skin after treatment. The magnitude of p53 expression showed an inverse correlation to acne severity 
score and body mass index. Under clinical conditions, isotretinoin induced the expression of p53, which controls multiple 
transcription factors involved in the pathogenesis of acne vulgaris including FoxO1, androgen receptor and critical genes 
involved in the induction of autophagy and apoptosis. Increased p53-FoxO1 signalling enhanced by systemic isotretinoin 
treatment explains the underlying transcriptomic changes causing sebum suppression but also the adverse effects associated 
with systemic isotretinoin therapy.
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Introduction

Acne vulgaris is a chronic inflammatory cutaneous disor-
der with a complex multifactorial pathogenesis depending 
on increased and modified sebum production, altered upper 
pilosebaceous duct keratinization, loss of follicular micro-
bial diversity with aberrant biofilm-producing phylotype 
colonization of Cutibacterium acnes (C. acnes), and folli-
cular as well as perifollicular inflammation [1–6].

Sebum is the secretory product of sebocytes derived 
from sebaceous gland holocrine secretion [6]. Exagger-
ated sebocyte activity stimulated by increased insulin-like 
growth factor 1 (IGF-1)/IGF1 receptor (IGF1R)/phosphati-
dylinositol-3 kinase (PI3K)/AKT [7] and androgen/androgen 
receptor (AR) signalling [8] enhances and modifies sebum 
production exhibiting higher amounts of monounsaturated 
pro-inflammatory fatty acids [9, 10].
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On the transcriptional level, sebaceous glands of acne 
patients exhibit decreased nuclear expression of the tran-
scription factors FoxO1 and FoxO3a [11–13] and increased 
activity of mechanistic target of rapamycin complex 1 
(mTORC1) [13–15], a key regulator of sebocyte prolifera-
tion, lipogenesis, autophagy end endocrine responses in acne 
pathogenesis [16–18]. Of note, FoxO1 operates as a nuclear 
co-suppressor of AR [19]. FoxO1 and FoxO3a are extruded 
from the nucleus into the cytoplasm by insulin/IGF-1/AKT-
mediated FoxO phosphorylation [19, 20]

Importantly, the transcription factor p53, known as the 
guardian of the genome [21, 22], is critically involved in the 
expression of FoxO1 [23], FoxO3a [24, 25], tumour necro-
sis factor-related apoptosis-inducing ligand (TRAIL) [26], 
tumour necrosis factor receptor superfamily member 10B 
(TNFRSF10B; death receptor 5) [23], repression of AR [27] 
and IGF1R [28], and suppression of IGF-1-AKT-mTORC1 
signalling [28–31], thus linking crucial transcriptional and 
nutrigenomic regulators involved in acne pathogenesis.

Increased mTORC1 activity promotes cell growth and 
anabolism [32]. Increased body mass index (BMI) has been 
positively associated with acne risk and severity in several 
studies [33–36]. Notably, p53 has been recognized as crucial 
player in nutrient sensing pathways and functions as a nega-
tive regulator of mTORC1 [29–31] and adipogenesis [37].

Among the various agents used for the treatment of 
acne vulgaris, isotretinoin (13-cis retinoic acid) is the most 
effective sebum-suppressive drug reducing skin surface and 
comedonal lipids [28, 38]. Isotretinoin is considered the first 
choice for the treatment of cystic acne [39, 40].

Translational evidence suggests that isotretinoin's 
desired anti-acne effects and its adverse effects including 
teratogenicity are based on isotretinoin-mediated apopto-
sis [41, 42]. In fact, Nelson et al. [43, 44] demonstrated in 
several studies that isotretinoin induces apoptosis and cell 
cycle arrest in human SEB-1 sebocytes [43] and increases 
the expression of the apoptotic protein TRAIL [44], which 
mediates the apoptotic effects of isotretinoin in human seba-
ceous glands.

Sebocytes are able to isomerize 13-cis retinoic acid to all-
trans retinoic acid (ATRA) [45]. In sebocytes, isotretinoin 
increases the expression of cellular retinoid acid-binding 
protein-2 (CRABP-2) [46], which transports ARTA into the 
nucleus to retinoic acid receptors (RARs) regulating gene 
expression [47–49]. The CRABP2 gene promoter contains 
a TATA-box that is rapidly activated by ATRA through a 
retinoic acid response element (RARE) [48]. Compared 
to epidermis, CRABP-2 is strongly expressed in supraba-
sal sebocytes in isotretinoin-treated patients, promoting a 
preferential transport of ATRA to RARs in sebocytes [44, 
50]; ATRA binding to nuclear RARs enhances the expres-
sion key transcription factors involved in apoptosis includ-
ing forkhead box transcription factors FoxO1 and FoxO3a 

and TRAIL [51]. It has been demonstrated by Agamia et al. 
[53] that nuclear levels of FoxO1 and FoxO3a increased in 
sebaceous glands of patients with acne vulgaris after treat-
ment with oral isotretinoin. It has been shown in epidermal 
keratinocytes that the expression of p53 is upregulated by 
ATRA exposure [54, 55]. Shi et al. [56] observed in human 
primary keratinocytes enhanced expression of p53, FoxO1 
and p21 after isotretinoin exposure. As recently hypothe-
sized by Melnik [57], isotretinoin-induced overexpression 
of p53 may also be the underlying pharmacological mode 
of action for sebocyte apoptosis and isotretinoin-mediated 
teratogenicity (neural crest cell apoptosis) [41, 42]. In fact, 
both isotretinoin and ATRA induce the expression of p53 
and apoptosis in melanoma cells [58, 59]. Isotretinoin/
ATRA-mediated upregulation of p53 in isotretinoin-treated 
acne patients may also be the underlying mechanism enhanc-
ing the expression of pro-apoptotic effectors including the 
p53-responsive genes FOXO1 [23], FOXO3A [23, 25] and 
TNFSF10 [26] promoting sebocyte apoptosis [26, 50, 
54, 57]. Indeed, increased expression of ATRA-induced 
CRABP-2 and TRAIL have been demonstrated in the basal 
and suprabasal layers of sebaceous glands and skin during 
isotretinoin treatment of acne patients [44, 46, 60], where 
increased isotretinoin-mediated apoptosis activity has been 
observed [44].

The aim of this study was to assess the expression of p53 
in the skin and sebaceous glands of acne patients before and 
during oral isotretinoin treatment to understand isotretinoin’s 
transcriptomic mode of action in the treatment of acne under 
clinical in vivo conditions.

Patients and methods

Patients and patient samples

This study was conducted on 25 patients suffering from 
acne vulgaris and 15 socio-demographically cross-matched 
healthy volunteers who served as controls. All participants 
were recruited from the Dermatology Outpatient Clinic 
of the Alexandria Main University Hospital. Approval by 
ethical committee as well as written informed consent was 
obtained from all patients and controls. All procedures were 
in accordance with the ethical standards of the institutional 
and/or national research committee and the 1964 Declara-
tion of Helsinki.

Patients presenting acne vulgaris within the age range 
of 17–25 years of both sexes were included. The exclusion 
criteria included female patients on antiandrogen therapy or 
with signs of hyperandrogenism (polycystic ovaries, andro-
genic alopecia, hirsutism), patients with a history of prior 
systemic retinoid intake or antibiotic therapy during the last 
6 months, patients with diabetes mellitus or other endocrine 
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diseases. Patients were not advised to change their usual 
dietary habits during the study. Patients were subjected to a 
full history, general medical examination, and dermatologi-
cal examination.

Acne severity in patients was classified using a simple 
acne grading system [61, 62] based on the predominant 
lesion and the number and locations of acne lesions. It clas-
sifies acne into four grades as follows: Grade 1: comedones 
and occasional papules; grade 2: papules, comedones and a 
few pustules; grade 3: predominant pustules, nodules and 
abscesses; and grade 4: mainly nodules, abscesses and wide-
spread scarring.

All patients were given oral systemic isotretinoin for 
treatment of acne with a dose of 0.6 mg/kg body weight/
day for 6 weeks, after full routine investigations before 
treatment.

Skin biopsy

The procedure was explained to all patients. One 5 mm 
punch biopsy (for the immunohistochemical study) and two 
2.5 mm punch biopsies (for ELISA and PCR) were taken 
from lesional skin on the back of the patient before isotreti-
noin treatment and another three biopsies were taken from 
residual non-scarred lesions on the back after 6 weeks of 
treatment.

The control subjects were those undergoing surgical pro-
cedure on the back recruited from the plastic surgery depart-
ment. Single 5 mm punch biopsy and two 2.5 mm punch 
biopsies were taken from normal skin of the back.

Histopathological examination 
and immunohistochemical detection of p53

Skin biopsies were fixed in 10% formalin. Then tissue sec-
tions were dehydrated in a series of ascending grades of 
ethyl alcohol (70%, 95%, 100%). Biopsy specimens were 
cleared in xylene then embedded in paraffin wax, sectioned 
by microtome and stained with Hematoxylin and Eosin stain 
with addition of cover slips. Histopathological examination 
was performed using a light microscope; all specimens were 
prepared for immunohistochemical staining using mouse 
anti-human monoclonal p53 antibody (isotype: IgG2b). 
(Anti-p53 antibody) [pAb122] (ab90363) (Abcam, Cam-
bridge, U.K.) [63].

The overall staining intensities in sebaceous gland 
areas of the slides stained with p53 monoclonal anti-
bodies were scored using digital image analysis with a 
computer-assisted light microscope. The image of each 
slide was captured using a 400 × objective lens. Images 
were viewed and recorded using an Olympus microscope 
(Olympus, Centre Valley, PA, U.S.A.) equipped with a 
Spot digital camera (Spot Imaging Solutions, Sterling 

Heights, MI, U.S.A.) and MATLAB software (MathWorks, 
Natick, MA, U.S.A.). The mean values of each reaction 
were based on the mean pixel number. The integrity of the 
colour intensity was based on grey-level transition prob-
abilities in digitized images from dark to light. The overall 
intensity of staining of slides stained with p53 monoclonal 
antibody was scored according to nuclear expression into 
0 if staining intensity is < 10%, + 1 if staining intensity is 
10% ≤ 30%, + 2 if staining intensity is 31% ≤ 50% and + 3 
if staining intensity is > 50% [53].

Determination of p53 protein concentration 
by enzyme‑linked immunosorbent assay

Skin biopsies were collected and preserved at – 80 ℃. After 
determination of sample weight and addition of PBS pH 7.4, 
samples were homogenized by hand or grinders and finally 
centrifuged for 3 min at a speed of 10,000 r.p.m. to remove 
the supernatant.

The ELISA kit (Abcam, Human p53 ELISA Kit 
(ab171571) was used for the determination of p53 protein. 
This assay is based on the principle of double-antibody 
sandwich technique to detect human p53 tumour protein. 
For further technical details, see procedure published by the 
manufacturer. Antibodies labelled with enzyme were added 
for an incubation time of 60 min at 37 ℃. After washing the 
plates and addition of Chromogen solution A, B, optical 
density (OD) values were measured for the calculation of 
p53 protein concentrations of the samples [64].

Determination of P53 gene expression 
by quantitative reverse transcription real time PCR

Total RNA was extracted from 10 mg skin tissue after lysis 
and homogenization, using silicate gel technique provided by 
the RNeasy Mini Kit (Qiagen) [65]. The concentration and 
purity of RNA were measured at 260, 280 and 230 nm using 
Nano Drop 2000c spectrophotometer (Thermo Scientific, 
USA). A ratio of A260/A280 = 1.8–2.1 and A260/A230 = 1.8–2.1 
indicates highly pure RNA. Total RNA was reverse tran-
scribed into cDNA using high-capacity reverse transcriptase 
kit (Applied Biosystems™, USA, catalog no. 4368814). To 
detect TP53 in tissue samples, primers had been matched 
to the mRNA sequences of the target genes (NCBI Blast 
software). GADPH was used as housekeeping gene [66].

P53

5’-AGA GTC TAT AGG CCC ACC CC-3’ (forward)
5’-GCT CGA CGC TAG GAT CTG AC-3’ (reverse)
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GAPDH

5’-CAT GGG GAA GGT GAA GGT CGG A-3’ (for-
ward)
5’-TTG GCT​CCC​ CCC TGC AAA TGA G-3’ (reverse)

The PCR amplification was performed in a 25 µl reac-
tion volume including SYBR green PCR Master Mix 
(Applied Biosystems) using ABI 7900 sequence detector 
(Applied Biosystems). The reaction was performed with 
10 min of initial stage to activate the DNA polymerase, 
followed by 40 cycles at 95 °C for 15 s and 60 °C for 
1 min. Single product formation was confirmed by melt-
ing point analysis, and comparative CT method was used 
to calculate relative gene expression with GADPH as an 
endogenous control. For statistical analysis of the CT val-
ues, 2-ΔΔCT method was applied for each specific primer 
and real-time PCR [66].

Statistical analysis

Data were fed to the computer and analysed using IBM 
SPSS software package version 20.0. (Armonk, NY: IBM 
Corp.). Shapiro–Wilk test was used to verify the normal-
ity of distribution of variables; comparisons between 
groups for categorical variables were assessed using χ2 
test (Monte Carlo). Marginal homogeneity test was used 
to analyse the significance between the different stages. 
Mann–Whitney test was applied to compare between two 
groups for not normally distributed quantitative varia-
bles. Wilcoxon signed ranks test assessed for comparison 
between two periods for not normally distributed quanti-
tative variables. ANOVA was used for comparing differ-
ent categories. Kruskal–Wallis test was used to compare 
different categories for abnormally distributed quantita-
tive variables. Pearson coefficient was used to correlate 
between two normally distributed quantitative variables. 
Significance of the obtained results was judged at the 5% 
level [67, 68].

Results

Patient data

This study was conducted on 40 subjects. Twenty-five 
patients suffering from acne vulgaris (18 males and 7 
females) and 15 acne-free subjects served as controls (12 
males and 3 females). The mean age of patients and con-
trols was 20.08 ± 2.91 and 21.87 ± 3.07 years, respectively. 
There was a statistically significant difference between 
BMI in cases and controls exhibiting a mean BMI of 
25.87 ± 2.47 kg/m2 in patients and 23.26 ± 3.44 kg/m2 in 
controls, respectively (p = 0.008*).

Clinically, there was statistically improvement in acne 
severity after treatment among the patients (p < 0.001*). 
Before treatment, 12 cases (48%) were grade IV, 9 cases 
(36%) were grade III, and 4 cases (16%) were grade II, 
respectively. While after treatment, 17 patients (68%) were 
grade I; 8 patients (32%) were grade II. Acne severity was 
not correlated to the age of patients while it was significantly 
correlated to BMI of patients before treatment.

Laboratory findings

In skin biopsies taken from acne patients staining intensity 
of p53 increased after isotretinoin treatment compared to 
pre-treatment and acne-free controls. Figure 1 presents the 
representative immunostaining pattern with p53 antibody 
before and after isotretinoin treatment showing increased 
nuclear stain intensity in the patients’ sebaceous glands after 
isotretinoin treatment.

Before treatment the stain intensity of p53 was zero in 
19 patients (76%), + 1 in four patients (16%) and + 2 in two 
patients (8%), respectively. While after treatment, the stain 
intensity was + 1 in five patients (20%), + 2 in eight patients 
(32%), and + 3 in twelve patients (48%), respectively. The 
difference in immunohistochemical expression of p53 
before and after treatment was significant (MHp1 < 0.001*). 
p53 expression in the control group was significantly higher 
compared to the pre-treatment acne patients, (MCp2 = 0.521), 

Fig. 1   Immune staining of 
nuclear p53 before and after 
isotretinoin treatment. a p53 
nuclear immune staining in 
sebaceous gland of acne patient 
before isotretinoin therapy. b 
Intensified nuclear p53 immune 
staining after 6 weeks of 
isotretinoin therapy
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while it was significantly lower when compared to the post-
treatment biopsies (MCp3 < 0.001*) (Table 1).

The mean of p53 protein concentration determined by 
ELISA before treatment was 90.78 ± 23.58 p53/mg protein. 
This increased significantly after isotretinoin treatment 
to 225.85 ± 105.34 p53/mg protein (Zp1 < 0.001*). The 
mean of p53 protein concentration in control subjects was 
160.93 ± 31.03 p53/mg protein) (Up2 < 0.001*). Similarly, 
the mean p53 cDNA expression by PCR before treatment 
was 0.07 ± 0.06 that increased significantly after treatment 
to be 0.72 ± 0.17 (Zp1 < 0.001*). cDNA expression before 
treatment with isotretinoin was significantly lower than in 
controls (0.26 ± 0.04) (Up2 < 0.001*). After-treatment results 
were significantly higher than p53 baseline expression of 
controls. (Up3 < 0.001) (Table 1, Fig. 2).

Furthermore, we could observe a negative correlation 
between p53 protein and gene expression with acne sever-
ity grade (Fig. 3). In addition, a negative correlation has 
been found between patients’ pre-treatment p53 expression 
and BMI (Fig. 4).

Discussion

The sebum-suppressive effect of isotretinoin has been related 
to sebocyte apoptosis [41–44] with isotretinoin-mediated 
p21-induced cell cycle arrest [43] and upregulation of pro-
apoptotic transcription factors including FoxO1 [53] and 

FoxO3a [53] as well as the apoptosis effector TRAIL [44, 
60]. The transcription factor p53, known as the guardian 
of the genome [69], is a key regulator of cell fate decisions 
including cycle control and induction of apoptosis depend-
ing on the magnitude of p53 transcription and activation. 
Notably, p53 promotes the expression of the cell cycle 
inhibitor p21 (CDKN1A) [71] and the pro-apoptotic proteins 
FoxO1 [23], FoxO3a [23, 25], and TRAIL [26] and inhibits 
anti-apoptotic pro-survival effectors such as IGF1R [28], AR 
[27] and survivin (BIRC5) [72], all known p53 target genes 
involved in acne pathogenesis. It has been demonstrated in 
primary human keratinocytes and melanocytes that isotreti-
noin and ATRA increase the expression of p53 [54–59]. 
According to a recent hypothesis, isotretinoin’s mode of 
action and its adverse effects are related to enhanced expres-
sion of p53 [57, 72]. In fact, our study provides first experi-
mental evidence that isotretinoin significantly upregulates 
the expression of p53 in the skin and sebaceous glands of 
acne patients after 6 weeks of oral isotretinoin therapy with 
the commonly used daily dose of 0.6 mg/kg body weight.

Remarkably, the skin of acne patients compared to acne-
free controls exhibits lower levels of p53 expression (Fig. 2), 
whereas after isotretinoin-treatment p53 levels significantly 
exceeded p53 levels in healthy skin, pointing to a strong 
induction of p53 by systemic and prolonged isotretinoin 
exposure.

It is noteworthy to mention that p53 expression is regu-
lated by endocrine and nutrient signalling. Increased insulin 

Table 1   Comparison between p53 expression of patients and controls

p1: p value for comparing between before and after; p2: p value for comparing between cases (before) and control; p3: p value for comparing 
between cases (after) and control
SD standard deviation, U Mann–Whitney test, Z Wilcoxon signed ranks test, MH Marginal homogeneity test, MC Monte Carlo (χ2 test)
*Statistically significant at p ≤ 0.05

Cases (n = 25) Control (n = 15)

Before After

P53 protein concentration by ELISA (concen-
tration of P53/ mg protein)

 Median (Min.–Max.) 94.8 (49.9–121) 183.3 (129.3–503) 161 (114–202)
 Mean ± SD 90.78 ± 23.58 225.9 ± 105.3 160.93 ± 31.03

Significance Zp1 < 0.001*, Up2 < 0.001*, Up3 = 0.052
P53 gene expression by RT-PCR
 Median (Min.–Max.) 0.04 (0.0–0.20) 0.71 (0.48–0.98) 0.27 (0.20–0.31)
 Mean ± SD 0.07 ± 0.06 0.72 ± 0.17 0.26 ± 0.04

Significance Zp1 < 0.001*, Up2 < 0.001*, Up3 < 0.001*
Immunohistochemical expression of P53
 Grade 0 19 (76.0%) 0 (0.0%) 10 (66.7%)
 Grade + 1 4 (16.0%) 5 (20.0%) 2 (13.3%)
 Grade + 2 2 (8.0%) 8 (32.0%) 3 (20.0%)
 Grade + 3 0 (0.0%) 12 (48.0%) 0 (0.0%)

Significance MHp1 < 0.001*, MCp2 = 0.521*, MCp3 < 0.001*
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and IGF-1 signalling, which both activate the kinase AKT, 
result in phosphorylation and activation of E3 ubiquitin 
ligase mouse double minute 2 (MDM2) promoting the pro-
teasomal degradation of p53 [73, 74]. Western diet with 
increased insulin/IGF-1/AKT signalling [11] may thus 
reduce the expression of p53, the key negative regulator of 
mTORC1 [29–31], which exhibits increased activity in the 
skin and sebaceous glands of acne patients [13–17]. The 
fundamental ability of mTORC1 promoting cell growth 
and anabolism [32] may also explain the potential relation 
between BMI and acne risk [33–36]. In fact, p53 is not only 
a tumour suppressor but has been appreciated as a crucial 
player in nutrient sensing pathways serving as a negative 
regulator of mTORC1 [29–31] and adipogenesis [37].

Importantly, activated mTORC1 is a key suppressor of 
autophagy [75]. Remarkably, p53 not only induces apop-
tosis but also stimulates autophagy [76, 77]. It has recently 
been shown in immortalized SZ95 sebocytes that isotreti-
noin treatment, partly via activation of FoxO1, increased 
the expression of ATG5 and induced autophagy resulting 
in reduced sebaceous lipid accumulation [78]. Notably, p53 

can activate the expression of a large set of target genes that 
are involved in the autophagic programme including ATG5 
[79, 80]. Autophagy is required for robust p53-dependent 
apoptosis. Thus, autophagy and apoptosis are two closely 
related p53-dependent cellular responses [81, 82]. It is thus 
conceivable that isotretinoin induces both p53-mediated 
autophagy as well as p53-induced apoptosis depending on 
the dose and duration of isotretinoin exposure and the result-
ing magnitude of p53 expression.

Moreover, it should be kept in mind that p53 is partially 
inactivated by simian virus 40 large T antigen in immortal-
ized SZ95 and SEB-1 sebocytes [83, 84], which may thus 
not be suitable cell lines for studying p53-dependent effects 
of sebaceous gland regulation leading to paradoxical even 
acnegenic effects [85] disputed earlier [86].

There is compelling translational evidence that isotreti-
noin-mediated upregulation of p53 expression explains 
isotretinoin’s teratogenicity via p53-mediated neural crest 
cell apoptosis [41, 42]. Isotretinoin also induces apoptosis 
in primary human keratinocytes [56], melanoma cells [58, 
59], rat ovarian granulosa cells [87, 88], hepatoma cells 
[89], associated with decreased expression of the apoptosis 

Fig. 2   p53 protein and gene expression before and after isotretinoin 
therapy. a Illustrates the changes of p53 protein and b the changes 
of p53 gene expression of back skin biopsies of acne patients before 
and after 6 weeks of oral isotretinoin treatment compared to acne-free 
control skin biopsies

Fig. 3   Correlation between p53 protein and gene expression with 
acne severity grade. a Shows a negative correlation between p53 pro-
tein expression and b an inverse relation between p53 gene expres-
sion with acne severity grade
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inhibitor survivin [89]. Increased serum levels of survivin 
have been reported in acne patients compared to controls 
[90]. Of note, survivin (BIRC5) expression is negatively 
regulated by p53 [91]. In accordance with these findings and 
our results, we conclude that isotretinoin-induced expression 
of p53 not only promotes sebocyte apoptosis in human seba-
ceous glands as the predominant sebum-suppressive effect 
but is also responsible for all isotretinoin’s adverse effects.

The most common mucocutaneous side effects of isotreti-
noin therapy, dry skin, have been related to increased expres-
sion of keratinocyte aquaporin 3 (AQP3), which damages the 
skin barrier and enhances transepidermal water loss causing 
skin dryness [92]. Notably, AQP3 is a p53 target gene [93]. 
Other members of the aquaporin family, AQP1 and AQP4 
[94, 95] have been linked to intracranial hypertension (pseu-
dotumor cerebri), a potential adverse effect of isotretinoin 
[96], and appear as well to be related to upregulated p53 [97, 
98]. In addition, isotretinoin-induced hypertriglyceridemia 
[99] is associated with increased plasma levels of apolipo-
protein B100 in very low-density lipoprotein (VLDL) and 
low density lipoproteins (LDL) [100]. The gene encoding 
apoB100 (APOB) has been identified as p53 target gene 
[101].

It is important to remember that retinoids induce primary 
and secondary transcriptional responses depending on dose 
and duration of retinoid exposure [51]. Sufficient nuclear 

transport of ATRA via CRABP2 is mandatory for ATRA-
induced transcriptomic changes [51] including isotretinoin/
ATRA-induced transcriptional modification resulting in 
sufficient sebum suppression [46]. Increased expression of 
CRABP2 in isotretinoin-treated sebaceous glands of patients 
with acne has been observed after weeks of oral isotretinoin 
exposure [46], whereas short-term (6 h, 24 h) isotretinoin 
exposure of immortalized p53-inactivated SZ95 sebocytes 
did neither exhibit increased CRABP2 nor upregulated p53 
or FoxO1 expression [102]. This is in contrast to our in vivo 
findings under clinical conditions observed in patients 
treated with isotretinoin for 6 weeks, whose sebaceous 
glands are not p53-inactivated by SV40 viral transfection 
[53].

Notably, p53 maintains baseline expression of common 
tumour suppressor genes including FoxO1 [23]. Over the 
last 10 years, decreased FoxO1 expression has been linked 
to acne pathogenesis [11, 16, 53, 103], whereas isotretinoin 
treatment increases FoxO1 expression in sebaceous glands 
of acne patients [53, 104, 105]. The p53 target gene FoxO1 
is a nuclear co-suppressor of multiple transcription factors 
critically involved in acne pathogenesis such as AR [19], 
SREBF1 [106], PPARA [107] and is a crucial promoter of 
genes involved in apoptosis. Recent evidence indicates that 
FoxO1 is involved in the induction of autophagy in isotreti-
noin-treated SZ95 sebocytes [78]. Furthermore, FoxO1 
promotes the expression of GATA6, a critical transcription 
factor maintaining appropriate keratinocyte proliferation and 
differentiation of the infundibulum of the human sebaceous 
follicle [108], which is deficiently expressed in sebaceous 
follicles of acne patients linking p53-FoxO1-GATA6 defi-
ciency to comedogenesis.

Reduced baseline expression of the tumour suppressor 
p53 in acne patients compared to acne-free controls may 
also explain the increased risk of acne patients for common 
p53-related malignancies such as prostate cancer [109, 110], 
and breast cancer [111]. Notably, there is no observed acne 
and very low cancer incidence in IGF-1-deficient patients 
with Laron syndrome [112], who exhibit higher p53-FoxO1 
signalling [113]. In contrast, Western diet with high gly-
caemic load and milk/dairy consumption increases insulin/
IGF-1 signalling promoting AKT/MDM2-mediated protea-
somal degradation of p53 [50, 114, 116], whereas forced 
upregulation of p53-FoxO1 signalling may contribute to the 
tumour suppressing effect of isotretinoin in neuroblastoma 
[117] and retinoid chemoprevention of non-melanoma skin 
cancer [118].

Taken together, our study provides experimental evidence 
for increased nuclear expression of p53 in sebaceous glands 
and skin of acne patients after oral isotretinoin treatment and 
substantiates that enforced p53-FoxO signalling causes all 
desired and adverse effects of systemic isotretinoin therapy.

Fig. 4   a Correlation between BMI and protein expression by ELISA 
in cases group (n = 50) b correlation between BMI and gene expres-
sion of p53 by RT-PCR in cases group (n = 50)
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