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BACKGROUND: Ovarian clear cell carcinoma (OCCC) is a challenging disease due to its intrinsic chemoresistance. Immunotherapy
is an emerging treatment option but currently impeded by insufficient understanding of OCCC immunophenotypes and their
molecular determinants.
METHODS: Whole-genome sequencing on 23 pathologically confirmed patients was employed to depict the genomic profile of
primary OCCCs. APOBEC3B expression and digital pathology-based Immunoscore were assessed by performing
immunohistochemistry and correlated with clinical outcomes.
RESULTS: An APOBEC-positive (APOBEC+) subtype was identified based on the characteristic mutational signature and prevalent
kataegis events. APOBEC+OCCC displayed favourable prognosis across one internal and two external patient cohorts. The
improved outcome was ascribable to increased lymphocytic infiltration. Similar phenomena of APOBEC3B expression and T-cell
accumulation were observed in endometriotic tissues, suggesting that APOBEC-induced mutagenesis and immunogenicity could
occur early during OCCC pathogenesis. Corroborating these results, a case report was presented for an APOBEC+ patient
demonstrating inflamed tumour microenvironment and clinical response to immune checkpoint blockade.
CONCLUSIONS: Our findings implicate APOBEC3B as a novel mechanism of OCCC stratification with prognostic value and as a
potential predictive biomarker that may inform immunotherapeutic opportunities.

British Journal of Cancer (2023) 128:2054–2062; https://doi.org/10.1038/s41416-023-02239-5

INTRODUCTION
Ovarian clear cell carcinoma (OCCC) represents a unique
histological subtype of epithelial ovarian cancer (EOC). Specifically,
OCCC arises from endometriosis, often endometriotic cysts on the
ovary, and is more likely refractory to conventional platinum-
containing chemotherapy, leading to dismal prognosis at
advanced stages [1, 2]. In addition, OCCC has a characteristic
genomic profile with high frequencies of ARID1A, PIK3CA and KRAS
somatic alterations [3, 4]. At present, evidence-based treatment is
lacking for OCCC, which essentially shares the same clinical
practice guidelines for managing high-grade serous ovarian
carcinoma (HGS-OvCa) [5]. The distinctive aetiological, clinico-
pathological and molecular features of OCCC underscore the
necessity for implementing rational therapeutic strategies.
We have recently identified APOBEC-mediated kataegis as a

notable mechanism underlying punctuated OCCC evolution [6].
While promoting neoplastic transformation and aggressiveness

[7, 8], the APOBEC polynucleotide deaminases catalyse DNA
mutagenesis and thereby provoke tumour immunogenicity by
generating a high neoantigen load [9, 10]. Accordingly, APOBEC
activity is reportedly associated with enhanced susceptibility to
immune checkpoint inhibitors (ICIs) targeting programmed cell
death 1 (PD-1) or programmed death ligand 1 (PD-L1) [11, 12].
Consistent with these observations, the KEYNOTE-100 and NRG-
GY003 trials, among others, have implicated OCCC to potentially
benefit more from ICI therapy than HGS-OvCa [13–16]. Despite the
incremental progress, the interplay between APOBEC dysregula-
tion and tumour immune microenvironment remains to be
elucidated in OCCC.
Here, by expanding genome-wide analysis and including three

independent patient cohorts, we further defined a molecular
subtype of APOBEC-positive (APOBEC+ ) OCCC, marked by
APOBEC mutational signature or APOBEC3B protein expression.
APOBEC+OCCC showed superior prognosis and increased
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lymphocytic infiltration. Of importance, we found that an
APOBEC+ patient featured abundant T-cell deposit around the
tumour lesion and responded exquisitely to immunotherapy
treatment. Overall, these findings supported APOBEC3B as a
candidate prognostic and predictive biomarker to stratify OCCC
for tailored management.

RESULTS
WGS identifies an APOBEC+OCCC subtype
A comprehensive genomic and immunohistochemical study was
designed for class discovery in OCCC (Fig. 1a). To this end, we
retrospectively retrieved clinical records of 2107 patients diag-
nosed with gynaecologic cancer at Ren Ji Hospital between 2011
and 2021. Among the 679 cases of epithelial ovarian carcinoma,
there were 105 OCCCs, 14 of which were excluded after
pathological verification. As a result, 91 subjects fulfilled the
inclusion criteria and comprised the internal OCCC cohort (Table 1).
The median age was 56 years (range, 32–79 years), and disease
diagnosis spanned different International Federation of Gynecol-
ogy and Obstetrics stages. All patients underwent debulking

surgery and the majority received one or more lines of systemic
therapy. Other detailed clinicopathological and treatment infor-
mation was also available (Supplementary Table 1). In parallel, two
independent external cohorts were assembled including one
containing 45 patients with FFPE tissues (Supplementary Table 2)
and the other containing 75 patients with TMA sections
(Supplementary Table 3).
Initially, a subset of OCCCs (RJOCCC1–23) in the internal cohort

had fresh-frozen biospecimens (Supplementary Table 4), which
were subjected to whole-genome sequencing (WGS) with multi-
region sampling in three patients (RJOCCC4–6), yielding a total of
32 genomes for downstream analysis. To shed light on the
mutagenic processes that shaped OCCC tumorigenesis, the
SomaticSignatures framework was exploited to conduct nonne-
gative matrix factorisation (NMF) decomposition and extracted
four mutational signatures from the whole repertoire of single
nucleotide variants (SNVs) (Supplementary Fig. 1). In agreement
with previous reports [6, 17–19], the APOBEC-related mutational
signature was prominent and could segregate OCCC patients into
two molecular subtypes (Fig. 1b), namely APOBEC+ (APOBEC-
positive, 10 patients) and APOBEC− (APOBEC-negative, 13
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Fig. 1 WGS identifies an APOBEC+OCCC subtype. a Flowchart depicting case screening and sample analysis. The internal cohort contained
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patients). The mutation spectra and somatically mutated genes
were largely analogous between the two groups (Fig. 1b).
However, when assessed by KataegisPortal (Fig. 1c), APOBEC+
OCCC harboured more SNVs and frequent hypermutation
thunderstorms referred to as kataegis (Supplementary Fig. 2). In
addition, clonal and subclonal copy number alterations involving
chromosomal segments, arms or even aneuploidy were recur-
rently detected by Sclust (Supplementary Fig. 3). As exemplified
by the circos plot of RJOCCC16 (Fig. 1d), these genomic features of
APOBEC+OCCC were concordant with our formerly proposed
model of catastrophic macroevolutionary leaps and might be
reflective of unique biological properties.

APOBEC+OCCC shows superior prognosis
To determine the clinical utility of OCCC subtyping, we sought to
probe APOBEC activity in a wider range of tumour samples with
only fixed tissues that were not ideal for next-generation
sequencing. The APOBEC-derived mutational signature is induced
by at least one APOBEC family member [20, 21]. We and others
have shown that APOBEC3B expression is relatively specific to
cancer cell nucleus and impacts patient outcome in OCCC
[6, 22–25]. Besides, endogenous APOBEC3B is likely the prime
driver of kataegis formation [26, 27]. Therefore, APOBEC3B
immunohistochemistry was performed and quantified using the
H-score method (Fig. 2a), which classified OCCC cases as either
positive (H-score class ≥ 1) or negative (H-score class= 0). As
expected, WGS-assigned APOBEC+OCCC described above pre-
sented elevated APOBEC3B H-scores (Fig. 2b), supporting the
validity of immunohistochemical assays. Building upon this
proximity marker, the entire internal cohort was divided into
two subgroups, also termed APOBEC+ (APOBEC3B-positive, 37
patients) and APOBEC− (APOBEC3B-negative, 54 patients) to
implicate presumably opposite extents of APOBEC mutagenesis.
Intriguingly, APOBEC+ and APOBEC−OCCC had comparable age
distribution (median ages, 54 versus 56.5 years) but differed in
menopausal status (pre-menopausal patients, 30% versus 5%). Of
note, a substantial proportion of APOBEC+OCCC appeared

before menopause (Fig. 2c), implying its earlier tumour onset
than APOBEC−OCCC. More importantly, APOBEC3B stratified
patients into prognostically significant categories. Notably, APO-
BEC+OCCC exhibited prolonged progression-free survival (PFS)
and overall survival (OS) as compared with APOBEC−OCCC
(Fig. 2d), irrespective of disease stages (Supplementary Fig. 4A).
Corroborating these data, similar observations were made in two
external cohorts with either FFPE (Fig. 2e; Supplementary Fig. 4B)
or TMA (Fig. 2f; Supplementary Fig. 4C) specimens. Hence, we
concluded that APOBEC+OCCC showed superior prognosis over
APOBEC−OCCC.

APOBEC+OCCC has increased lymphocytic infiltration
Considering the role of APOBEC enzymes in fuelling genetic
diversity [8, 28], we reasoned that the favourable outcome of
APOBEC+OCCC could be attributed to its immunoreactive
characteristics. The OCCC immune microenvironment has been
scarcely investigated other than occasional description of low and
heterogeneous lymphocytic infiltrates [16, 29]. We set out to
evaluate tumour-infiltrating lymphocytes by staining CD3+ pan
T cells and CD8+ cytotoxic T cells (Fig. 3a). Remarkably,
APOBEC3B protein expression was associated with a more
inflamed immunophenotype manifested by increased T-cell
recruitment (Fig. 3b). Given that APOBEC deregulation probably
occurred early based on the pseudo-timeline estimation with
TrackSig (Supplementary Fig. 5), APOBEC3B, CD3 and CD8 were
also stained in endometriosis (Fig. 3c), the well-established
precursor lesion of OCCC, and the same tendency as seen in
neoplasms was evident (Fig. 3d). To analyse OCCC immune
contexture more rigorously, we employed the digital pathology-
based Immunoscore system (Fig. 3e), a prognostic biomarker
tool validated extensively in colorectal cancer [30–32]. By
capturing the densities of CD3+ and CD8+ lymphocytes at
the invasive margin (IM) and the core of the tumour (CT), OCCCs
were categorised as Immunoscore+ (Immunoscore ≥ 1) or Immu-
noscore− (Immunoscore= 0) (Fig. 3f). Confirming prior results,
APOBEC+OCCC was disproportionally enriched for Immunoscore

Table 1. Patient demographics of the internal cohort.

Clinicopathological characteristics n= 91 Treatment and outcome n= 91

Age at diagnosis, years Surgical resection

Median (range) 56 (32–79) R0 84 (92.3%)

<60 55 (60.4%) R1 7 (7.7%)

≥60 36 (39.6%) Chemotherapy

FIGO stage Taxol + Cisplatin 11 (12%)

I 60 (66.0%) Taxol + Carboplatin 71 (78%)

II 14 (15.4%) Irinotecan + Cisplatin 1 (1.1%)

III 15 (16.5%) None 8 (8.9%)

IV 2 (2.1%) Systemic therapy

ECOG score 1 line 60 (65.9%)

0 86 (94.5%) 2 or more lines 23 (25.2%)

1 5 (5.5%) None 8 (8.9%)

Menopausal state Immunotherapy

Pre-menopausal 24 (26.4%) Yes 1 (1.1%)

Post-menopausal 67 (73.6%) No 90 (98.9%)

CA125, unit/ml Recurrence/progression

<35 21 (23.1%) Yes 24 (26.4%)

≥35 70 (76.9%) No 67 (73.6%)

CA199, unit /ml Death

<37 69 (75.8%) Yes 7 (7.7%)

≥37 22 (24.2%) No 84 (92.3%)

FIGO International Federation of Gynecology and Obstetrics, ECOG Eastern Cooperative Oncology Group, R0 complete resection of all visible lesions, R1
remaining small volume tumours of ≤1 cm.
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+ samples in both internal and external cohorts (Fig. 3g). As a key
checkpoint protein, PD-L1 expression was assess in parallel using a
standardised immunohistochemical assay (Supplementary Fig. 6A)
and only showed a marginal overlap with APOBEC3B positivity
(Supplementary Fig. 6B), highlighting the advantage of Immuno-
score method. Therefore, APOBEC+OCCC was immunologically
active and accompanied by a higher degree of lymphocytic
infiltration.

Immune density and localisation impact patient survival
Since Immunoscore was documented as a key parameter linked
with the evolution and fate of various cancers [33], we explored
the prognostic impact of immune cell densities in OCCC. While the
performance of PD-L1 expression was relatively poor (Supple-
mentary Fig. 6C), we found positive Immunoscore to be associated
with beneficial clinical outcome including improved PFS and OS in
the internal patient cohort (Fig. 4a; Supplementary Fig. 7A).
Consistently, Immunoscore+ status in the external OCCC cohort
demonstrated a statistically significant correlation with prolonged
PFS and a nonsignificant trend to longer OS (Fig. 4b; Supplemen-
tary Fig. 7B), possibly due to limited sample size or inadequate
death events. Recently, three immunophenotypes reflecting both
T-cell quantity and spatial distribution were introduced [34].
Following such definition, Immunoscore− OCCCs were tentatively

termed ‘immune-desert’, and Immunoscore+ OCCCs were further
specified into ‘immune-excluded’ or ‘immune-infiltrated’ accord-
ing to the peritumoral or intratumoral patterns of T cell infiltration,
respectively (Fig. 4c). Kaplan–Meier analysis indicated that
‘immune-desert’ OCCC had relatively shorter PFS and OS than
‘immune-infiltrated’ OCCC, and ‘immune-excluded’ OCCC dis-
played intermediate risk of disease progression (Fig. 4d; Supple-
mentary Fig. 7C). Taken together, the magnitude and topology of
baseline lymphocytic infiltrates aided OCCC stratification with
prognostic relevance.

APOBEC+OCCC may benefit from immunotherapy
Finally, we reported a case study of immunotherapy treatment in
an OCCC patient to reinforce the potential therapeutic value of
our findings. This 56-year-old female was diagnosed with FIGO
stage IIB OCCC in May 2019. Pathological examination after radical
surgery revealed that her tumour belonged to the APOBEC+
subtype with an Immunoscore of 2 (Fig. 5a). Unfortunately, she
was intolerant to the first-line paclitaxel-carboplatin regimen and
suffered early recurrence of multiple pelvic lesions within
~6 months (Fig. 5b). The patient did not respond to the second-
line chemotherapy (liposomal doxorubicin) either and thus
elected to receive off-label use of concurrent toripalimab
(anti-PD-1) to address the progressive disease. Upon three cycles
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of toripalimab administration, all nascent nodules experienced
extensive tumour regression at radiographic measurement.
Consequently, she was able to undergo secondary cytoreduction
with complete resection followed by maintenance immunother-
apy, and by far remained relapse-free as evaluated by magnetic
resonance imaging (MRI) with a PFS-2 of over 18 months. Based
on these encouraging preliminary data, whether APOBEC3B and
Immunoscore could serve as predictive biomarkers for ICIs should
be tested in future investigations.

DISCUSSION
To our knowledge, this work represents one of the most
systematic characterisations of OCCC mutational landscape at
the genome-wide scale. The results not only confirm the
punctuated model of OCCC evolution [6], but also pinpoint a

unique molecular subtype linked to APOBEC-mediated mutagen-
esis. We provide immunohistochemical methods to stratify a large
series of OCCC samples in three independent cohorts by
APOBEC3B positivity and to delineate the OCCC immunopheno-
types based on Immunoscore status. APOBEC+OCCC has proved
to be associated with marked lymphocytic infiltration and
prolonged patient survival. The possibly far-reaching therapeutic
implications are upheld by robust response to immune checkpoint
blockade in a case study of APOBEC+OCCC. These findings may
enhance OCCC prognostication and biomarker-driven treatment
to improve clinical decision-making and ultimate outcome of this
otherwise devastating disease.
We and others have unveiled that APOBEC-related mutational

signature is common and functionally important in both OCCC and
endometriotic epithelium [6, 17–19, 35]. It has been well recognised
that APOBEC-catalysed aberrant cytosine deamination leads to
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chromosomal instability and genetic heterogeneity, which can
accelerate cancer initiation and evolution [7]. Indeed, we found that
APOBEC3B protein expression and resultant kataegis events were
detectable at different stages of OCCC development. The lack of high-
quality antibodies has exacerbated the challenge of assessing other
APOBEC paralogs, which is to be tackled in the future. Furthermore, the
molecular underpinnings of APOBEC dysregulation during OCCC
pathogenesis are currently elusive. Our genomic analysis indicated
that APOBEC activation was unlikely modulated by specific mutant
gene products. Given the pivotal role of APOBEC enzymes in viral
restriction, it is tempting to hypothesise that APOBEC activity is
stimulated by the inflammatory pathways such as PKC/NF-κB and
interferon signalling [36, 37]. Alternatively, oestrogen exposure, tumour
hypoxia, somatic retrotransposition and replication stress are all
candidate instigating factors [38–41]. It is worth noting that these
diverse mechanisms are not necessarily mutually exclusive and may
operate successively or simultaneously to facilitate the APOBEC-
induced mutator phenotype. In line with this notion, recent evidence
has highlighted the episodic rather than consistent nature of APOBEC
mutagenic process [40]. Additional research is required to fully
understand the mechanistic basis and biological significance of
APOBEC mobilisation in the context of OCCC tumorigenesis.
We leveraged APOBEC signature or APOBEC3B immunostaining

to segregate OCCC patients into two distinct classes. Of particular
note, in contrast to some reports of other cancer types [42],
APOBEC+OCCC exhibited better prognosis in comparison with
APOBEC−OCCC across internal and external cohorts. As a matter
of fact, only two individuals (stages, IC and IIB) out of 37
APOBEC+OCCC cases relapsed and neither of them died during
the follow-up period (durations, 12 and 26 months), whereas 22
out of 54 APOBEC− OCCC patients progressed with 7 deaths at
our centre. We applied the semiquantitative Immunoscore
algorithm to categorise OCCC for the first time, and demonstrated
that higher levels of in situ immune infiltrates could, at least in
part, accounted for the longer survival durations of APOBEC+
OCCC. As the enzymatic source of elevated mutation rate,
APOBEC family members also cause collateral DNA damage and
neoantigen formation in host tumour cells, resulting in vigorous
immunogenicity [9, 10]. Therefore, the above-mentioned favour-
able outcome as a consequence of APOBEC deregulation seems
counterintuitive but not surprising. Another plausible explanation
has been proposed that APOBEC3B-imposed genotoxic stress
sensitises malignant cells to platinum inhibition [25]. In either
scenario, since adjuvant chemotherapy in stage I OCCC is under
debate [43], we envision that APOBEC-dependent molecular
subtyping, upon prospective evaluation, holds enormous promise
for more tailored strategies to optimise the benefit-risk balance.
Despite intensive endeavours for improvement, OCCC is

hitherto in urgent need of new therapeutic modalities owing to
its innate chemoresistance, especially in the recurrent setting [2].
Our finding from TrackSig inference that APOBEC-associated
mutagenesis can operate and impart evolutionary advantages
throughout the disease course of a certain OCCC subpopulation,
reminiscent of previous observations in various cancers [8], raises
the appealing possibility of pharmacologically blocking APOBEC3B
for targeted intervention. Along this line, immense efforts have
been undertaken in drug discovery of specific small-molecules
against APOBEC deaminases [44]. An alternative avenue to be
pursued is APOBEC-dictated synthetic lethality with selected
anticancer agents such as ATR and UNG inhibitors [23, 42, 45, 46].
In addition, encouraged by the initial efficacy signals [13–16], there
is an increasing interest in treating OCCC patients with immu-
notherapy, and a number of ICI regimens are being actively
investigated in ongoing clinical trials [43, 47, 48]. Nevertheless, the
overall response rate to is still low and we now report preliminary
evidence that APOBEC3B is a potential discriminant biomarker for
optimal responders, which warrants further exploration with larger
OCCC samples. Moreover, it should be fascinating to know whether

chemical manipulation of APOBEC expression or activity by
agonistic compounds to induce genomic hypermutation will
augment tumour immunity and confer ICI responsiveness [28]. In
view of these considerations, we argue that both APOBEC
antagonism and agonism are recommended to be assessed in
OCCC, depending on different treatment strategies.
Several limitations have to be acknowledged. First, although the

use of three independent OCCC cohorts represents a strength of
our work, one major weakness is the retrospective nature of
collected samples with varied follow-up duration and scarce
application of immunotherapy. Apparently, prospective studies
need to be undertaken for validating APOBEC-based molecular
subtyping as a prognostic and predictive biomarker. Second, only
APOBEC3B is primarily analysed due to its prominent role in
driving mutagenesis and kataegis formation. Ideally, all APOBEC
family members ought to be comprehensively surveyed. Third,
despite being cost-effective and easy to implement for routine
pathology, the Immunoscore system simply relies on the densities
of CD3+ and CD8+ lymphocytes from a snapshot to describe
immunophenotypes, which may underestimate the contribution
of spatial heteterogeneity and other components within tumour
immune microenvironment. Finally, considering the wide breadth
of APOBEC3B expression beyond OCCC [22, 49], it would be
desirable to determine if the concepts presented here are broadly
applicable to a variety of human malignancies.

MATERIALS AND METHODS
Patient cohorts
The study was approved by the Ethics Committee of Ren Ji Hospital. All
patients were consented to Institutional Review Board-approved protocols.
Among the 2107 gynaecologic cancer patients who were treated at the
Department of Obstetrics and Gynecology, Ren Ji Hospital, 679 patients
with epithelial ovarian cancer were retained for further analyses. Their
clinical records were retrospectively retrieved, and there were 105 cases of
ovarian clear cell carcinoma (OCCC) on record, 14 of which were excluded
after pathological confirmation. In total, 91 subjects comprised the internal
OCCC cohort. For the external validation cohorts, we enroled 45 and 72
patients from Sun Yat-Sen Memorial Hospital and the Affiliated Hospital of
Qingdao University, respectively. Detailed clinicopathological character-
istics of the three patient cohorts were described in Supplementary Tables.
Fresh-frozen tumour tissues were collected during debulking surgery.
Formalin-fixed and paraffin-embedded (FFPE) sections were obtained in
pathologic examination. Magnetic resonance imaging (MRI) data were
provided by the Department of Radiology, Ren Ji Hospital.

Whole-genome sequencing and data analysis
A total of 32 samples from 23 treatment-naïve patients (RJOCCC1–23) were
subjected to whole-genome sequencing (WGS) on an Illumina HiSeq X Ten
platform. WGS data of six patients (RJOCCC1–6) were recently presented
and reanalysed in this study. Sequence alignment and analysis were
processed as previously described [6]. Briefly, Paired-end clean reads were
aligned to the human reference genome (UCSC hg19) using Burrows-
Wheeler Aligner [50]. Single-nucleotide variants (SNVs) and small insertions
and deletions (INDELs) were called using MuTect and Strelka [51, 52],
respectively. ANNOVAR was used to annotate somatic alterations [53].
Copy number, purity and ploidy estimates were computed by Sclust [54].
CREST was implemented to identify potential structural variants [55].
Kataegis analysis was performed using KataegisPortal R package [6]. For
mutational signature extraction, SNVs were analysed by nonnegative
matrix factorisation (NMF) decomposition with SomaticSignatures [56].
TrackSig was used to estimate the evolutionary trajectories of mutational
signatures [57]. Circular layout of genomic information was generated
using circlize R package [58]. The sequencing data have been deposited in
NCBI SRA database under the accession number SRP157148.

Neoantigen prediction
To predict the neoantigens in silico, nonsynonymous SNVs served as basis
to generate a list of peptides ranging 8–14 amino acids in length with the
mutated residues represented in each position. Polysolver was used for
inference of class I HLA alleles [59]. Prediction for binding affinity of every
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mutant peptide and its corresponding wild-type peptide to the patient’s
germline HLA alleles was performed using the NetMHCpan algorithm (v4.0)
[60]. Candidate neoantigens were defined as those with a predicted
mutant peptide binding affinity below 500 nM and less than that of its
corresponding wild-type peptide.

Immunohistochemistry
Immunohistochemistry (IHC) was performed on 5 μm thick FFPE sections or
tissue microarray (TMA). After dewaxing and hydration, the slides were treated
for antigen heat repair within sodium citrate solution for 20min. The slides were
then treated for 10min with 3% H2O2 in methanol to quench endogenous
peroxidase activity, blocked with goat serum, incubated with primary antibodies
against CD3 (Kit-0003, MXB biotechnologies) or CD8 (RMA-0514, MXB
biotechnologies) at 4 °C overnight, and subjected to incubation with horseradish
peroxidase (HRP) conjugated secondary antibody for 1 h at room temperature.
Antigen visualisation was performed using 3,3’-diaminobenzidine (DAB)
chromogen (Vector Laboratories). Slides were counterstained with hematoxylin,
dehydrated and cover slipped with mounting solution (Invitrogen). For
APOBEC3B staining, after deparaffinization, rehydration, antigen retrieval and
protein blocking, the slides were incubated with an APOBEC3B antibody (LS-
A11154, Lifespan Biosciences) for 1 h at room temperature. Thereafter, the slides
were incubated with HRP-conjugated secondary antibody for 30min at room
temperature. HRP detection was performed by using aminoethyl carbazole (AEC)
as substrate according to the manufacturer’s protocol (AR1020, Boster Bio).
Finally, slides were mounted with aqueous mounting medium (AR1018, Boster
Bio). The PD-L1 staining was performed on an Autostainer Link 48 system
(Agilent) with a diagnostic PD-L1 antibody (Clone 22C3, Dako). Whole slides were
scanned at ×20× magnification with an Aperio ScanScope system (Leica
Biosystems).

IHC staining quantification
The APOBEC3B staining was quantified using the H-score method. The H-score
was calculated by adding the percentage of positive cellsmultiplied by an ordinal
value corresponding to the intensity level (none= 0, weak= 1, moderate= 2,
strong= 3). H-scores ranged from 0 to 300, and tissue samples with H-scores of
≥50 points were considered positive. The Immunoscore was a computer-assisted
image assay based on the quantification of CD3+ and CD8+ lymphocytes at
the invasive margin (IM) and the core of the tumour (CT). In the three-category
analysis, a 0–25% density was classified as ‘low’, a 25–70% density was classified
as ‘intermediate’, and a 70–100% density was classified as ‘high’. The four
percentiles (two markers, two regions) were calculated and converted into the
Immunoscore system, with one ‘high’ grade scored as 1 point. A tumour was
considered Immunoscore− if its Immunoscore= 0. A tumour was considered
Immunoscore+ if its Immunoscore≥ 1. The PD-L1 staining was quantified using
combined positive score (CPS), i.e. the number of PD-L1-positive cells (tumour
cells, lymphocytes, macrophages) divided by the number of viable tumour cells,
multiplied by 100. A tumour was considered PD-L1+ if its CPS≥ 1.

Statistical analysis
Statistics and graphics were generated using GraphPad Prism (v8.0) or R
(v4.1.0). Cumulative survival rate was calculated by the Kaplan–Meier
method and different groups were compared by means of log-rank tests.
Statistical analysis for comparison of continuous variables including
H-scores was performed using unpaired Student’s t-tests. Chi-square tests
were used to compare categorical variables, such as differences in patient
demographics and tumour characteristics between APOBEC+ and APO-
BEC−OCCC. All tests were two-sided and P-values of <0.05 were
considered statistically significant.

DATA AVAILABILITY
The sequencing data generated in this study have been deposited in NCBI SRA
database under the accession number SRP157148. All the other data and materials
are available within the article or upon request from the corresponding authors.
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