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Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate 
therapies. Peptide-based drugs as an alternate therapy hold researchers’ attention in various therapeutic fields such as neurol-
ogy, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies 
due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter 
half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various 
modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their 
functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation 
of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding 
the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. 
However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with 
their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based 
therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on 
various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made 
in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird’s-eye view to 
researchers aiming to develop peptides with therapeutic applications.
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Introduction

There are over 7000 natural peptides that have been rec-
ognized and are actively involved in a wide range of bio-
logical activities such as neurotransmission,  hormonal 
functions, growth factors activity, antimicrobial activity, 
and immunomodulation (Buchwald et al. 2014; Fosgerau 
and Hoffmann 2015; Padhi et al. 2014; Souery and Bishop 
2018). Peptide-based therapies exhibit significant efficacy 
in treating various diseases, including hormonal deficien-
cies, autoimmune disorders, infections, diabetes, and vari-
ous types of cancers (Larché and Wraith 2005; Jones and 
Hattersley 2013; Souery and Bishop 2018). These therapeu-
tics are selective and specific towards cell surface recep-
tors, like G-protein-coupled receptors or ion channels, 
which in turn stimulate their intracellular effects (Fosgerau 
and Hoffmann 2015; Rastogi et al. 2019). The smaller size 
of peptides–based therapeutics allows them to penetrate 
deeper into tissues like skin, intestines, etc. as compared to 
other larger biomolecules such as antibodies which helps 
them to enter the bloodstream more quickly (Lee et al. 2019; 
Leonard 2019; Patel et al. 2019). They have low immuno-
genicity and high target specificity as compared to small 
drug molecules (Wagner et al. 2018). Small molecules tar-
get only 2–5% of the human genome but peptides are more 

selective for specific protein targets (Cirillo et al. 2011; Hop-
kins and Groom 2002; Lau and Dunn 2018; Rask-Andersen 
et al. 2014; Vargason et al. 2021). Additionally, peptides 
have a relatively lower production cost than recombinant 
proteins and antibodies (Sachdeva et al. 2019; Trier et al. 
2019), and have a lower accumulation rate in the tissues 
(Groll et al. 2001). In recent times, several peptide-based 
drugs have entered the market showing efficiency against 
allergic diseases, infectious diseases, autoimmune diseases, 
fibrosis, asthma, etc. (Craik et al. 2013; Currier et al. 2008; 
Muheem et al. 2016; Semalty et al. 2007).

Peptide drug development had begun in the twentieth 
century with a strong emphasis on receptor targets such 
as G protein-coupled receptors. There are several key mile-
stones (Fig. 1) that ought to be recognized as they repre-
sent some of the most notable achievements in the field of 
peptide drug discovery. However, over the past few years, 
the global market for peptide therapeutics has grown sig-
nificantly in size and economic value. The US Food and 
Drug Administration (FDA) has approved a total number 
of 208 new drugs (150 chemical agents and 58 biologicals) 
in the last 6 years. Among the FDA-approved drugs in the 
past 6 years (2015–2020), 19 peptide-based drugs have been 
identified which are listed in Table 1 (Al Shaer et al. 2019, 
2020; de la Torre and Albericio 2020a, b). D’Aloisio and 
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his co-workers have designed PepTherDia (http:// pepth erdia. 
herok uapp. com/), a database containing the list for approved 
peptide-based drugs and diagnostics. As of 2023, PepTher-
Dia lists 114 peptides approved for theranostic applications. 
The ultimate goal of this database is to aid the scientists in 
the early stage of the peptide-based drug discovery process 
to successfully design or pre-screen the peptide candidates 
(D’Aloisio et al. 2021). Apart from being used in therapeu-
tics and diagnostics, these molecules are also playing a key 
role in drug delivery systems and as the foundation for new 
biomaterials especially in nano-range with a wide range of 
applications in medicine. Physical encapsulation or chemi-
cal conjugation procedures can be used to load drugs onto 
peptide nanomaterials, resulting in prolonged drug reten-
tion time and uptake rates (Yang et al. 2021). Peptide-drug 
conjugates as drug delivery systems fall under the prodrug 
strategy, which lowers the toxicity and increases the solubil-
ity of free drugs, thereby, improving the pharmacokinetic 
profile of the drug. It increases drug biocompatibility as well 
as encourages targeted delivery and controlled drug release 
(Goyal and Ramakrishnan 2019; Lian and Ji 2020; Tesauro 
et al. 2019).

Development of peptide therapeutics has established its 
potential in a new era in twenty-first century, which has 

significantly accelerated the breakthroughs in area of struc-
tural biology, recombinant biologics, and novel synthetic 
and analytical technologies. The development of peptide 
drugs now involves an intricate process encompassing novel 
peptide discovery, peptide design, peptide synthesis, modi-
fication of the structures, and its activity assessment. In this 
review article, we focus on various natural and synthetic 
peptides, that are currently being explored in the arena of 
peptide therapeutics. We attempt to combine various pep-
tide-based therapeutic elements into a single piece which 
includes their limitations and highlights different strategies 
to improve their efficacy. It also draws attention to recent 
advancements in peptide delivery methods that are crucial 
for their improved therapeutic profile. This article can act as 
a one-stop point for the researchers to have a wide outlook 
in the field of peptide therapeutics.

Literature Search Method

This study was performed in accordance to the PRISMA 
guidelines (Fig. 2) (Moher et al. 2009). The databases 
PubMed, and Web of Science were used to conduct the 
electronic search strategy with combined keywords. We 

Fig. 1  Milestones in peptide and 
peptidomimetic drug discovery 
(FDA 2021; Muttenthaler et al. 
2021; Zane et al. 2021)

http://peptherdia.herokuapp.com/
http://peptherdia.herokuapp.com/
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used the following search terms and other subject head-
ings: ‘peptide therapeutics’, ‘classification of peptides’, 
‘antimicrobial peptides’, ‘anticancer peptides’, ‘neuro-
logical peptide drugs’, ‘dermatological peptide drugs’, 
‘cardiovascular peptide drugs’, ‘peptide vaccines’, ‘lim-
itations of peptide therapeutic’, ‘peptide modification 
strategies’, ‘peptide drug delivery’, ‘peptide drug deliv-
ery routes’, ‘peptide-nanoparticle conjugates’, ‘peptide 
databases’, ‘peptide in-silico tools’. Articles published 
between 2010 and 2022 were included in the study. 

Review articles and articles written in English were only 
included. Some important articles were also sourced from 
the reference list of the included papers and some were 
recommended by experts in the field. A pool of 90,277 
records was initially identified using the electronic search 
strategy, however, after removal of duplicates, 47,138 
records remained. Among these, communications that 
were relevant to the topic, or in English language only, 
with full text were included (n = 211). In order to obtain 
detailed information on therapeutics under clinical trials 

Table 1  Peptide-based drugs approved by FDA in the last 7 years (2015–2021) (de la Torre and Albericio 2020a; FDA 2021). [Copyright  © de 
la Torre and Albericio 2020a, b. Creative Commons Attribution License (https:// creat iveco mmons. org/ licen ses/ by/4. 0/)]

Year Active compound Trade name Disease treated

2015 Insulin degludec
Chain A (GIVEQCCTSICSLYQLENYCN)
Chain B (FVNQLCGSHLVEALYLVCGERGFFYTP)

Tresiba® Diabetes

2016 Adlyxin
(HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKK)

Lixisenatide® Diabetes

2017 Abaloparatide
(AVSEHQLLHDKGKSIQDLRRRELLEKLLXKLHTA)

Tymlos® Osteoporosis

2017 Angiotensin II
(DRVYIHPF)

Giapreza® Hypotension

2017 Etelcalcetide
[Ac-(CAR RRA R)D-NH2]

Parsabiv® Hyperparathyroidism

2017 Plecanatide
(NDECELCVNVACTGCL)

Trulance® Chronic idiopathic constipation

2017 Semaglutide
(HXEGTFTSDVSSYLEGQAAKEFIAWLVRGRG)

Ozempic® Diabetes

2018 177Lu DOTATATE
(FDCYW DKTCT)

Lutathera® Neuroendocrine tumors, theranostic

2019 68 Ga DOTATOC
(FDCYDWKTCT)

Edotreotide Gal-
lium GA-68®

Neuroendocrine tumors, diagnostic

2019 Afamelanotide
(Ac-SYSXEHFDRWGKPV-NH2)

Scenesse® Skin damage and pain

2019 Bremelanotide
(DHFDRWK)

Vyleesi® Women hypoactive sexual desire

2020 Bulevirtide acetate
(GTNLSVPNPLGFFPDHQLDPAFGANSNNPDWDFNPNKDH-

WPEANKVG)

Hepcludex® Antiviral Hepatitis delta virus infection

2020 Somapacitan
(FPTIPLSRLFDNAMLRAHRLHQLAFDTYQEFEEAYIPKEQKYSFLQN-

PQTSLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSV-
FANSCVYGASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQ-
TYSKFDTNSHNDDALLKNYGLLYCFRKDMDKVETFLRIVQCRSVEG-
SCGF)

Sogroya® Growth hormone deficiency

2020 Teriparatide acetate
(SVSEIQLMHNLGKHLNSMERVEWLRKKLQDVHNF)

Forteo/Forsteo® Osteoporosis

2021 Dasiglucagon
(HSQGTFTSDYSKYLDXARAEEFVKWLEST)

Zegalogue® Hypoglycemia

2021 Pegcetacoplan
(ICVWQDWGAHRCTXK)

Empaveli® Nocturnal hemoglobinuria

2021 Difelikefalin
(FFLK)D-[ω(4-aminopiperidine-4-carboxylic acid)]-OH

Korsuva® Chronic kidney diseases

2021 Vosoritide
(PGQEHPNARKYKGANKKGLSKGCFGLKLDRIGSMSGLGC)

Voxzogo® Achondroplasia and open epiphyses

https://creativecommons.org/licenses/by/4.0/
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or commercialized we also retrieved data from Clini-
calTrials.gov., European medicines agency (www. ema. 
europa. eu) and U.S. Food & Drug Administration (www. 
fda. gov).

Peptides as Therapeutics

A peptide is a short chain of amino acids bound together by 
peptide bonds between the carboxyl group of one amino acid 
and the amino group of the other amino acid. A peptide is 
different from a protein as a peptide chain usually consists 
of 2 to 50 amino acids, whereas a protein is made up of 
50 or more amino acids (Britannica 2016; "Peptide," 2014; 
Rogers). Peptides of diverse lengths have shown significant 
efficacy against various therapeutic conditions such as osteo-
porosis, cancer, microbial infections, hormonal deficiencies, 
diabetes, obesity, etc. (Thundimadathil 2012; Wetzler and 
Hamilton 2018). Due to the higher surface area of peptides, 
they are highly specific and sensitive to their native recep-
tors, hence, exhibit minimal off-target effects causing less 
adverse effects in the patients. For nearly two decades it 
has been known that peptides are capable of triggering cel-
lular apoptosis via caspase activation (Buckley et al. 1999; 
Philchenkov 2004). Studies and development in the area 
of apoptosis have gained the significant interest of research-
ers due to the increased prevalence of certain diseases like 
cancer, autoimmune disorders, neurodegenerative diseases, 
etc. at a rapid rate.

• Peptides in Research and Market in the Recent Years

Research in peptide-based therapeutics  has progressed 
extensively to have a broader range of structures from sev-
eral natural sources or to use biomedical sciences beyond its 
traditional focus on endogenous human peptides. Almost a 
century ago, since the emergence of insulin, more than 80 
peptide drugs have been approved for a variety of diseases 
such as diabetes, cancer, osteoporosis, multiple sclerosis, 
HIV infection, and chronic pain (Cabri et al. 2021). New 
peptide-based therapeutics are being developed at a steady 
pace, with more than 150 peptides in clinical trials and 
another 400–600 peptides in preclinical studies (Fosgerau 
and Hoffmann 2015; Lau and Dunn 2018; Muttenthaler 
et al. 2021). Peptide-based drugs occupy a distinct space 
in the pharmaceutical area accounting for 5% of the global 
pharmaceutical market exceeding US$ 50 billion of global 
sales in 2019. Over the last decades, peptide-based drugs 
have been steadily approved with an average growth rate 
of 7.7% for the global peptide therapeutic market (Global 
Peptide Therapeutics Sales Market Report 2020).

• Peptides in Clinical Trials Phases

Lau and Dunn reported a series of peptides that entered 
human clinical trials  including many peptides in active 
clinical development (Lau and Dunn 2018). Thus,  the 
development of novel peptides and peptide-based thera-
pies is becoming highly prevalent in combating multiple 
disorders. It is necessary to identify the lead compound 
during the drug discovery stage and establish a competent 
manufacturing method to assess the efficacy and safety of 
the new drug candidate during clinical trials. In the pre-clin-
ical phase, various tests are carried out to determine safety 
before human testing is initiated. Clinical studies at all stages 
provide information to the organizations across the globe 
required to submit the regulatory approvals (Shojaei 1998).

A significant number of peptide-based drugs in the market 
are analogs that develop the intrinsic activity of natural hor-
mones with enhanced therapeutic potential. Due to the exist-
ence of the endogenous peptide as a biological precedent, an 
analog drug development system is certainly safe concerning 
target validation. However, native peptide leads may have 
insufficient potency or selectivity (Lau and Dunn 2018). 
Thus, conjugation strategies have been developed as a signifi-
cant approach for enhancing the properties of peptide thera-
peutics. The number of conjugated peptides has increased 
over time; since 2010, 30% of peptides that have undergone 
clinical development are conjugates (Lau and Dunn 2018).

These therapeutics have been categorized based on vari-
ous diseases viz. anticancer peptides, antimicrobial peptides, 
immunogenic peptides, peptides against metabolic disor-
ders, hematological disorders, neurodegenerative diseases, 

Fig. 2  PRISMA flowchart representing the selection and exclusion of 
articles related to the topic

http://www.ema.europa.eu
http://www.ema.europa.eu
http://www.fda.gov
http://www.fda.gov
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genetic disorders, etc. (Usmani et al. 2017). Among all these 
diseases, peptide therapeutics are most prevalently used in 
cancer therapies, microbial infections, metabolic disorders, 
neurodegenerative diseases, cardiovascular and dermatologi-
cal diseases. Therefore, this article focuses on the peptide-
based therapeutics that are being commonly used in these 
rampant areas.

Anti‑cancer Peptides

ACPs are small amino acid sequences that are selective and 
harmful to cancer cells (Chiangjong et al. 2020). The con-
formation, net charge, and the secondary structure of pep-
tides depend on the physicochemical properties, amino acid 
composition of the peptides, and chemical groups present in 
the chain. ACPs predominantly include the amino acid resi-
dues viz. glycine, lysine, and leucine that make up the hydro-
phobic component of the peptide (Chiangjong et al. 2020) 
(Shoombuatong et al. 2018). Charged amino acids, lysine, 
and arginine disrupt the integrity of the cell membrane and 
penetrate it, causing cytotoxicity in the cancer cells. Aspar-
tic and glutamic acid also present anti-proliferative activity 
on cancer cells (Dai et al. 2017; Yamaguchi et al. 2016). 
l-asparaginase is a therapeutic enzyme used clinically for 
the treatment of pediatric acute lymphoblastic leukemia 
(Purwaha et al. 2014). This enzyme catalyzes the hydrolysis 
of l-asparagine into aspartic acid and ammonia (Purwaha 
et al. 2014; Shrivastava et al. 2016). Both normal and cancer 
cells require asparagine for growth and proliferation, but 
cancer cells cannot produce asparagine on their own and sur-
vive on the circulating asparagine (Jiang et al. 2021). There-
fore, hydrolysis of asparagine in the body leads to cancer cell 
death ("l-asparaginase,"; Shrivastava et al. 2016). Similarly, 
glutamine, a derivative of glutamic acid is also an important 
substrate for cell growth (Cluntun et al. 2017; Dutta et al. 
2013). l-glutamine synthetase converts l-glutamic acid into 
l-glutamine. Due to the lower reactivity of l-glutamine syn-
thetase in tumor tissues, l-glutamine cannot be synthesized. 
Thus, an antagonist of this enzyme can interfere with the 
metabolic process of l-glutamine and act as an anticancer 
agent (Dutta et al. 2013; Luzzio et al. 2000). ACPs are either 
naturally occurring peptides or synthetic peptides which are 
modified by substituting amino acid residues or by the addi-
tion of chemical groups. Although various natural peptides 
are biocompatible and less cytotoxic, several natural pep-
tides cannot account for active targeting, cellular uptake, 
and targeted delivery (Apostolopoulos et al. 2021; Lee et al. 
2019; Serrill et al. 2016). Thus, natural peptides can be mod-
ified into novel synthetic peptides with improved specificity, 
higher therapeutic efficacy, cell permeability, and cancer cell 
cytotoxicity. A large number of ACPs kill the cancer cells by 
membrane lysis or pore formation via apoptosis and necrosis 
(Droin et al. 2009). These peptides are either molecularly 

targeted to specific cancer cells by penetrating or binding to 
the cells or can be bound to anticancer drugs to enhance 
their activity (Li et al. 2011; Peyressatre et al. 2015; Raucher 
and Ryu 2015).

The analogs of luteinizing hormone-releasing hormone 
(LHRH), a hypothalamic neuropeptide, and somatostatin, 
a tetradecapeptide hormone are the standard treatments for 
various cancers and provide a powerful forum for theranos-
tics that helps in the advancement of treatments for cancer. 
The agonists of LHRH are reported to cause an early surge 
in luteinizing hormone (LH), follicle-stimulating hormone 
(FSH), and testosterone, and overstimulation of LHRH 
receptor suppresses LH leading to castrate level (50 ng/dL) 
of testosterone. It is essential for the therapeutic potential 
of LHRH agonists against prostate, endometrial, and breast 
cancers. Whereas, the antagonist is reported to block the sig-
nals of the LHRH receptor which causes persistent inhibition 
of LH, FSH, and testosterone. The most recently approved 
LHRH antagonist is degarelix which potentially induces 
competitive LHRH receptor blockade in the absence of an 
intrinsic agonist effect (Brunel et al. 2019; Klotz et al. 2008).

Somatostatin analogs are another major class of peptide-
based therapeutics for cancer treatment. It is also known 
as growth hormone-inhibiting hormone (GHIH) or somato-
tropin release-inhibiting factor (SRIF). Along with growth 
hormone, it also suppresses cholecystokinin, insulin, thy-
roid-stimulating hormone (TSH), and glucagon (Mandarino 
et al. 1981). The efficiency of somatostatin ligands in cancer 
treatment has been indicated by discovering overexpression 
of somatostatin receptors in tumors which has led to the 
development and approval of somatostatin agonist, octreo-
tide (Brown et al. 1977). Octreotide is a potent inhibitor of 
insulin and growth hormone and has significant efficiency 
against carcinoid syndrome, pancreatic, intestinal, and pitui-
tary tumors (Modlin et al. 2010). In 2007, another somato-
statin analog, lanreotide was approved which is structurally 
similar to octreotide and is used to treat various gastro-enter-
opancreatic-neuroendocrine tumors.

Several peptide-based cancer therapies have been devel-
oped using ACPs or ACPs in combination with various 
drugs and the efficacy of peptides to target the malignant 
cells have been tested in clinical trials. Table 2 summarises 
various synthetic peptide-based drugs and vaccines that 
are undergoing clinical trials.

Anticancer peptides are classified into 3 major groups; (i) 
antimicrobial or pore-forming peptides, (ii) cell penetrating 
peptides, and (iii) tumour-targeting peptides.

Antimicrobial Peptides

Antimicrobial Peptides (AMPs) besides acting against 
microorganisms, they can also induce necrosis or apopto-
sis of cancer cell membranes. AMPs either cause cellular 
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disruption of the negatively charged molecules present on 
the cancer cell membranes or breakdown of the mitochon-
drial membranes (Boohaker et al. 2012; Marqus et al. 2017). 
Margainin II, NRC-03, NRC-07, buforin II are a few pore-
forming peptides that act against bladder cancer, breat can-
cer, cervical cancer, leukemia and lung cancer, respectively 
(Hilchie et al. 2013; Lehmann et al. 2006; Park et al. 2000).

Cell Penetrating Peptides

Cell Penetrating Peptides (CPPs) are hydrophobic peptides 
that can move through the plasma membrane and play the 

key role in transporting cargos such as DNA, siRNA, oligo-
nucleotides, proteins, etc. Thus, CPPs are promising agents 
for drug delivery (Bidwell III and Raucher 2009; Regberg 
et al. 2012). BR2 and Tat are two CPPs derived from human 
immunodeficiency virus (HIV) and buforin II, respectively. 
BR2 actively targets colon cancer, cervical cancer, and mela-
noma, whereas, Tat in conjugation with doxorubicin targets 
breast and prostate cancer (Liang and Yang 2005; Lim et al. 
2013).

Table 2  Anticancer and antimicrobial peptide-based drugs and vaccines under clinical trials (Chiangjong et  al. 2020; Håkansson et  al. 2019; 
Niemeyer‐van der Kolk et al. 2020; Pan et al. 2019; Peek et al. 2020; "Peptides,"; Wang et al. 2018; Zhang and Yang 2022)

Peptide Peptide sequences Target Trial phase

SVN53-67/M57-KLH Peptide Vac-
cine

DLAQMFFCFKELEGW Metastatic Pancreatic Neuroendo-
crine Tumor

Phase 1

KRAS multipeptide vaccine Kras-G12D (KLVVVGADGVGKSALTI)
Kras-61Wt (KLVVVGAGGVGKSALTI)
Kras-63Wt (SALTIQLIQNHFVDE)
Kras-68Wt (FLCVFAINNTKSFED)

Pancreatic cancer Phase 1

Arginase-1 multipeptide vaccine ARG1-18 (AKDIVYIGLRDVDPGEHYIL),
ARG1-19 

(DVDPGEHYILKTLGIKYFSM),ARG1-20 
(KTLGIKYFSMTEVDRLGIGK)

Metastatic Solid Tumors Phase 1

MUC-1 peptide vaccine, MUC1 
peptide-poly ICLC adjuvant vaccine

H2N-(GVTSAPDTRPAPGSTAPPAH)5-
CONH2

Breast cancer Phase 1

HER-2/neu peptide vaccine E75 (KIFGSLAFL)
GP2 (IISAVVGIL)
A37 (GVGSPYVSRLLGICL LRMK)

Breast cancer Phase 1

HPV16 E7 peptide-based vaccine GQAEPDRAHYNIVTF Cervical cancer Phase 1, Phase 2
RNF43-721 NSQPVWLCL Colorectal cancer Phase 1
LY6K/VEGFR1/VEGFR2 multipep-

tide vaccine
LY6K (RYCNLEGPPI)
VEGFR1 (SYGVLLWEI)
VEGFR2 (RFVPDGNRI)

Esophageal cancer Phase 1

MAGE-3.A1 peptide-CpG 7909 
adjuvant vaccine

EVDPIGHLY Melanoma Phase 1, Phase 2

VEGFR1-1084, VEGFR2-169 VEGFR1 (SYGVLLWEI)
VEGFR2 (RFVPDGNRI)

Pancreatic cancer Phase 1, Phase 2

URLC10 peptides with adjuvant RYCNLEGPPI Lung cancer Phase 1, Phase 2
PD-L1 and Arginase 1 Dual peptide 

vaccine
PD-L1Long1 (FMTYWHLLNAFTVTVP-

KDL)
ArgLong2 (ISAKDIVYIGLRDVDPGEHY-

ILKTLGIKYFSMTEVDRL)

Myeloproliferative Neoplasms Phase 1, Phase 2

PD-L1/IDO peptide vaccine IO102 (DTLLKALLEIASCLEKALQVF)
IO103 (FMTYWHLLNAFTVTVPKDL)

Metastatic Melanoma Phase 1, Phase 2

IO102 peptide vaccine DTLLKALLEIASCLEKALQVF Squamous Cell Carcinoma Phase 2
WT 126-134 peptide vaccine RMFPNAPYL Leukemia Phase 2
PR1 peptide vaccine VLQELNVTV Leukemia Phase 3
Degarelix (LHRH antagonist) Ac-XXXSXXLKPA-NH2 Prostate cancer Phase 4
DPK-060 GKHKNKGKKNGKHNGWKWWW Staphylococcus aureus skin infection Phase 2
Omiganan ILRWPWWPWRRK Atopic dermatitis Phase 2
P60.4Ac IGKEFKRIVERIKRFLRELVRPLR Chronic suppurative otitis media Phase 2
Nal-P-113 AKRXXGYKRKFX-NH2 Periodontal Pathogenic infections Phase 3
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Tumour‑Targeting Peptides

Tumour-targeting Peptides (TPPs) target the receptors pre-
sent on the tumour cell surfaces. The peptide RGD selec-
tively binds to the integrin ανβ3 and ανβ5 that are expressed 
in melanoma, brain tumours, ovarian, lung and breast can-
cers (Wickham et al. 1993). Xiong and co-workers func-
tionalised RGD onto a sterically stabilised liposome (SSL) 
and conjugated with doxorubicin (RGD-SSL-Dox) which 
resulted in enhanced efficacy against melanoma (Xiong et al. 
2005).

Anticancer peptide can be further classified into 3 groups 
on the basis of their mode of actions: (i) targeting signal 
transduction pathways, (ii) cell cycle regulation, and (iii) 
cell death (Marqus et al. 2017).

Signal Transduction Pathways

TTPs that selectively bind to the receptors expressed on the 
cancer cell surface either result in stimulation or inhibition 
of the signalling pathways in cancer cells. Oncogenic sig-
nalling pathways are identified as the primary targets for 
peptides as predominantly control the cancer cell activity. 
Peptides binding to the receptors impairs the process of 
signal transduction leading to no cellular response which 
enhances the efficacy of the cancer treatment (Karami Fath 
et al. 2022). A 15 amino acid peptide, PNC-2 and a 13 
amino acid peptide, PNC-7 were reported to actively target 
pancreatic cancer by inducing phenotypic reversion of Ras-
transformed cells (Kanovsky et al. 2003; Lee et al. 1990).

Cell Cycle Regulation

Cell proliferation is essential for development and regen-
eration of eukaryotic organisms. Cell cycle involves four 
phases: G1-phase, S-phase, G2-phase, and M-phase. A 
number of cyclin-dependent kinases (Cdks) regulate the pro-
gression of cell through each phase of the cell cycle (Sury-
adinata et al. 2010). However, abnormal activation of Cdks 
in cancer results in abnormal cell proliferation. ACPs, by 
binding to specific Cdk inhibits the progression of the cells 
from one to phase to the next. A 22 amino acid synthetic 
peptide, p16 was reported as Cdk inhibitor that bound to 
Cdk4/6 in G1 phase which inhibited the complex forma-
tion of cyclin D-Cdk4 and prevented the breast and colon 
cancer cell progression to S-phase (Fåhraeus et al. 1998). 
Another Cdk inhibitor peptide, p21 was reported to induce 
cell cycle arrest at G1 phase and inhibited cell proliferation 
in colon cancer and lymphoma (Cayrol et al. 1998; Mutoh 
et al. 1999). When p21 was conjugated with biopolymer 
elastin-like polypeptide (ELP) and a CPP, Bac-7, the Bac-
7-ELP-p21 polypeptide induced cell cycle arrest at S and G2 

phase of cell cycle and inhibited cell proliferation in ovarian 
cancer (Massodi et al. 2010).

Cell Death

ACPs also function by causing cell death of the cancer cells 
by inducing apoptosis or necrosis by inducing membrane 
lysis or pore formation. A number of peptides, namely, Tat, 
CT20p, RRM-MV are reported to causes apoptosis against 
various cancers viz. lymphoma, melanoma, squamous car-
cinoma, pancreatic, breast and colon cancers.

Antimicrobial Peptides

AMPs are short-chain proteins with a wide range of antimi-
crobial properties and immunomodulatory activities against 
bacterial pathogens, viruses, and fungi (Bardan et al. 2004). 
They have various advantages like broad‐spectrum activity, 
higher efficiency against various diseases, and lesser suscep-
tibility to microbial resistance. They are naturally produced 
by ribosomal or non-ribosomal biogenic pathways and are 
structurally diverse. AMPs can be classified based on their 
(i) source, (ii) biological activity, (iii) structural charateris-
tics (Fig. 3) (Elias and Choi 2005; Huan et al. 2020).

AMPs Based on Sources

AMPs, based on its sources, can be found in different eukar-
yotes and prokaryotes. Primarily AMPs are derived from 
different animals, plants and microorganisms (Fig. 3).

AMPs Based on Biological Activity

AMPs are crucial part of innate immunity which possess a 
variety of biological activities, such as antibacterial, antivi-
ral, antifungal, antiparasitic, or anticancer activities (Fig. 3).

AMPs Based on Their Structures

AMPs can be subcategorized into four groups on the basis of 
their secondary structures: (i) α-helical peptides, (ii) β-sheet 
peptides, (iii) both α-helix and β-sheet peptides, and (iv) 
linear extended peptides (Fig. 3). The secondary structure of 
the peptides is an essential element for their function as the 
bacterial membrane permeation by AMPs strongly rely on 
the secondary structure. It has been reported that folding of 
peptides into α-helix helps them penetrate the cell membrane 
(McKay et al. 2018). α-helical peptides exhibit amphipathic 
structure which separates the hydrophobic domain from the 
cationic one to the other side of the helix which leads to a 
favourable interaction between AMPs and cell membranes. 
Hydrophobic domain of the AMPs then disrupt the bacterial 
membrane followed by binding to the anionic endotoxin on 
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the cell wall via electrostatic interactions (Liang et al. 2020). 
A number of AMPs such as LL-37, melittin, AH, C5A, kia-
din-2, kiadin-6, etc. which exhibited α-helical structures 
resulted in potential antimicrobial activity. Considering the 
several studies reported (Johansson et al. 1998; Park et al. 
2019; Rončević et al. 2018) it can be stated that the α-helical 
structures of the AMPs play an essential role in bacterial 
membrane disruption (Liang et al. 2020).

Among the most prevalent AMPs in nature, the cationic 
alpha-helical AMPs like cathelicidins LL-37, cecropin, 
magainin, and proline-rich AMPs can disrupt the bacterial 
cytoplasmic membranes resulting in apoptosis through an 
osmotic shock (Boparai and Sharma 2020). Various path-
ways hinder the development of microbial resistance. Cati-
onic AMP residues electrostatically interact with the anionic 
bacterial cell wall which leads to bactericidal activity. AMPs 
also form pores on the membranes of bacterial cells which 
leads to apoptosis in bacteria (Kamaruzzaman et al. 2019; 
Namivandi-Zangeneh et al. 2019).

The peptides that are derived from ribosomes have lately 
shown significant therapeutic potential (Mahlapuu et al. 
2016). Thus, in the field of AMPs, synthetic approaches 
to develop such peptides have risen significantly. Bacitra-
cin, a peptide isolated from Brevibacillus brevis is used in 

combination with other antibiotics against gram-positive 
bacteria which interferes with the bacterial cell wall and 
peptidoglycan synthesis. In 2003, a lipidated cyclic depsi-
peptide, daptomycin was approved by FDA against Staphy-
lococcus aureus caused complicated skin infections (Tótoli 
et al. 2015). Vancomycin, a glycopeptide also shows sig-
nificant efficacy against gram-positive strains (Butler et al. 
2014; Nicolaou et al. 1999). Echinocandins, lipidated cyclic 
hexapeptides exhibit substantial antifungal activity (Candida 
fungal infections) by potentially inhibiting the (1 → 3)‐β‐d‐
glucan enzyme synthesis complex (Aguilar-Zapata et al. 
2015; Nyfeler and Keller-Schierlein 1974). Peptides like 
defensins, insect-derived cecropins, and amphibian-origi-
nated antimicrobial peptides are also potent against vari-
ous fungal infections and gram-positive and gram-negative 
strains. A cecropin analog, Hecate has recently shown inhib-
itory effects on several species of Acanthamoeba. SHIVA-
11 is also a cecropin analog that is commonly used against 
different ocular infections (Warnke et al. 2013). In vari-
ous local infections caused by multidrug-resistant bacterial 
strains, certain amphibian-derived peptides such as alyte-
serin, brevinin, ascaphin, pseudin, kassinatuerin, and tem-
porin are used (Migoń et al. 2018). Another natural peptide, 
P113 derived from saliva has shown high in-vitro efficacy 

Fig. 3  Classification of AMPs (Huan et al. 2020; Moretta et al. 2021)
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against Candida albicans and numerous other gram-positive 
and gram-negative bacteria (Shiffman and Low 2018). It is 
also used as a mouthwash to treat oral Candidiasis in human 
immunodeficiency virus (HIV) infected patients (Yu et al. 
2017). Certain indolicidin-based peptides, MX-226 and 
MX-594AN have also used in the treatment of catheter-
induced infections and Acne vulgaris respectively (Sachdeva 
2017). Another peptide MBI-853NL is used to prevent the 
infections corresponding to Methicillin-Resistant Staphylo-
coccus aureus (MRSA) (Levy 2004).

A wide range of advantages of AMPs such as high 
potency, efficacy, target specificity, low cytotoxicity, and 
low accumulation in tissues has led to the development of 
numerous peptide-based therapeutics and their appropriate 
preclinical and clinical trials (Table 2) (Bach 2018).

The investigation of AMPs, whether natural or synthetic, 
has been subjected to numerous studies over the last few 
decades, and the relevant information is available in sev-
eral databases. Such ACP and AMP databases range from 
large general collections to specialized compilations which 
are summarized in Table 3.

Animals AMPs are primarily isolated from various ver-
tebrates and invertebrates such as mammals, amphibians, 
fishes, insects, etc. They are identified at different sites of 
the body such as skin, mucosal barriers, eye, reproductive 
tract, saliva, milk, etc. Cathelicidins and defensins are the 
two major classes of mammalian AMPs found in humans, 
horses, rabbits, sheep, etc. (Lei et al. 2019). These peptides 
play major role in innate immune system and protect the 
host from foreign microbial infections. Human cathelicidin 
LL-37, beta-defensin 2, casein201, lactoferrin B, etc. are a 
few mammalian peptides isolated from skin, eyes, mouth, 
respiratory tract, intestines, and colostrum, respectively.

Amphibians are also a rich source of AMPs, especially 
frogs. Magainin is one of the most prevalent amphibian 
AMPs derived from frog skin which has potential activity 
against various bacteria, viruses, yeasts, and fungi. Other 
peptides viz. cancrin and esculentins are also derived from 
frogs which exhibit strong activity against several patho-
gens like C. albicans, P. aeruginosa, E. coli and S. aureus 
(Patocka et al. 2019). There several AMPs derived from 
fishes viz. piscidin, hepcidin, dicentracin, and NK lysine 
(Mabrouk 2022).

Several AMPs are also derived from blood cells and fat 
tissues of insects. Crecopin and jellein are the most famous 
AMPs isolated from insects such as silkworm, Drosophila, 
bees and show promising effects against several inflamma-
tory diseases, cancers, and microorganisms.

Plants Plants are well-known as one of the major sources 
of AMPs. Defensins, thionins, cyclotides etc. are commonly 
known plant-based AMPs and possess similar physiochemi-

cal properties like the animal-derived AMPs. PvD1, a plant 
defensin AMP and Snakin, a thionin peptide are the com-
mon examples of plant-based peptides derived from Pha-
seolus vulgaris and Ziziphus jujuba, respectively. These 
peptides exhibit potential activity against yeasts, fungi and 
bacteria. Although several AMPs derived from plants have 
been identified till date, none of them has been clinically 
approved yet (Saeed et al. 2022).

Microorganisms Microorganisms like bacteria and fungi 
are known as reservoirs of AMPs. The most common bac-
terial peptides, also known as bacteriocins such as nisin, 
lacticin, gramicidin, mersacidin, etc. isolated from lactic 
acid bacteria, namely Lactococcus lactis, Bacillus subtilis, 
and Bacillus brevis (Lei et al. 2019). Nisin is 34 amino acid 
peptide sequence that has been commercially approved for 
the treatment of bovine mastitis (Li et al. 2021). Another 40 
amino acid AMP, plectasin isolated from the fungus Pseu-
doplectania nigrella has exhibited strong bactericidal activ-
ity against multidrug resistant strains of S. aureus (Saeed 
et al. 2022).

Antibacterial Peptides

These peptides exert their biological activity by membrane 
or non-membrane mediated action. Bacterial cell walls are 
composed of anionic bacterial endotoxins such as lipopoly-
saccharides in gram-negative bacteria and lipotechoic acids 
in gram-positive bacteria. Cationic AMPs electrostatically 
or hydrophobically bind to these anionic components in 
the cell wall and results in membrane disruption leading 
to leakage of intracellular contents. AMPs like cathelici-
din, defensin, nisin, cecropins, etc. are well-known for their 
potential inhibition activity towards various gram-positive 
and gram-negative bacteria (Huan et al. 2020; Q.-Y. Zhang 
et al. 2021a, b).

Antiviral Peptides

AMPs show broad-spectrum antiviral activity against 
viruses. These peptides exhibit their biological activity by 
(a) blocking the viral entry by inhibiting the attachment of 
virus to the host cell receptors, (b) destroying the viral enve-
lope, or (c) inhibiting the virus replication (Jung et al. 2019). 
AMPs such as human cathelicidin LL-37, defensins, tem-
porins, magainin, gramicidin, etc. exhibit potential antiviral 
activity against several viruses like HIV, influenza A virus, 
vaccinia virus, dengue virus, zika virus, etc.

Antifungal Peptides

Antifungal peptides primarily address the fungal infections 
caused by common pathogenic fungi viz. Aspergillus or 
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Candida albicans. These peptides employ their biological 
activity on the targets by (a) inhibiting β-glucan synthesis, 
(b) inhibiting chitin biosynthesis in fungal cell wall, or (c) 
membrane permeation. Brevins, ranatuerin, cecropins, echi-
nocandins, pneumocandins, etc. are some common examples 
of antifungal peptides (Fernández de Ullivarri et al. 2020).

Antiparasitic Peptides

Parasites essentially contribute to the statistics of human 
diseases worldwide, resulting in a significant global health 
burden. Malaria, leishmaniasis, trypanosomiasis, schis-
tosomiasis, etc. are some common parasitic diseases that 
threaten the health of millions of populations. Increase in 
parasitic drug resistance has lead to substantial gain in inter-
est towards AMP-based antiparasitic strategies. Halictine-2, 
attacin, cecropin, defensin 2, dragomide E, LZ1, phyllosep-
tin-1, temporin, jellein, etc. are a few examples of AMPS 
that are currently being explored as antiparasitic therapeutic 
strategies (Huan et al. 2020; Q.-Y. Zhang et al. 2021a, b).

Anticancer peptides

Several cationic AMPs, alongside acting against microbes, 
also selectively target tumour cells by binding to the ani-
onic phosphatidylserine moieties present on the cancer cell 
membranes (Wodlej et al. 2019). These peptides exert their 
anticancer activity by (a) blocking signalling pathways, (b) 
arresting cell cycles, or (c) causing cell death by apoptosis 
or necrosis. Tritrpticin, indolicidin, puroindoline are a few 
examples of AMPs that also act as ACPs.

Metabolic Disorders & Peptide Therapeutics

Peptide therapeutics have also played a crucial role in the 
management of metabolic diseases like type 1 diabetes mel-
litus (T1DM) and type 2 diabetes mellitus (T2DM). Two 
peptide hormones, insulin, and glucagon-like peptide-1 
(GLP-1) produced by beta cells of pancreatic islets and intes-
tinal l-cells respectively are involved in glucose homeostasis 
and are the basis of the most significant peptide therapeu-
tics for metabolic diseases. Glucagon, a counter-regulatory 
hormone of insulin is used to reverse the insulin-induced 
hypoglycemic shock in type 1 diabetic patients (Müller et al. 
2017; Pedersen-Bjergaard and Thorsteinsson 2017).

Several peptides have also been investigated for their 
potential in bone remodelling and healing. Calcitonin, a 
32-amino acid peptide secreted by the parafollicular cells 
of the thyroid gland potentially sustains calcium homeo-
stasis and bone turnover (Brunel et al. 2019; Kumar et al. 
1963). It has shown greater pharmacological potency for 
post-menopausal osteoporosis, Paget’s disease, and hyper-
calcemia and enhances bone mineral density (Kumar et al. 
1963). Peptides derived from bone morphogenic proteins 
(BMPs) like BMP‐7, BMP-9, belonging to the transforming 
growth factor (TGF‐β) family also play an integral role in the 
formation and development of bones (Bergeron et al. 2012, 
2009; Hogan 1996; Kim et al. 2017; Urist 1997). There are 
currently several peptide-based drugs undergoing clinical 
development for gastrointestinal (GI) diseases such as lara-
zotide for celiac diseases (Leffler et al. 2015), glucagon-
like peptide-2 (GLP-2), for improved absorption of intestinal 
nutrient, intestinal growth, keratinocyte growth factor, and 
epidermal growth factor (Bahrami et al. 2010). Additionally, 
relamorelin, a ghrelin agonist, is also being investigated for 

Table 3  Anticancer and antimicrobial peptide databases

Database Type Number of peptides URL Year References

DBAASP v3 AMP 16,180 https:// dbaasp. org/ home 2020 Pirtskhalava et al. (2021)
LAMP2 AMP 23,253 http:// biote chlab. fudan. edu. cn/ datab ase/ lamp/ index. php 2020 Ye et al. (2020)
dbAMP AMP 12,389 http:// csb. cse. yzu. edu. tw/ dbAMP/ 2019 Jhong et al. (2019)
DRAMP 2.0 AMP 19,899 http:// dramp. cpu- bioin for. org/ 2019 Kang et al. (2019)
CancerPDF ACP 14,637 http:// crdd. osdd. net/ ragha va/ cance rpdf/ 2017 Bhalla et al. (2017)
InverPep AMP 702 https:// cienc ias. medel lin. unal. edu. co/ grupo sdein vesti gacion/ 

prosp eccio nydis enobi omole culas/ Inver Pep/ public/ home_ 
en

2017 Gómez et al. (2017)

CAMPR3 AMP 11,118 http:// www. camp. bicni rrh. res. in/ 2016 Waghu et al. (2014)
APD3 AMP

ACP
AMP: 3,485
ACP: 185

http:// aps. unmc. edu/ AP/ 2016 Wang (2016)

CancerPPD ACP ACP: 3491
Anticancer proteins: 121

http:// crdd. osdd. net/ ragha va/ cance rppd/ 2015 Tyagi (2015)

TumorHoPe ACP 744 http:// crdd. osdd. net/ ragha va/ tumor hope/ 2012 Pallavi Kapoor (2012)
YADAMP AMP 2,525 http:// yadamp. unisa. it/ about. aspx 2012 Piotto (2012)

https://dbaasp.org/home
http://biotechlab.fudan.edu.cn/database/lamp/index.php
http://csb.cse.yzu.edu.tw/dbAMP/
http://dramp.cpu-bioinfor.org/
http://crdd.osdd.net/raghava/cancerpdf/
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
https://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en
http://www.camp.bicnirrh.res.in/
http://aps.unmc.edu/AP/
http://crdd.osdd.net/raghava/cancerppd/
http://crdd.osdd.net/raghava/tumorhope/
http://yadamp.unisa.it/about.aspx
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chronic idiopathic constipation and gastroparesis (Camilleri 
and Acosta 2015).

Peptide-based drugs used to treat metabolic disorders 
are one of the therapeutic agents accounting for the largest 
revenue (Table 3) (Muttenthaler et al. 2021). Liraglutide, a 
GLP-1 analog is one of the top-selling peptide-based drugs 
for metabolic disorders having a sales revenue of 2 billion 
USD per annum (Lee et al. 2019). It is approved by the FDA 
and European Medicines Agency (EMA) for the manage-
ment of obesity (Kumar 2019).

Neurodegenerative disorders

Neurodegenerative disorders are any anatomical or bio-
chemical anomaly in the various parts of the nervous sys-
tem caused by breakdown of the synapses which leads to 
mafunction of the entire nervous system. Brain-associated 
disorders, such as Alzheimer’s disease (AD), Parkinson’s 
diseases (PD), Huntington’s Disease (HD), Epilepsy, and 
Multiple Sclerosis (MS) have become a major cause of 
global deaths and disabilities in the recent years (Baig et al. 
2018a, b), Many therapies had been developed for such dis-
orders, however, they tend to fail in different stages of clini-
cal trials due to toxicity and lack of immune response. One 
of the major challenges in treating neurodegenerative disor-
ders is impermeability of the Blood Brain Barrier (BBB). 
However, in the last two decades, peptides are observed 
as promising agents to cross the BBB (Akhtar et al. 2021; 
Banks et al. 1992; Mendonça et al. 2021). Neuropeptides 
can be classified on the basis of ther origin as natural and 
synthetic peptides.

Numerous peptides have been explored for their poten-
tial against the neurodegenerative disorders. A 23 amino 
acids peptide, P42 (AASSGVSTPGSAGHDIITEQPRS) is 
reported to show potential therapeutic efficacy against Hun-
tington’s disease. P42 is a part of Huntington (Htt) protein. 
It works by preventing the aggregation of polyQHtt protein 
which results in significant improvement in the symptoms of 
the disease (Marelli and Maschat 2016; Yadav et al. 2021). 
Another 11 amino acid peptide sequence, QBP1 (SNWKW-
WPGIFD) was reported against Huntington’s disease (Aha-
rony et al. 2015). QBP1 has specifically binds to expanded 
polyQ stretch and prevents the proteins from misfolding by 
inhibiting the formation of β sheet structures which results 
in reduced aggregation in neurons (Yadav et al. 2021).

Soudy and his co-workers reported a peptide, R5 (SQEL-
HRLQTYPR) derived from an amylin receptor antagonist, 
AC253 (Soudy et al. 2019). R5 is found to have neuroprotec-
tive properties against Aβ toxicity by reducing the Aβ plaque 
load and neuroinflammation in the brain. R5 attenuates the 
deleterious effects of Aβ on neurons and improves the cogni-
tive capacity of patients affected with Alzheimer’s disease. 
Thus, it is noteworthy that R5 could serve as a potential 

therapy against neurodegenerative disorder (Yadav et al. 
2021).

Cardiovascular Diseases

Cardiovascular diseases (CVD) have become one of the 
leading causes of morbidity and mortality across the globe. 
Various therapeutic strategies are being explored by sci-
entists to improve the cardiovascular conditions whereas, 
only a few therapies are approved so far. Novel strategies 
with significant efficacy against CVD has become the need 
of the hour. Recently, peptides and peptidomimetics have 
gained increased attention as novel therapeutic approaches 
for modulation in CVD. Some of the most common CVDs 
include congestive heart failure, atherosclerosis, coronary 
artery disease, and pulmonary and systemic hypertension. 
Therapeutic peptides viz. Urotensin-II (Uro-II), a vasocon-
strictor and Urocortins (UCNs) and Adrenomedullin (AM), 
vasodilators have recently gained significant attention in 
targeting the biomarkers of these CVDs.

Uro-II is a cyclic peptide derived from urophysis of tel-
eost fishes (BERN et al. 1985). A number of peptides simi-
lar to Uro-II structure have also been derived from other 
amphibians and humans. Human Uro-II (ETPDCFWKYCV) 
is reported to be the most potent mammalian vasoconstrictor 
so far which targets the human G-protein coupled receptor 
(GPCR). GPCR is widely expressed in vascular muscles, 
myocardium, and endothelium and regulated cardiovascular 
homeostasis. Uro-II upon binding to GPCR mediates vaso-
constriction by increasing the levels of phosphates released 
from sarcoplasmic reticulum and stimulating extracellular 
 [Ca2+] influx (Grieco and Gomez-Monterrey 2019).

UCNs are peptide hormones that belong to the cortico-
tropin-releasing factor (CRF) family. UCN was first isolated 
from rat brain, UCN1 (40 amino acids), followed by cloning 
of UCN2 (39 amino acids) and UCN3 (38 amino acids) from 
mouse and human cDNA libraries. UCNs are identified as 
potent and prolonged arterial vasodilators (Venkatasubrama-
nian et al. 2013) which exert their effects in the target cell 
through p38 mitogen-activated protein kinase and protein 
kinase A pathways (Kageyama et al. 2012). UCNs medi-
ate relaxation of pulmonary arteries by inhibiting a protein 
kinase C dependent contractile mechanism (Chan et al. 
2004).

AM is vasodilatory peptide derived from human pheo-
chromocytoma tissue (Kitamura et al. 1993) which poten-
tially dilates the human coronary arteries and pulmonary 
arteries. Several studies have reported that AM increases 
the extracellular cAMP levels or activates potassium chan-
nels which mediates an endothelium-independent relaxation 
mechanism resulting in cell hyperpolarization in vascular 
smooth muscles (Grieco and Gomez-Monterrey 2019).
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Dermatological Diseases

Atopic dermatitis, psoriasis or rosacea have become the most 
prevalent chronic inflammatory dermatological diseases 
nowadays. Atopic dermatitis is a common inflammatory 
skin disease impairing the patient’s quality of life. Vari-
ous therapies, such as treatments with corticosteroids, cal-
cineurin inhibitors, and antibody drugs, have been applied, 
but numerous side effects have been reported, including 
skin atrophy, burning, and infection. Functional peptides 
have lately been regarded as potential therapeutic agents 
to address such challenges due to their advantages of effi-
cacy, safety, and low cost (Reinholz et al. 2012). Kim and 
co-workers reported the efficacy of a 5 amino acid wound 
healing peptide sequence, AES16-2M (REGRT) in attenuat-
ing the atopic dermatitis symptoms in the affected patients. 
The thickness of the epidermal layer was also improved by 
AES16-2M treatment. The results reported by Kim et al. 
suggests that AES16-2M can be a novel candidate for atopic 
dermatitis treatment (Kim et al. 2021).

Psoriasis is one of the most influential and fastest-grow-
ing inflammatory autoimmune diseases of the skin. It is 
a polygenic disease that activates the T-cells resulting in 
hyperproliferation of an array of cytokines, inflammatory 
cells, and keratinocytes (Das et al. 2009; Nestle and Conrad 
2004). In the past two decades, muramyl peptides are widely 
used to treat the pathological conditions of psoriasis. Mura-
myl peptides are observed to normalize the immunocompe-
tent T-cells and regulates the cytokines which play a crucial 
role during inflammation. These peptides have remarkable 
impact in treatment of psoriasis which suggests that mura-
myl peptides significantly influence the pathways of immune 
homeostasis (Guryanova et al. 2019).

It's widely believed that healthy and younger-looking skin 
symbolizes youth. Therefore, strategies to develop potential 
approaches for preventing the ageing process or skin dis-
eases has gained significant interest in the research world. In 
the recent years, peptides in cosmetic formulations such as 
anti-aging skin creams, lotions, or skin brightening creams, 
etc. have gained notable attraction as anti-ageing strategies 
(Negahdaripour et al. 2019). Peptides play a crucial role in 
a variety of biological functions that are relevant to skin 
care, such as modulation of cell migration and proliferation, 
inflammation, melanogenesis, protein synthesis and regula-
tion, etc. A large number of the peptides used are made of 
natural l-amino acids, which have non-immunogenic proper-
ties and easily breakdown over time to produce individual 
amino acids (Zhang and Falla 2009). In 1973, Pickart pro-
posed the first cosmetic tripeptide, GHK that enhances col-
lagen production (Pickart and Thaler 1973). Since then, a 
plethora of commercially available cosmetic peptides have 
been explored (Tables 4 and 5).

Limitations of Peptide‑Based Therapeutics

Peptides,  despite being one of the most  prevalent  bio-
drugs, have several limitations which hinder their therapeutic 
use. Their inadequate properties, such as poor permeability 
of the membrane, low oral bioavailability, shorter half-life, 
variable solubility, and poor metabolic stability usually com-
plicate their systemic delivery (Haggag et al. 2018; Wetzler 
and Hamilton 2018). The list of bottlenecks of peptide-based 
therapeutics is rather long and is ascribed in the following 
points:

• Drug delivery route: These drugs need to be delivered via 
injections. Although the oral drug administration route 
is the easiest and comfortable way, gastric acid and pro-
teases in the digestive system and blood easily degrade 
the peptides. Intestinal absorption of these drugs is also 
restricted due to their poor membrane permeability (Sun 
2013). Charge and polarity of peptides play a major role 
in exhibiting low permeability across gut membranes.

• Shorter half-life: Proteolytic degradation of peptides in 
the digestive tract leads to their inactivation as well as 
rapid renal and hepatic clearance resulting in a shorter 
half-life (Haggag et al. 2018; MARKET; Wetzler and 
Hamilton 2018). Parenteral administration of frequent 
doses is usually required to maintain the drug at a clini-
cally effective concentration.

• Poor biodistribution: Peptides also have poor biodistri-
bution because of their structural flexibility and folding 
which leads to poor selectivity towards receptors and also 
activates different target receptors resulting in certain 
side effects (Haggag et al. 2018).

• Immunogenicity: Another key concern of peptide-based 
drugs is the possibility of peptide immunogenicity, i.e., 
undesirable immune responses (Haggag et al. 2018). 
Peptides tend to trigger an unwanted immune response 
against themselves. These immune responses lead to the 
activation of B cells which bind to the peptide molecules 
and reduce/eliminate their therapeutic effects. Thus, to 
have clinically safe peptide-based drugs, critical evalu-
ation of their tendency to trigger immune response is a 
mandate (Sauna 2020).

• Bacterial resistance: Peptide-based antimicrobials are 
promising agents; however, potential bacterial resist-
ance is one of the major concerns. It has been reported 
that simple physicochemical features of AMPs dictate 
bacterial tendency to evolve resistance (Spohn et  al. 
2019). Interaction of AMPs with the extracellular bacte-
rial enzymes leads to proteolytic degradation of AMPs 
which leads to resistance development in microorganisms. 
Resistance against the AMPs is also induced by modifica-
tion of bacterial cell surfaces (Mukhopadhyay et al. 2020). 
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Table 4  Top-selling peptide-based drugs for metabolic disorders in the market (Muttenthaler et al. 2021)

Peptides Brand names and their 
years of market introduc-
tion

Clinical indication Sale in 2021/sales forecast 
to 2028 (in USD millions)

References

Insulin and analogues Humulin (1982)
Insuman (1997)
NovoRapid (1999)
Lantus (2000)
Novomix (2000)
Toujeo (2000)
Apidra (2004)
Levemir (2004)
Humalog (2005)
Ryzodeg (2013)
Tresiba (2013)
Admelog (2017)

Diabetes 27,710 ("Human Insulin Market 
Size 2021 | Is Antici-
pated to Reach USD 
27.71 Billion and 
Exhibit a CAGR of 
3.4% by 2026," 2021)

Teduglutide
(HGDGSFSDEMNTILDN-

LAARDFINWLIQTKITD)

Gattex (2012)
Revestive (2012)

Short bowel syndrome 4,600 (Short Bowel Syndrome 
Market—Global 
Industry Analysis, Size, 
Share, Trends, Revenue, 
Forecast 2020 to 2027 
2021)

Dulaglutide
(HAEGTETSDVS-

SYLEGQAAKEFI-
AWLVKGR)

Trulicity (2014) Diabetes 4588.2 ("Lilly Reports Robust 
Third-Quarter 2021 
Financial Results 
as Pipeline Success 
Strengthens Future 
Growth Potential" 
2021)

Glatiramer
(AKDY)

Copaxone (1996)
Glatopa (2015)

Multiple sclerosis 3,900 ("Teva Reports Third 
Quarter 2021 Financial 
Results,")

Semaglutide
(HXEGTFTSDVS-

SYLEGQAAKEFIAWLVR-
GRG)

Ozempic (2017)
Rybelsus (2019)

Diabetes, obesity 3,494.72 and 458.33 (Financial report for the 
period 1 January 2021 
to 30 September 2021, 
2021)

Liraglutide
(HAEGTFTSDVS-

SYLEGQAAKEFIAWLVR-
GRG)

Victoza (2010)
Saxenda (2015)

Diabetes, obesity 1,705 and 903.13 (Financial report for the 
period 1 January 2021 
to 30 September 2021 
2021)

Vasopressin
(CYFQNCPRG)

Vasostrict (2014) Central diabetes insipidus 785.6 (Decker 2021)

Teriparatide
(SVSEIQLMHQLGKHLQS-

MERVEWLRKKLQDVHQF)

Forteo (2002) Osteoporosis 650.1 ("Lilly Reports Robust 
Third-Quarter 2021 
Financial Results 
as Pipeline Success 
Strengthens Future 
Growth Potential" 
2021)

Lanreotide
(NXCYDWKVCT)

Somatuline (2007) Acromegaly 313.04 ("Ipsen Delivers Encour-
aging Sales Growth 
in the First Quarter of 
2021 Despite the Pan-
demic, and Confirms 
Its Full-Year Guidance" 
2021)

Etelcalcetide
(Ac-CDADRDRDRDADRD-NH2)

Parsabiv (2017) Hyperparathyroidism 71 (Amgen Reports Second 
Quarter 2021 Financial 
Results 2021)
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Teichoic acid, an anionic linear polysaccharide is abun-
dantly found on the cell walls of gram-positive bacteria 
which is responsible for negatively charged cell surfaces. 
D-alanylation on hydroxyl groups of teichoic acid adds a 
positive charge to the bacterial cell wall which lowers the 
attraction of cationic AMPs (Peschel et al. 1999). It also 
makes the cell wall denser which leads reduced surface 
permeability (Saar-Dover et al. 2012). Similarly, resist-
ance to AMPs in gram-negative bacteria is also developed 
by alteration of cell surface charge and permeability. In 
gram-negative bacterial cell walls, anionic lipopolysac-
charide (LPS) is the most abundantly found component. 
Lipid A, the innermost region of LPS, also known as 
endotoxin molecule is responsible for the toxicity of 
gram-negative bacteria (Valvano 2015). Dephosphoryla-
tion of lipid A by an amine-containing molecule such as 
aminoarabinose, glucosamine, galactosamine, alkaline 
phosphatase, etc. increases the positive charge on the cell 
surface which eventually prevents electrostatic binding of 
AMPs to the bacterial cell surface (Joo et al. 2016).

Thus, researchers have developed various strategies to 
counteract the drawbacks of peptide therapeutics to expand 
their uses for pharmaceutical purposes. These strategies 
lead to improved membrane permeability, protease resist-
ance, increased drug retention time, and prolonged half-life 
of peptides making them least susceptible to resistance. 
Peptide-based therapeutics are hence becoming more easily 
manageable, thereby, leading to their rapid growth in the 
pharmaceutical industry (Craik and Kan 2021; Di 2015).

Strategies to Overcome the Limitations

Substantial efforts have been made to establish strategies 
that can eradicate the limitations associated with peptide-
based therapeutics and expand their uses in pharmaceutical 

fields. To overcome these limitations, several chemical 
modifications and computational approaches have been used 
that prevent their proteolytic degradation thereby, enhanc-
ing their half-life and ultimately improving their therapeutic 
efficacy (Fig. 4).

Termini Protection

Peptidases like carboxypeptidases, serum aminopeptidases, 
and various other proteases, can lead to proteolysis at both 
N- and C-terminal of a peptide (Lee et al. 2019; Puente et al. 
2005). It has been established that different amino acid resi-
dues at the N- or C- terminal result in different extents of 
degradation and proteolysis leading to poor bioavailability. 
Werle and Bernkop-Schnurch reported that peptides rich in 
Serine, Threonine, Glycine, Alanine, Valine, and Methionine 
residues at N-terminal are significantly resistant to degra-
dation in plasma (Werle and Bernkop-Schnürch 2006). To 
improve the bioavailability, modification of the N or C ter-
minal of the peptides can be done while maintaining their 
target affinity and specificity (Jambunathan and Galande 
2014). Moreover, in an attempt to boost the in-vivo stability 
of peptides, N-terminal acetylation or C-terminal amidation 
can be also be done Georgieva et al. (2012). The same pur-
pose may also be served by modifying the terminals with 
unnatural amino acid analogs (Goodwin et al. 2012; Vara-
mini et al. 2012).

Backbone Modification

Backbone modifications can be carried out by substitution 
reactions such as by exchanging carbonyl oxygen for sulfur 
or replacement of H-atoms at the nitrogen or α-carbon at 
any position of the backbone. Thus, adequate procedures 
are required to perform regioselective manipulations. An 
additional stereogenic center occurs at α-carbon which also 
needs to be controlled (Deska and Kazmaier 2008). Peptide 

Table 5  Commercially available cosmetic peptides and their bioactivity (Errante et  al. 2020) [Copyright  © 2020 Errante, Ledwoń, Latajka, 
Rovero and Papini. Creative Commons Attribution License (https:// creat iveco mmons. org/ licen ses/ by/4. 0/)]:

Peptide name Peptide sequence Trade name Bioactivity

Pentapeptide-3 H-GPRPA-NH2 Vialox ACh receptor antagonist, disabling nerves’ function
Pentapeptide-18 H-YAGFL-OH Leuphasyl® ACh decreased secretion in synaptic clefts
Acetyl octapeptide 1/-3 Ac-EEMQRRAD-NH2 SNAP-8™ SNAP-8 competitive inhibitor, blocking SNARE complex formation
Palmitoyl hexapeptide-12 Pal-VGVAPG-OH Biopeptide EL™ Matrix metalloproteases activity up-regulator, elastin down-regula-

tor and collagen synthesis stimulator
Palmitoyl pentapeptide-4 Pal-KTTKS-OH Matrixyl® Extracellular matrix proteins synthesis feedback modulator
Palmitoyl tripeptide-1 Pal-GHK-OH Biopeptide CL™ Collagen and glycosaminoglycan synthesis stimulator
Palmitoyl tripeptide-5 Pal-KVK-OH Syn®-Coll Transforming growth factor β stimulator inducing collagen synthesis
Tripeptide-10 citrulline H-PVAPFP-OH Decorinyl® Collagen fibres diameter regulator, increasing endogenous collagen 

quality, without affecting its synthesis
SA1-III Ac-MGKVVNPTQK-NH2 KP1 Collagen turnover modulator by protease inhibition

https://creativecommons.org/licenses/by/4.0/
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backbone modifications enhance the enzymatic stability of 
the peptide analogs and increase their biological membrane 
permeability (Ahn et al. 2002). Modifications of peptide 
backbones have been used in a wide range of fields, includ-
ing HIV protease inhibitors and receptor mediators (Pu et al. 
2019; von Recum and Pokorski 2013). The backbone can 
also trigger profound changes in molecular chirality, hybridi-
zation, conformation, and the self-assembly of peptide struc-
tures and nanoparticles (Shah et al. 2020).

N‑Alkylation

Alkylation of nitrogen atoms in a peptide chain is an effec-
tive method from several perspectives. Peptides are com-
monly present in trans confirmation except when a peptide 
bond precedes a proline residue. N-alkylation leads to struc-
tural effects, resulting in an equilibrated cis- and trans— 
isomerization. Cis–trans isomerization can be used as a new 

molecular timer to help manage the amplitude and duration 
of a biological process, which might be a new therapeutic 
target. (Das et al. 2014; Lu et al. 2007). Moreover, elimina-
tion of the NH-group confines the number of feasible intra- 
and intermolecular H-bonds which can increase metabolic 
stability by conformational control or steric hindrance 
(Räder et al. 2018). Also, N-alkylated peptides are less prone 
to enzymatic cleavage. Consequently, N-alkylation leads to 
improved pharmaceutical properties like metabolic stability 
and selectivity of receptors (Urbańczyk et al. 2019).

α‑Carbon Modification

α-carbon modification of peptide backbone is one of the 
most often used backbone modifications where a new amino 
acid can be introduced starting from a simple glycine subunit 
to a complex amino acid. α-carbon modification in a pep-
tide chain can increase its biological activity or improve the 

Fig. 4  Various approaches 
explored to overcome the limi-
tations of peptide-based drugs



International Journal of Peptide Research and Therapeutics           (2023) 29:61  

1 3

Page 17 of 31    61 

pharmacokinetic properties by providing stability to enzy-
matic and chemical degradation and can be termed as pro-
tease inhibitors. It provides regioselectivity to the peptide 
that exhibits selective interaction with the targeted receptors 
(BEGUM et al. 2017). The major challenge in this modi-
fication is to manage the configuration of the new chiral 
center which is required to influence the transformations 
of the stereochemical outputs (Deska and Kazmaier 2008). 
Peptide chains with an altered chirality can break the sec-
ondary structure of peptides, thereby altering their assembly 
structures. Chirality of the peptide chains regulates the cell 
cytotoxicity of peptide assemblies (Zheng et al. 2021).

• To introduce good selectivity, a fixed arrangement 
between the shielding side chain and reactive center is 
the basic requirement which can be introduced by having 
an adjacent side chain as a chiral auxiliary.

• Whereas, induction through real chiral auxiliaries is 
another alternative that binds either N- or C- termini 
of a peptide to the reactive α-center or integrated into a 
cyclized moiety of imidazolinone.

• It may be desirable to use external chiral materials, such 
as chiral catalysts or optically active substrates, as they 
only have to be added to the reaction process and no 
precedent attachment to the peptide is required (Deska 
and Kazmaier 2008; Urbańczyk et al. 2019).

Carbonyl Thionation

Researchers have drawn much attention to the isosteric sub-
stitution of amide bonds with thioamides, particularly in 
physiologically active peptides, as the secondary structure 
can be influenced by only a slight variation (C=O→C=S) 
(Choudhary and Raines 2011; Wildemann et  al. 2007). 
The hydrogen bonding in peptides is affected by carbonyl 
thionation which is similar to N-alkylation. In comparison to 
amide oxygen, thioamide sulfur is a weak hydrogen acceptor 
and thus results in longer H-bonds (Chatterjee et al. 2021). 
The thioamide C–N bond, in comparison, displays a large 
rotational barrier, owing to the lower C=S double bond char-
acter (Deska and Kazmaier 2008).

Side‑Chain Modification

Positional scanning usually provides substantial data to 
rationally modify or alter  the main binding residues to 
increase the affinity and selectivity of the peptide. Natural 
amino acids have several close analogs which are extensively 
used and can be replaced at this point, and side chains that 
are non-natural often induce protease resistance. For exam-
ple, lysine, ornithine, homoarginine, citrulline, and N-iso-
propylornithine are the substitutes of arginine (Henninot 
et al. 2018; Wisniewski et al. 2011). Aromatic residues have 

a very broad range of analogs, including unnatural heterocy-
cles (Frey et al. 2008), and may also be benefited from the 
introduction of β-methyl groups which rigidify the confor-
mation (Haskell-Luevano et al. 1997). Residues that are not 
strongly involved in binding interactions will rationally 
be substituted  to change the physical properties of pep-
tides, by increasing solubility or the addition of unnatural 
amino acids, resulting in proteolytic resistance (Sadowsky 
et al. 2007; Werner et al. 2016). But in some cases, certain 
non-critical residues have sites for conjugation or cycliza-
tion. The rational design of a triagonist by identifying and 
combining the active partial sequences for three individual 
peptide hormones viz. glucagon-like peptide-1 (GLP-1), 
glucose-dependent insulinotropic polypeptide (GIP), and 
glucagon is an impressive latest demonstration of sequence 
optimization (Finan et al. 2015). The subsequent single heli-
cal peptide, in this case, activates GLP-1, GIP, and gluca-
gon receptors simultaneously which results  in declined 
body weight and complications associated with diabetes in 
obese rodent models (Henninot et al. 2018).

Glycosylation, PEGylation, and Cyclization

Glycosylation

It is an efficient strategy to amplify the physicochemical 
characteristics of peptides and to enhance their absorption 
by biological membranes. Glycosylation is the process in 
which a carbohydrate  is bound to the functional groups 
of other molecules like peptides, proteins, etc. which can 
improve its physiological properties. There are several 
advantages of peptide glycosylation such as enhancement 
in bio-distribution in tissues by targeting specific organs, 
improvement in membrane permeability, maintaining in-
vivo stability and controlling clearance rate, maintaining and 
protecting amino acid side chains, specific receptor-binding, 
etc. (Costa et al. 2014; Moradi et al. 2016; Polt et al. 2005; 
Varamini et al. 2012) Peptides-sugar conjugates target glu-
cose transporters on the cell membranes and stimulate the 
active transportation of modified compounds across cell 
membranes (Witczak 2006). To enhance the therapeutic 
potential, metabolic stability, and activity of the peptide con-
jugates, several essential factors include the arrangement, 
type, and several sugars (Bapst et al. 2009; Cudic 2013; 
Yamamoto et al. 2009). The position of the glycosyl unit 
attached to the peptide can influence the peptide–receptor 
interactions, biodistribution, and pharmacological activity 
of the glycosylated peptides (Bapst et al. 2009; Yamamoto 
et al. 2009). One of the major impacts of this process on the 
pharmaceutical properties of peptides is the enhancement in 
their oral bioavailability (Albert et al. 1993).
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PEGylation

It is considered as the superior method to chemically mod-
ify the peptide therapeutics. It involves one or more chains 
of polyethylene glycol (PEG) attached to a peptide which 
changes the physical and chemical properties of peptides, 
such as its conformation, electrostatic binding, and hydro-
phobicity, and results in an improvement in its pharmacoki-
netic profile (Veronese and Mero 2008). It enhances its half-
life, peptide immunogenicity (Freire Haddad et al. 2021), 
and in-vivo stability. When PEG is attached to a therapeutic 
peptide, it covers the peptide from the immune system of 
the host, resulting in reduced immunogenicity (Damodaran 
and Fee 2010). PEGylation of peptides decreases the rate 
of plasma clearance by preventing enzymatic degradation 
and prolongs their blood retention time (Harris and Chess 
2003). This modification protects the peptides from proteo-
lytic enzymes by increasing the molecular mass of peptides 
and improving their pharmacokinetic profiles (Harris and 
Chess 2003; Suk et al. 2016). It sustains peptide absorp-
tion and decreases the volume of distribution leading to 
decreased systemic clearance (Harris and Chess 2003). 
It also prevents reticuloendothelial system (RES) uptake, 
which eventually increases blood circulation time. Con-
sequently, a longer blood circulation time reduces dosage 
frequency and encourages patient compliance (Uhrich and 
Abdelhamid 2016; Veronese and Mero 2008). The larger 
size of PEGylated protein for glomerular filtration steri-
cally hinders the interaction of the peptides with the recep-
tors which delays the metabolic activities and elimination 
resulting in prolonged circulation time (Harris and Chess 
2003; Jambunathan  and Galande 2014; Schiffter 2011) It 
also improves the potential of peptide drugs by playing a 
crucial role in drug delivery (Harris and Chess 2003).

Cyclization

It is a well-known method to improve the efficacy and half-
life of peptides by restricting their conformational flexibility. 
It inhibits protease access to the amides of the backbone; 
these proteases normally bind their substrates in linear pep-
tide confirmation (Henninot et al. 2018). Chemical linkers 
used in this process stabilize the peptides which eventu-
ally enhances  their aqueous solubility by reducing their 
charges and the potential for H-bonding. Depending on the 
functional group, cyclization of a peptide can be done in four 
different ways: side chain-to-side chain, side chain-to-tail, 
head-to-side chain, or head-to-tail (White and Yudin 2011). 
The tripeptide Arg-Gly-Asp (RGD) is one of the most used 
examples of this strategy (Bogdanowich-Knipp et al. 1999; 
Kapp et al. 2017; Zhu et al. 2021). Linear RGD is highly 
susceptible to enzymatic degradation. Aspartic acid residue 
in the tripeptide is prone to chemical degradation and leads 

to the loss of biological activity (Zhu et al. 2021). Cycliza-
tion of RGD peptides via disulfide bond linkage can induce 
structural rigidity, thereby preventing aspartic acid residue 
mediated degradation (Bogdanowich-Knipp et al. 1999). 
Cyclization can also decrease the exposure of polar atoms 
to surroundings by folding peptides into bioactive confor-
mations, leading to the increase of oral bioavailability (Zhu 
et al. 2021). Balkoves et al. reported an ionizable molecular 
entity by synthesizing a hydrophilic phosphate monoester 
derivative of a lipopeptide by phosphorylation of the phe-
nolic hydroxyl group of a homotyrosine residue (Balkovec 
et al. 1992). Compared to the parent peptide, this prodrug 
exhibited remarkable hydrolytic stability and in vivo activ-
ity, which signifies that the prodrug has undergone enzy-
matic hydrolysis to generate the parent drug. It possesses 
enhanced hydrophilicity and sustained concentration in the 
body. Borchardt et al. reported cyclization of the linear pep-
tide, [Leu]-enkephalin (H-Tyr-Gly-Gly-Phe-Leu-OH) and 
its metabolically stable analog DADLE (H-Tyr-D-Ala- Gly-
Phe-D-Leu-OH) based on acyloxyalkoxy-, phenyl propionic 
acid- and coumarinic acid. It showed a substantial effect 
on their in-vivo stability to exo- and endo- peptidases and 
potential membrane permeability (e.g., intestinal walls, 
blood–brain barrier, etc.) (Borchardt 1999).

Identifying Crucial Residues

One of the most important strategies for the biological 
study of peptide-based drug design is the recognition of 
crucial residues. Firstly, the minimum amino acid residues 
necessary for peptide activity should be identified. It can 
be obtained by the repeated truncation of amino acids from 
either N- or C-terminal of the peptide sequence to deter-
mine the essential core peptide motif required for efficient 
bio-activities.

Secondly, a typical method of screening known as ala-
nine scanning may be used to ascertain the contribution of 
each amino acid of the peptide to its activities (Gordee et al. 
1988). Essential amino acids can be identified by screen-
ing the biological compatibility peptides in which particu-
lar amino acids have been replaced with alanine. Alanine is 
used due to its small size, moreover, it has uncharged side 
chains which do not interfere with the activities of adjacent 
side chains (Blaakmeer et al. 1991). More complicated scan-
ning methods have been developed over the years which 
include the enantiomers of amino acids and properties such 
as hydrophobic or acidic or basic natures are also taken 
into account. However, these scanning methods need to 
be validated by molecular biology and in silico methods 
concerning stability, pharmacokinetics, and pharmacody-
namics for effective bio-activities of the resulting peptides. 
These studies of the structure–activity relationship (SAR) 
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can contribute to the identification of proteolytically-labile 
amino acids in peptides (Fournie-Zaluski et al. 1992).

Computational methods

Computational strategies cover a broad range, from the pos-
sible 3D structures of short oligopeptides in solution to the 
determination of peptide sequences that are ideally suitable 
to carry out certain biological activities to de novo estimates 
of the interaction of large proteins. The development of pep-
tide therapies has focused on extracellular targets due to the 
poor permeability of peptides to the cell membrane. Thus, 
the strategies to enhance membrane permeability or active 
intracellular uptake of peptides are essential for the success-
ful targeting of intracellular protein–protein interactions. 
Intracellular uptake of peptides can be improved by modulat-
ing their hydrophobicity and electrostatic charges. Conjuga-
tion of the active peptide drug to a cell-penetrating peptide 
(CPP) can also significantly improve its active transport. 
Hydrophilic peptides are witnessed to have enhanced bio-
availability as the concentration of serum can be maintained 
easily at the desired level. Optimization of peptide hydrophi-
licity is majorly an empirical process to identify the unnec-
essary hydrophobic amino acids experimentally that can be 
substituted by charged or polar residues to upregulate the 
isoelectric point (pI) while maintaining the biological activi-
ties (Mahato et al. 2003).

To simplify this optimization, several bioinformatics tools 
have recently been developed (Xiao et al. 2008).

• DeepSol is one of those tools which offers a single-stage 
protein solubility prediction system which outperforms 
all other sequence-based prediction tools. It uses Con-
volutional Neural Network which exploits k-mer struc-
ture of input protein sequence and constructs non-linear 
k-mer vector spaces. These spaces lead to more informa-
tion regarding the k-mer structure of the input sequence 
required to predict the protein solubility. It is found to 
be highly sensitive for identifying soluble and insoluble 
protein as compared to other prediction servers such as 
PaRSnIP, PROSO II, etc. (Khurana et al. 2018). The best 
models and results of DeepSol are deposited and made 
accessible at https:// zenodo. org.

• CcSOL omics is one of the servers which offers large-
scale solubility calculations for proteome-wide predic-
tion and identifies the soluble motifs in any specific 
amino acid sequence (Zhang and Bulaj 2012). Validation 
on three independent sets indicates that CcSOL omics 
discriminates soluble and insoluble proteins with an 
accuracy of 74% on 31,760 proteins. It is useful in pro-
tein engineering studies because it enables the analysis of 
sequence variants in large datasets. Amin et al. reported 
a database, named, Protein Solubility Database (ProSol 

DB), which provides solubility confidence scores in E. 
coli for 2,40,016 characterized enzymes obtained from 
UniProtKB/Swiss-Prot (Amin et al. 2019). Solubility 
confidence scores for various proteins were computed 
using CcSOL omics and stored locally in the database. 
CcSOL omics showed an accuracy of 73.46% as com-
pared to 46% accuracy for DeepSol S1. (Khurana et al. 
2018). The high prediction accuracy of CcSOL omics 
justifies its use when computing solubility for various 
proteins. CcSOL omics can be freely accessed on the 
web at http://s. tarta glial ab. com/ page/ ccsol_ group (Ago-
stini et al. 2014).

• Protein-Sol is another tool for predicting protein sol-
ubility which freely accessible at https:// prote in- sol. 
manch ester. ac. uk/. It reads the amino acid sequence and 
predicts the solubility and other properties such as pI, 
hydropathy, absolute charge, sequence entropy, etc. The 
predicted results are not valid for membrane proteins 
(Hebditch et al. 2017). Hasan et al 2019 conducted a 
study to design a non-allergic and immunogenic vac-
cines against avian influenza virus. The solubility of the 
vaccine was predicted using Protein-Sol server and cal-
culated the distribution of charge, hydrophobicity, and 
stability at different pH (Hasan et al. 2019).

Servers to predict haemolytic profile of peptides:

• Haemolytic Peptide Identification (HemoPI): It is a 
server that was designed for the estimation of haemo-
lytic potency of peptides (http:// crdd. osdd. net/ ragha va/ 
hemopi/). Haemolytic peptides possess significant toxic-
ity which impedes their further progress as therapeutic 
agents. Thus, it is important to recognize the haemolytic 
activities of peptides in the drug development process. 
Computational methods are an excellent way of evaluat-
ing the haemolytic behavior in large numbers and cat-
egorizing the peptides as haemolytic or non-haemolytic. 
Behzadipour et al. reported a study evaluating the SARS-
CoV-2  Mpro inhibitory activity of bovine milk protein 
originated di- and tri-peptides. A set of 326 peptides were 
obtained from the virtual digestion of bovine milk pro-
teins and screened via molecular docking. Among these, 
5 peptides were selected based on their highest binding 
affinity for further characterization by ADME/Tox analy-
ses. Hemolytic activity and isoelectric points of peptides 
were predicted using the HemoPI server and none of the 
peptides were predicted to be hemolytic (Behzadipour 
et al. 2021). Another novel peptide derived from the frag-
ments of MARCKS as a DNA vaccine and drug delivery 
system was reported by Chen et al. Hemolytic potency 
of the novel peptide was predicted using an in-silico 
HemoPI server. Non-hemolytic property of the peptide 
predicted by the HemoPI server was further validated 

https://zenodo.org
http://s.tartaglialab.com/page/ccsol_group
https://protein-sol.manchester.ac.uk/
https://protein-sol.manchester.ac.uk/
http://crdd.osdd.net/raghava/hemopi/
http://crdd.osdd.net/raghava/hemopi/
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by wet-lab experiments (Chen et al. 2021). However, 
HemoPI did not provide an in-depth assessment of the 
mechanistic interpretation of the haemolysis behavior. 
To overcome these limitations, a new sequence-based 
prediction server named HemoPred is built for predict-
ing the haemolytic behavior of peptides.

• HemoPred is a new sequence-based user-friendly predic-
tion webserver that predicts the haemolytic behavior of 
peptides. To overcome the limitations of HemoPI, Hemo-
Pred is developed and is freely accessible at http:// codes. 
bio/ hemop red/ (Win et al. 2017). Balmeh et al. studied a 
wide range of bio-peptides against the viral proteins play-
ing vital roles in the processes of proliferation and infec-
tion of COVID-19. Based upon the best binding affinity 
scores as a result of molecular docking, they were further 
studied to predict their side-effects such as allergenicity, 
toxicity, anti-angiogenic, interleukin 4 inducing ability, 
anti-cancer ability, and haemolytic activity using dif-
ferent servers. To predict the hemolytic potential of the 
peptides, the HemoPred server was used and based on the 
obtained results, peptides were modified accordingly to 
overcome the predicted side-effects (Balmeh et al. 2021).

• Hemolytic Activity Prediction for Peptides Employ-
ing Neural Networks (HAPPENN) is another tool for 
predicting haemolytic activity of peptides has been devel-
oped. To develop a deep neural network for a haemolytic 
or non-hemolytic prediction for peptides, the data from 
various databases, such as Database of Antimicrobial 
Activity and Structure of Peptides (DBAASP), Collec-
tion of Anti-Microbial Peptides (CAMP), and Hemolytik 
have been explored. This tool is available as a webserver 
at https:// resea rch. timmo ns. eu/ happe nn (Timmons and 
Hewage 2020). Lokhande et al. reported an in-silico 
study indicating the use of human antimicrobial peptide, 
LL-37 as a potential therapeutic agent against COVID-
19. To predict any adverse effect of the peptide such as 
allergenicity, toxicity, and hemolytic activity when used 
as a therapeutic, further in-silico analyses had been done 
using Allergen FP v.1.0, AllerCatPro, ToxinPred, and 
HAPPENN. Based upon the results of HAPPENN server, 
the peptide was predicted to have low haemolytic activity 
with the scores of 0.073, 0.089, and 0.09 (Lokhande et al. 
2020).

In recent years, peptide-based therapeutics are found to 
be promising agents against cancer, diabetes, and cardio-
vascular diseases (Mehta et al. 2014). Since peptides have 
a remarkable role in the treatment of cancers, it has become 
very essential to develop computational tools for anti-cancer 
peptide design and its prediction. One of the major mecha-
nisms of an anti-cancer peptide is the induction of apoptosis 
of cancerous cells, hence, an SVM tool named Anti-cancer 
Peptide Predictor (ACPP) has been developed for the 

design and prediction of the anti-cancer peptide by assess-
ing the presence of any apoptotic domain.

• Anti-cancer Peptide Predictor (ACPP): The server 
was developed using Practical Extraction and Report 
Language Common Gateway Interface (PERL CGI) and 
is freely accessible at http:// acpp. bicpu. edu. in/ predi ct. 
php (Vijayakumar and Lakshmi 2015). E-kobon et al. 
reported an in-silico study predicting anticancer peptides 
from A. fulicamucus. Several peptides from two HPLC-
separated mucous fractions (F2 and F5) were identified. 
These identified peptides were then screened for puta-
tive anticancer peptides by using anticancer prediction 
servers: ACPP and AntiCP based on amino acid com-
position, conserved features, and physicochemical prop-
erties. Among the identified peptides, 16 peptides were 
predicted to be putative anticancer peptides and were 
further studied for their toxicity and membrane perme-
ability using ToxinPred and CellPPD servers (E-kobon 
et al. 2016).

• PEPstrMOD: It was specifically designed to predict 
modified peptide structure that includes natural and 
non-natural / modified residues. The role of a peptide 
is well known to rely on its structure hence, it is impor-
tant to anticipate its tertiary structure from the amino 
acid sequence. In this method for the prediction of 
peptide structures having non-natural amino acids and 
various forms of post-translation modifications, special 
force field libraries (Forcefield NCAA and Forcefield 
PTM) have been included. PEPstrMOD is freely avail-
able at http:// osddl inux. osdd. net/ ragha va/ pepst rmod/ 
(Singh et al. 2015). Gallego et al. reported the charac-
terization study of an antioxidant peptide AEEEYPDL 
derived from Spanish dry-cured ham. Spanish dry-cured 
ham is reported as a good source of antioxidant peptides 
which can be used as an alternative to chemical food 
preservatives (Mora et al. 2014; Zhang et al. 2021a, b). 
In-silico studies were performed to predict the tertiary 
structure and the stability of the peptide during gastroin-
testinal digestion using PEPstrMOD and PeptideCutter 
of ExPASy, respectively. The predicted structure of the 
peptide in a hydrophilic environment showed electronic, 
steric, hydrophobic, and hydrogen bonding properties of 
amino acids at the C- and N-terminal regions which seem 
to be closely related to its antioxidant activity (Gallego 
et al. 2018).

There is increasing evidence that anti-microbial peptides 
having anti-infection and anti-inflammatory properties, and 
adjuvant and wound healing activities, have multiple immu-
nomodulatory functions in mammals (Hilchie et al. 2013; 
Lai and Gallo 2009; Liu et  al. 2017). It is essential to 
have methods to predict the antimicrobial behavior of any 

http://codes.bio/hemopred/
http://codes.bio/hemopred/
https://research.timmons.eu/happenn
http://acpp.bicpu.edu.in/predict.php
http://acpp.bicpu.edu.in/predict.php
http://osddlinux.osdd.net/raghava/pepstrmod/
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designed novel AMP to allow scientists to conduct rational 
experiments. It is therefore appealing to construct success-
ful prediction models to classify possible peptides with 
desired activities. Table 6 summarizes a description of the 
current predictive methods (2015–2020) for AMP studies.

Peptide‑Based Drug Delivery

Peptides are efficient drug candidates; yet, exposed to 
numerous setbacks, such as low oral bioavailability due 
to first-pass metabolism and inability to cross physiologi-
cal barriers. Instead of systemic circulation, peptide drugs 
pass through portal circulation and get metabolized leading 
to hepatic and renal clearance. Peptides have always had a 
comparatively shorter half-life in systemic circulation as a 
large number of proteases lead to their degradation (Antos-
ova et al. 2009). These attributes have restricted the routes of 
administration to the intravenous route which leads to poor 
patient compliance. Hence, substantial efforts have been 
made to develop a user-friendly and non-invasive approach 
by utilizing nanoparticle-based formulations. Some alternate 
routes such as oral, nasal, buccal, pulmonary, and transder-
mal delivery routes are considered to be favorable needle-
free approaches beyond the unfavorable intravenous route 
of administration. These approaches are diagrammatically 
represented in Fig. 5 and discussed hereunder.

Routes of Delivery

The classical routes of administration are intravenous 
(into veins), intramuscular (into muscles), and subcutane-
ous (under the skin), whereas, the alternate routes include 
the transdermal route, pulmonary route, nasal route, 

conventional oral route, and buccal route (Antosova et al. 
2009; Vlieghe et al. 2010).

In transdermal  administration, active ingredients are 
delivered for systemic distribution through the skin either 
in the form of a patch or ointment. Insulin, vasopressin, 
LHRH, ACTH (adrenocorticotropic hormone), etc. are a few 
examples of drugs including peptide hormones and vasoac-
tive peptides (Sachdeva 2017). In the pulmonary route of 
administration, drugs are administered by inhalation through 
the mouth which is atomized into fine droplets and are fur-
ther deposited in the lower airways so that the drugs can 
move through the trachea and into the lungs (Scheuch and 
Siekmeier 2007). While administering drugs via nasal route, 
also known as snorting, drugs are insufflated through the 
nose. Drugs that are administered through the nasal cavity 
enter the olfactory mucosa which carries the drugs directly 
to the cerebrospinal fluid and brain through the olfactory 
receptor neurons (Shah et al. 2020). Numerous drugs are 
marketed such as LHRH, 8-arginine vasopressin (ADH), 
etc. which are administered intranasally (Sachdeva 2017). 
These routes further provide uniform drug distribution and 
higher bioavailability which decreases the frequency of dos-
ing (Andrade et al. 2011; Kammona and Kiparissides 2012; 
Smola et al. 2008; Tomoda et al. 2008). Besides these, oral 
route of drug delivery is the most user-friendly route, yet 
have poor bioavailability as they are less susceptible to GI 
tract permeation and stability (Reinholz et al. 2012). How-
ever, chemical modification of peptides including amino acid 
substitution, carboxyl reduction, or olefin reduction remark-
ably contributes to drug stability and increased half-life 
(Sachdeva 2017). Alongside conventional oral route, buccal 
route is special type to oral delivery route where a drug is 
administered through the mucosal lining of the cheeks. Drug 
administered through buccal route (Johnston 2017) are not 
degraded in the GI tract leading to no first-pass metabolism 

Table 6  Antimicrobial peptides prediction server developed in past 5 years (2015–2020)

Server Function Year URL References

ADAM SVM 2015 http:// bioin forma tics. cs. ntou. edu. 
tw/ adam/ tool. html

Lee et al. (2015)

Antimicrobial Peptide Database 
(APD3)

Parameter space 2016 http:// aps. unmc. edu/ AP/ Guangshun Wang (2016)

CAMP RF, SVM, Dragonfly algorithm 
(DA)

2016 www. bicni rrh. res. in/ antim icrob ial Waghu et al. (2014)

Antimicrobial Activity Prediction 
(AMAP)

SVM, Shapley Additive expla-
nation (SHAP), t-distributed 
Stochastic Neighbor Embedding 
(t-SNE)

2019 http:// facul ty. pieas. edu. pk/ fayyaz/ 
softw are. html# AMAP

Gull et al. (2019)

Integrative Antimicrobial Peptides 
Evaluator (IAMPE)

Naïve Bayes (NB), KNN, SVM, 
RF, eXtreme Gradient Boosting 
(XGBoost)

2020 http:// cbb1. ut. ac. ir/ Kavousi et al. (2020)

Deep-AmPEP30 Convolutional neural network 
(CNN), reduced AAC (RAAC)

2020 https:// cbbio. cis. um. edu. mo/ AxPEP Yan et al. (2020)

http://bioinformatics.cs.ntou.edu.tw/adam/tool.html
http://bioinformatics.cs.ntou.edu.tw/adam/tool.html
http://aps.unmc.edu/AP/
http://www.bicnirrh.res.in/antimicrobial
http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP
http://faculty.pieas.edu.pk/fayyaz/software.html#AMAP
http://cbb1.ut.ac.ir/
https://cbbio.cis.um.edu.mo/AxPEP
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which enhances the drug bioavailability (Ahmady 2014; 
Caon et al. 2015; Merkle and Wolany 1992; Pauletti et al. 
1996).

Methods of Delivery

Chemistry and Nanophysics‑Based Formulations

Various chemistry and nanophysics-based therapeutic 
formulations were designed to aid  advanced peptide-
based drugs that are responsible for the advancement of the 
pharmaceutical industry to fix the physicochemical con-
straints. The chemical incorporation of sugars such as glu-
cose, maltose, sucrose, and trehalose, as discussed above in 
"Microorganisms" section, has shown improved stability and 
solubility of in-vivo peptides. It has been reported that the 
distribution of peptides across tissue membranes is enhanced 
by ionic surfactants such as cetrimide and sodium dodecyl 
sulfate (SDS). Various protease inhibitors such as bacitra-
cin, sodium glycolate, or camostat mesilate are administered 
to inhibit the proteolysis of proteins. The bioavailability 
of the peptide-based drugs is enhanced by encapsulating 
them into nanoparticles that act as drug carriers or coupled 
with certain polymers such as polyvinylpyrrolidone (PVP) 
and PEG (Antosova et al. 2009).

Nanocarrier Technology

An ideal nano-sized drug carrier must be inert and biode-
gradable and must be able to encapsulate and protect the 

drug against degeneration. It also has to be adequately com-
petent for targeted delivery of the drug (Win et al. 2017). 
In pharmacokinetic studies, nanocarriers such as micelles or 
liposomes are promising advancements towards the efficient 
distribution of drugs in the body. The active compounds 
of drugs are often destabilized by certain external threats 
like peptidases responsible for the breakdown of peptides 
into amino acids. Drugs that are encapsulated into these 
nano-sized drug carriers are protected against the peptidases 
which prevent their breakdown into amino acids. This tech-
nology also has the benefit of sustained drug release at the 
target sites to enhance efficiency (Andrade et al. 2011). 
Surfactant-assisted polymers like polylactic acid (PLA) 
and polylactic-co-glycolic acid (PLGA) are the other viable 
substitutes used as drug carriers. These polymers provide 
a consistent release of drugs as well as optimal safety is 
ensured due to their significant biodegradability (Andrade 
et al. 2011; Csaba et al. 2009; Kammona and Kiparissides 
2012).

The development of nanostructured materials which can 
selectively interact with various nano and micro-sized bio-
materials is desirable due to the ultra-small size and high 
surface area to volume ratio of nanomaterials (Lau and Dunn 
2018; Shojaei 1998). Peptides in conjugation with nanopar-
ticles provide improved control over structural properties 
of nanostructures and enable facile modification of overall 
structure, dimensions, and size of conjugates by design-
ing nanoparticle scaffolds optimized for specific purposes 
(Shojaei 1998). Besides this, peptide-nanoparticle conju-
gates play a key role in overcoming the limitations of the 

Fig. 5  Peptide-nanoparticle conjugate and various routes of peptide-based drug delivery
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current peptide-based drug delivery system by increasing 
the plasma circulation time and selectively delivering the 
drugs to the targeted tissue. Table 7 summarises the various 
targeting peptides on different types of nanoparticles which 
researchers have conjugated to provide more efficient drug 
delivery systems.

Conclusion and Future Perspective

Peptides have received extensive interest in recent decades 
and the number of approved peptide-based biotherapeutics 
has been increasing with every passing year. More than 80 
peptide medications have entered the market, and several 
hundred novel therapeutic peptides are under preclinical 
and clinical trials, and this development will significantly 
streamline in the coming years. The challenges to the deliv-
ery of peptide-based drugs are successfully being resolved 

with the development of the various strategies discussed in 
this review. Advances in computational structural predic-
tion and various chemical modifications have been attractive 
approaches due to their ability to enhance stability, affinity, 
and specificity. Substantial efforts are being put towards the 
development of peptides with promising compositions, and 
modes of action which resulted in enhanced functionality of 
peptides making them suitable therapeutic agents. Taking a 
retrospective look at the odyssey of peptide therapeutics, it 
can be stated that the peptide therapeutics have remarkably 
flourished and their foreseeable future in treating unmet clin-
ical challenges is impregnable. However, the cost of synthe-
sizing such compounds as compared to small molecules has 
handicapped the overall implementation of peptide-based 
therapies. Protected amino acids and extensive solvents used 
for synthesis remain to be cost-intensive factors in the pro-
duction process, overcoming which will yield potent as well 
as cost-effective therapeutics that can act on a wide range 

Table 7  Peptide-nanoparticle conjugates enhance the efficiency of peptide-based theranostics

Peptide Nanoparticles Target Application References

TAT 
(GRKKRRQRRRPQ)

Mesoporous Silica Targets importin α and 
importin β

Nuclear target drug 
delivery

Zou et al. (2018)

Gold nanoparticle Assists with membrane 
disruption and cellular 
uptake

Transdermal drug delivery Niu et al. (2017)

Nano lipid crystal nano-
particles

Binds to stratum corneum 
and assists movement of 
nanoparticles into epider-
mal layers

Transdermal drug delivery Patlolla et al. (2010)

Adenoviral NLS
(CGGFSTSLRARKA)

Gold nanoparticles Nuclear pore complex for 
nuclear uptake

Nuclear target drug 
delivery

Li et al., (2017)

BSA (Bovine Serum 
Albumin)-coated gold 
nanoparticles

Nuclear pore complex for 
nanoparticle entrance into 
the nucleus

Nuclear target drug 
delivery

Tkachenko et al. (2003)

TD
(ACSSSPSKHCG)

Liposome Targets the  Na+/K+-
ATPase beta-subunit of 
the stratum corneum for 
enhanced skin perme-
ability

Transdermal drug delivery Zou et al. (2018)

G23
(HLNILSTLWKYRC)

Polymersome Targets gangliosides GM1 
and GT1b

Blood–brain barrier drug 
delivery

Georgieva et al. (2012)

LNP
(KKRTLRKNDRKKRC)

DGL-PEG Cell-penetrating peptide for 
cellular uptake

Blood–brain barrier drug 
delivery

Yao et al., (2015)

RGD
(ADDADW)

Fluorescent cyclic peptide 
nanoparticle

αvβ3 Integrin Molecular imaging Fan et al., (2018), Fan et al. 
(2016)

RGD
(RGDFDC)

Au-tripods αvβ3 Integrin Molecular imaging Cheng et al. (2014)

RGD
(CRGDC)

Poly(ethylene oxide) den-
drimer

αvβ3 Integrin Molecular imaging Almutairi et al. (2009)

RGD
(cRGD)

Iron oxide nanoparticles αvβ3 Integrin Molecular imaging Xie et al., (2008)

Angiopep-2
(TFFYGGSRGKRNN
FKTEEY)

DTX-loaded PLGA@Au-
nanoparticles

Targets glioma Molecular imaging Hao et al., (2015)
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of diseases. An extensive array of process optimization like 
resins loading and swelling, reaction time for amino acid 
coupling, etc., and advancement in instruments might reduce 
the production time, cost, and solvent usage. Moreover, most 
of the solvents used in this process viz. methylpyrrolidone, 
N,N-dimethylformamide, N,N-dimethylacetamide, etc. are 
reported to have adverse effects on the environment. Thus, 
replacement of these solvents is likely to make peptide syn-
thesis greener and also may reduce the required solvent vol-
umes and facilitate solvent recycling which would ultimately 
result in cost-efficient peptide synthesis.
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