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A B S T R A C T   

Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous cancer with limited understanding of its 
classification and tumor microenvironment. Here, by analyzing single-nucleus RNA sequencing of 43, 817 tumor 
cells from 15 PDAC tumors and non-tumor, we find that hypoxia signatures were heterogeneous across samples 
and were potential regulators for tumor progression and more aggressive phenotype. Hypoxia-high PDAC tends 
to present a basal/squamous-like phenotype and has significantly increased outgoing signaling, which enhances 
tumor cell stemness and promotes metastasis, angiogenesis, and fibroblast differentiation in PDAC. Hypoxia is 
related to an extracellular matrix enriched microenvironment, and increased possibility of TP53 mutation in 
PDAC. TP63 is a specific marker of squamous-like phenotype, and presents elevated transcriptome levels in most 
hypoxia PDAC tumors. In summary, our research highlights the potential linkage of hypoxia, tumor progression 
and genome alteration in PDAC, leading to further understand of the formation of inter-tumoral and intra- 
tumoral heterogenous in PDAC. Our study extends the understanding of the diversity and transition of tumor 
cells in PDAC, which provides insight into future PDAC management.   

Introduction 

Pancreatic adenocarcinoma (PDAC) is the most common type of 
pancreatic cancer (PC), known for its high mortality rate, has increasing 
incidence and mortality worldwide [1]. Due to the heterogeneity and 
complex stromal microenvironment, patients with pancreatic cancer 
respond differentially to treatments including chemotherapy and 
immunotherapy, leading to limited therapeutic effects and poor overall 
prognosis [2]. However, the processes involved in the formation of the 
heterogeneity intra-tumor and inter-tumor remain unclear. A major cell 
type within the PDAC stroma is the cancer-associated fibroblast (CAF) 
[3]. Previous studies revealed that enrichment of CAF in the 

microenvironment leads to poor prognosis, and showed potential link-
age with basal-like PDAC subtype [4,5]. 

Two large studies [6,7] reported gene expression subtypes of PDAC, 
extending the subtypes previously described by Collisson et al. [8]. The 
squamous samples of Bailey et al. showed distinct overlap with the 
basal-like samples defined by Moffitt et al., while the Bailey et al. 
pancreatic progenitor and Collisson et al. classical group largely over-
lapped the classical samples defined by Moffitt et al., suggesting that 
PDAC tumors can be consistently classified into a basal-like/squamous 
group and a classical/progenitor group. immunogenic and aberrantly 
differentiated exocrine (ADEX) or exocrine-like subtypes showed 
distinct overlap with the low-purity samples, suggesting that these 
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subtypes may reflect gene expression from non-neoplastic cells. 
Basal and progenitor subtypes were suggested to be more adapted to 

hypoxic environments, as they are associated with increased expression 
of genes involved in glycolysis and reduced oxidative phosphorylation 
[8], such as carbonic anhydrase 9 (CA9) and glucose transporter 1 
(GLUT1), making them better suited to surviving in hypoxic environ-
ments [9]. 

Hypoxia is characterized in most solid tumors and is ascribed to 
aberrant vascularization and limited blood supply [10]. Accumulating 
evidence indicates that hypoxia is a key promoter for adaption and se-
lection of cancer cells to surrounding conditions, thus inducing changes 
that are suitable for tumor progression [5]. Specifically, PDAC tumors 
are often subjected to basal and classical subtypes, according to tumor 

cell states, which distinguish the biological behavior tendency of PDAC 
tumor cells. Dominant tumor cell subtypes are shown in individual 
PDAC samples [11], however, recent studies showed continuous and 
convertible tumor cell states at tumor cell level [12]. Thus, it is hy-
pothesized that the formation of the heterogeneity in PDAC is 
environment-derived [13,14], which might be a down-stream event of 
hypoxia. 

There is a clear consensus in studies in which tumor genomes have 
been sequenced and analyzed that hypoxia is associated with tumor 
genomic instability [15]. Hypoxia has been found to cause DNA damage 
in the form of replication stress indirectly, and stimulates the production 
of reactive oxygen species (ROS) in mitochondria, which in turn stabi-
lizes Hypoxia-Inducible Factor 1 alpha (HIF-1α) [16]. P53 protein is a 

Fig. 1. Single-cell landscape of 15 pancreatic adenocarcinoma samples without pre-resection treatment. (A) PDAC cell states various from patients. (B) Integrating 
and reclustering of PDAC cells suggested 7 major clusters. (C) UMAP plot showing tumor cell components, grouped by sample. (D) Stacked bar plot showing tumor 
cell components, grouped by sample. (E) Expression of marker genes of each major cluster, showed by dot plot. (F) Expression of marker gene modules and genes 
showed by feature plot. 
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hypoxia regulator, with elevated expression level in hypoxia-exposed 
conditions, down-regulates the activity of HIF-1α and induces cell 
apoptosis [17]. Previous studies showed hypoxia selects for cell with 
mutant TP53 [18]. 

In the current study, we reported that hypoxia is related to cell state 
transition, leading to a developed and aggressive phenotype, which may 
be the major event in the formation of the complex eco-system in PDAC. 
Hypoxia signatures-enriched PDAC patients are characterized by poor 
prognosis, most TP53 mutants. Squamous signature TP63 were found 
elevated in hypoxia PDAC, indicating a potential adeno-squamous 
transition in PDAC, induced by hypoxia. Constantly, we found that 
hypoxic PDAC showed distinct overlap with basal/squamous subtype 
defined by former studies [6–8], indicating novel hypoxia signatures 
like LDHA could classify PDAC subtypes accurately. In summary, our 
study highlights the important role of hypoxia in oncogenesis and tumor 
progression, extends the understanding of the diversity and transition of 
tumor cells in PDAC, which provides insight onto future PDAC 
management. 

Results 

Gene module defined PDAC tumor cell subgroups in single nucleus 
sequencing profiles 

We analyzed a published single-nucleus sequencing dataset to 
explore the heterogeneity in pancreatic adenocarcinomas at single-cell 
level [19]. Totally 43, 817 tumor cells from 15 PDAC tumors without 
neoadjuvant treatments were extracted and re-clustered using Seurat 
pipeline, Notably, we found that tumor cell features vary from sample 
sources (Fig. 1A and Supplementary Figure 1). To identify the shared 
features across patients, we integrated tumor cells from different sam-
ples using ‘Harmony’. 7 major tumor cell sub-types with the expression 
of known marker genes and gene sets were identified including Cycle 
(TOP2A, ANLN), Basal (LAMC2, VIM), Classical (CLDN10, ITGA10), 
pEMT (S100A2, KRT17), cEMT (COL3A1, IGFBP5), Squamous (LY6D, 
KRT13) and Glandular (CP, MUC5B) (Fig. 1B and Supplementary 
Table 2). Proportion of tumor cell subtype components of each sample 
were shown in Fig. 1C and Fig. 1D. Consistent with previous studies in 
other tumors, tumor cells showed distinct intertumoral heterogeneity 

Fig. 2. (A) Spatial expression pattern of gene modules defining PDAC cell states. (B) Impact of defined gene modules on overall survival of TCGA-PAAD patients.  
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featured with patient-specific clusters [20,21]. Expression levels of 
specific tumor cell markers were shown in Fig. 1E. Module scores of 
individual cells were shown in feature plots in Fig. 1F. 

Gene module signatures express differentially in PDAC and adjacent 
normal tissues 

Due to the auto-digestive feature of pancreatic normal tissue, RNA 
sequencing on normal pancreas tissue is limited [22]. To define the 
relative expression of gene module signatures in PDAC and adjacent 
normal tissues, we analyzed a spatial transcriptome profile obtained 
from a pan-cancer study. ssGSEA were applied to score the gene module 
expression, which has been proven to be robust for spatial transcriptome 
data. Hypoxia, squamous, pEMT gene modules were higher expressed in 
PDAC tumor tissues, while endocrine and exocrine gene modules were 
higher expressed in adjacent normal tissues (Fig. 2A). We then evaluated 

the association between gene modules and PDAC survival outcome. 
TCGA-PAAD patients were divided into two groups according to median 
ssGSEA score of specific gene modules, respectively. Briefly, pEMT and 
squamous gene modules were found significantly related to shorter 
overall survival interval, while endocrine gene module showed signifi-
cant relationship with longer overall survival interval, and exocrine 
gene module showed no significant relationship with overall survival, 
according to log-rank test, threshold p<0.05 (Fig. 2B). 

PDAC samples consist of tumor cells at different status of differentiation 

To reveal the differentiation process in PDAC, we explored the gene 
expression pattern along tumor cell state transition using pseudotime 
trajectory analysis. As shown in Fig. 1, sample 2276_10x and sample 
2443_10x showed distinct basal/squamous-like features. Tumor cells 
from sample 2276_10x and sample 2443_10x was mainly composed of 

Fig. 3. Dynamic trajectory of cell state transition in sample 2276_10x (A) and sample 2443_10x (B). (C) Dynamic of cell state gene modules along the trajectory of 
tumor cell type transition. (D) Single-cell analysis of dataset PRJCA001063 showed LY6D+ squamous-like ductal cells were widely observed in PDAC tissues, without 
detection in adjacent normal tissues. (E) Hypoxia is related to the transition of PDAC cell states include endocrine, exocrine, classical, basal, pEMT, cEMT, and 
squamous in TCGA-PAAD cohort. 
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cell states including classical, basal, pEMT and cEMT, while sample 
2443_10x was mainly composed with cell states including classical, 
basal, pEMT and squamous. We found classical tumor cells mainly 
located at the origin of this trajectory, while pEMT, cEMT and squamous 
tumor cells mainly located at the terminal (Fig. 3A and Fig. 3B). Genes 
involved in the normal pancreatic secretion were decreased gradually, 
while malignant signatures including S100A2, TP63, KRT6A increased 
along the trajectory (Fig. 3A and Fig. 3B). Also, we analyzed the dynamic 
alteration of gene patterns along this trajectory. Notably, gene patterns 
associated to hypoxia and squamous patterns increased constantly, 
contrasted to the sequential decrease in endocrine and exocrine gene 
patterns (Fig. 3C). These results revealed that the process of PDAC cell 
state transition was dynamic and continuous, with coexistence of several 
states exhibited by individual cells. For example, features of the squa-
mous epithelium including TP63, LY6D and KRT6A were found in 
sample 2276_10x, although this sample did not exhibit the characteris-
tics of pancreatic squamous cell carcinoma (PASC). Also, exocrine and 
endocrine features were found in tumor cells. 

In another single-cell RNA sequencing profile from 24 PDAC tumor 
samples and 11 control pancreases without any treatment, we found that 
0–60% PDAC ductal cells showed non-zero expression of squamous 
signature LY6D, while none of normal ductal cells was LY6D positive 
(Fig. 3D). Thus, we further validated that transcriptome of squamous 
signatures are widely expressed in PDAC tumor cells. 

To further validate the correlation between hypoxia and tumor cell 
gene expression, we calculated the Pearson correlation between GSVA 
scores of hypoxia signatures with exocrine, endocrine, classical tumor, 
basal tumor and squamous tumor signatures in TCGA-PAAD cohort, 
respectively. Hypoxia genes showed negative correlation with endocrine 
(r=− 0.41, p<0.00001) and exocrine gene signatures (r=− 0.15, 
p<0.05), while showed positive correlation with classical tumor (r =
0.17, p<0.05), basal tumor (r = 0.57, p<0.00001) and squamous tumor 
(r = 0.63, p<0.00001) signatures, consistent with our findings in single- 
cell analysis (Fig. 3E). 

Enhanced cell-cell secreting interactions were detected among hypoxia- 
enriched PDAC cells 

Signaling interactions within PDAC tumor cells were explored using 
‘CellChat’ based on well-known ligand-receptor pairs. The strength of 
signaling patterns indicated that cross-talks among tumor cells were 
specifically enriched (Fig. 4A), with most outgoing signaling derived by 
hypoxia-enriched tumor cells, especially basal cells (Fig. 4B). A recent 
study reported an extracellular vesicle network (EVNet) derived by 
pancreatic cancer stem cells, which enhances angiogenesis, modulates 
antitumour immune response, promote cancer-associated fibroblast 
differentiation, establishes a premetastatic niche and confer metastatic 
properties to non-metastatic cancer cells [23]. Consistent to former 
findings, we found a signaling secreting network mainly derived by 
hypoxia-enriched basal PDAC cells. Outgoing signaling from tumor cells 
to ductal cells, endothelial cells and fibroblasts was shown in Fig. 4C, 
basal PDAC cell derived intra-tumor cell signaling were shown in 
Fig. 4D. Notably, legends VEGFA, SEMA3C, ANGPTL4 and NAMPT were 
significantly higher expressed in basal, pEMT, cEMT and squamous 
tumor cells, compared with classical tumor cells (Fig. 4E, MAST test, 
p<0.00001). Previous study reported that tumor derived signaling could 
promotes cancer-associated fibroblast differentiation and 
pericyte-fibroblast transition (PFT), like PDGF signaling [24] and TGFB 
signaling [25]. Notably, a recent study reported ANGPTL4-CDH11 
promotes CAF differentiation and ECM deposition in pancreatic cancer 
in mice [26]. Moreover, GSVA score of hypoxia signatures and 
cancer-associated fibroblasts showed a moderate correlation in 
TCGA-PAAD cohort (Fig. 4F). In another PDAC study, the authors sub-
typed PDAC into classical/basal and ECM-enriched/immune-enriched 
subtypes according to specific gene expression. Notably, they reported 
a distinct correlation between basal tumor subtype and ECM-enriched 

stroma subtype [4]. However, the mechanisms of the formation of the 
relationship remains to be revealed, our results indicated hypoxia may 
serve as a driving factor of a basal-like PDAC phenotype and 
ECM-enriched microenvironment. Also, we accessed the legend-receptor 
signaling from fibroblasts to tumor cells, and was shown in Fig. 4G, 
indicating that fibroblasts may also be involved in promoting the 
aggressive phenotype of tumor cells in hypoxic PDACs. 

Hypoxia signatures divided TCGA-PAAD patients into two distinct groups 

To further detect the significance of hypoxia signatures in the clinical 
management of PDAC, 178 TCGA-PAAD patients were divided into two 
groups, according to median GSVA scores of hypoxia signatures (Sup-
plementary Figure 3). Patients with higher hypoxia signature expression 
showed significantly shorter overall survival, compared with hypoxia- 
low patients (Fig. 5A, log-rank test, p<0.05). Among the 46 hypoxia 
genes, 15 genes showed significant correlation with worse overall sur-
vival, according to uni-cox tests (Fig. 5B, p<0.05). Notably, LDHA had 
the strongest prognostic ability and was significantly correlated to other 
14 genes, as a well-defined core hypoxia-related gene in previous PDAC 
studies (Fig. 5C). Differentially expressed genes (DEGs) were detected 
using ‘limma’. Consistent with our findings in single-cell analysis, novel 
basal markers like S100A2 and squamous markers like KRT6A and LY6D 
were significantly overexpressed in hypoxia-high patients, while genes 
related to normal secretary functions of pancreas like INSM1 and 
PLA2G2A were significantly down-regulated (Fig. 5D and Supplemen-
tary Table 3). GO enrichment showed the up-regulated genes were 
significantly enriched in extracellular matrix organization and kerati-
nization, suggesting a distinct relationship between hypoxia and ECM 
formating, squamous-like tumor phenotype, and enhanced tight junc-
tion, which may lead to chemotherapy resistance (Fig. 5E). KEGG 
pathway enrichment analysis showed that p53 signaling pathway was 
significantly activated in hypoxia-high patients (Fig. 5F). GSVA score of 
hypoxia signatures in TP53 mutants was significantly higher than TP53 
wild-types in TCGA-PAAD cohort (Fig. 5G, Wilcoxon test, p<0.05). P53 
was reported to be hypoxia regulator in tumors, inducing cell apoptosis 
in hypoxic conditions. Thus, we hypothesized that TP53 mutation in 
cancers is induced by hypoxia via positive selection, rather than a 
random event. Barplot in Fig. 5H showed the mutation frequency of 
TP53 across TCGA cancer types. TP53 had higher mutation rate in 
squamous carcinomas, compared to adenocarcinomas. Among adeno-
carcinoma, TP53 showed highest mutation rate in PAAD, CRC and 
LUAD. Pancreatic cancer as a typical Ischemic and hypoxic tumor is 
more likely to suffer from TP53 mutation. 

As indicated in former analysis, we found that overexpression of 
hypoxia signatures and LDHA was related to the transition from classical 
to basal/squamous-like PDAC tumor cells at single-cell level. Thus, we 
further evaluated the effect of hypoxia gene LDHA and squamous 
signature TP63 in distinguishing PAAD characteristics in TCGA-PAAD 
cohort. TCGA-PAAD patients were divided into 4 groups according to 
25th quantile expression level of LDHA and 75th quantile expression of 
TP63. Interestingly, we observed G3 patients (LDHA low and TP63 high) 
accounted for a small proportion of the total patients (6/178, 3.37%). 
Consistent with our findings in snRNA-seq data analysis, these results 
further validated the necessity of hypoxia in the formation of basal/ 
squamous-like pancreatic adenocarcinoma at bulk RNA-seq level. As 
shown in Fig. 6B, squamous signature TP63 were significantly overex-
pressed in TP53 mutants, compared with TP53 wildtypes in TCGA-PAAD 
cohort, further stated the strong promoting effect of hypoxia in the 
positive selection of TP53 mutation and leading to a basal/squamous- 
like subtype. Distinct difference in survival outcomes between G1 and 
G2, G3, G4 was detected, indicating that limited expression of hypoxia 
signature LDHA leads to a less hazardous phenotype (Fig. 6C, log-rank 
test, p<0.05). We then compared outcomes of our grouping-system ac-
cording to LDHA and TP63 expression with a published grouping-system 
in 137 TCGA-PAAD patients with annotated Moffit classification [6], 
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Fig. 4. Legend-receptor interaction analysis suggests enhanced secretion signals from hypoxia-enriched tumor cells induced increasingly malignant behavior of 
PDAC cells. Strong cell-cell signaling were found between Tumor cells and Tumor cells, fibroblasts and endothelial cells (A-B), specifically derived by hypoxia 
signature enriched basal PDAC cells. Tumor-cell derived signaling were shown in (C). Basal PDAC cell derived signaling among tumor cell subtypes were shown in 
(D). (E) VEGFA, SEMA3C, ANGPTL4 and NAMPT were significantly higher expressed in basal, pEMT, cEMT, and squamous cells, compared with classical cells. 
Otherwise, a moderate correlation between CAF signatures and basal PDAC signatures was detected in TCGA-PAAD (F), interactions between fibroblasts and PDAC 
tumor cells were shown in (G). 
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and found that G4 patients were more likely to be basal-like (Fig. 6D). 
Thus, we compared the GSVA score of hypoxia signatures, LDHA and 
TP63 expression levels of published PDAC subtypes in TCGA-PAAD 
cohort. Briefly, higher hypoxia score, LDHA and TP63 expression were 
found in progenitor and squamous subtypes (Bailey et al.) [7](Fig. 6E), 
basal subtype (Moffit et al.) [6] (Fig. 6F), classical and QM subtypes 
(Collison et al.) [8] (Fig. 6G) (Wilcoxon tests, *p<0.05, **p<0.001, 
***p<0.0001, ****p<0.00001, ns: not significant), indicating that 
hypoxia signature defines a developed and risky PDAC phenotype. Also, 
we performed the similar grouping strategy to TCGA-PAAD patients 

using LDHA and LY6D, for LY6D and TP63 were both indicated as novel 
squamous-like biomarkers of PDAC in our snRNA-seq analysis. Similar 
findings were observed and shown in Supplementary Figure 4. These 
finding suggested that LDHA overexpression was related to classical to 
basal/squamous-like PDAC tumor cell state transition. Moreover, we 
further evaluated the relationship between LDHA expression and clini-
copathological features of TCGA-PAAD patients. 178 patients were 
divided into two groups according to their median LDHA mRNA level, 
and notably, LDHA expression were significantly correlated to higher 
pathological T stage (Chi-square test, p = 0.025) and higher histologic 

Fig. 5. Hypoxia signatures reflects two distinct PDAC subgroups in TCGA-PAAD. TCGA-PAAD patients were divided into two groups according to the median GSVA 
score of hypoxia signatures. (A) Hypoxia-high patients showed worse overall survival compared with hypoxia-low patients. (B) 15 hypoxia signatures significantly 
associated with overall survival of TCGA-PAAD by uni-cox test. (C) Correlated expression of 15 hypoxia signatures in TCGA-PAAD cohort. (D) Volcano plot showing 
differentially expressed genes between hypoxia-high and hypoxia-low group. (E) Enriched GO-terms of genes overexpressed in hypoxia-high group (BP = Biological 
Process; CC = Cellular Component; MF Molecular Function). (F) Bar plot showing KEGG terms enriched. (G) Hypoxia signatures were higher expressed in TP53 
mutants in TCGA-PAAD. (H) Barplot showing TP53 mutation frequency in each TGCA study. 
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Fig. 6. LDHA and TP63 improved prediction of 
PDAC prognosis and suggested consecutiveness and 
transferability between PDAC subtypes. (A) Scatter 
plot showing the correlation between LDHA expres-
sion and TP63 expression in TCGA-PAAD patients. 
TCGA-PAAD patients were divided into 4 groups (G1, 
G2, G3 and G4) according to their quantile 25 LDHA 
expression and quantile 75 TP63 expression. Patients 
with low expression of LDHA and high expression of 
TP63 (G3, n = 6) accounted for a small fraction of the 
total patients (6/178, 3.37%). (B) TP63 expression 
was significantly up-regulated in TP53 mutants, 
compare with TP53 wild-types in TCGA-PAAD 
cohort, Wilcox test, p<0.00001. (C) G1 patients 
with low expression of both LDHA and TP63 showed 
best prognosis while G4 patients with high expression 
of both LDHA and TP63 showed worst prognosis, 
Log-rank test, p<0.05. (D) Chord plot showing the 
linkage between the grouping according to LDHA and 
TP63 expression and Moffit PDAC-subtype system in 
TCGA-PAAD cohort. (E-G) Differential GSVA score of 
hypoxia signatures, expression of LDHA and TP63 in 
published PDAC-subtype systems.   
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grade (Chi-square test, p<0.001). This result indicated that LDHA 
expression was associated with PDAC tumor cell dedifferentiation and 
was consistent with our former findings, suggesting the potential usage 
of hypoxia signature LDHA in PDAC classification and prognosis. 

LDHA expression associates with PDAC differentiation and prognosis 

To further validate our findings, we performed immunohistochem-
ical (IHC) staining on 44 PDAC samples underwent resection at Fudan 
University Shanghai Cancer Center (FUSCC). Spearman correlation test 
was performed to check the linkage between ranks of LDHA IHC staining 
intensity and PDAC pathological differentiation status, and log-rank test 
was performed to check the correlation between LDHA expression and 
overall survival outcomes. Similarly, higher LDHA IHC staining intensity 
was found associated with poorer differentiation (Fig. 7B, Spearman 
test, R = 0.3240, p<0.05) and unfavorable overall survival outcomes 
(Log-rank test, p<0.05) in FUSCC cohort. Typical immunohistochem-
istry (IHC) staining images of LDHA-high and LDHA-low PDAC with 
annotated differentiation status were shown in Fig. 7A. These results 
further revealed that high expression level hypoxia signature LDHA is 
associated with poor differentiation of PDAC, leading to unfavorable 
survival outcomes. 

Discussion 

Hypoxia is a constantly evolving participant in tumor growth and 
progression, orientating tumor fate, rather than a random by-product of 
the cellular milieu due to uncontrolled tumor growth [27]. In this study, 
we analyzed snRNA-seq profiles of 15 primary PDACs and identified 
hypoxia as a representative marker for PDAC progression. We found 
hypoxia signatures differentially expressed in classical, basal, pEMT, 
cEMT and squamous PDAC tumor cells, and showed elevated tran-
scriptome levels along the cell state transition. Hypoxic tumor cell 
prefers to exhibit basal-like behavior. Enhanced outgoing signaling 
secreted by hypoxic tumor cells promotes metastasis, angiogenesis and 
cancer-associated fibroblast differentiation. Moreover, there are signif-
icant differences in clinicopathological characteristics between hypoxic 
and non-hypoxic PDACs, according to hypoxia signatures at tran-
scriptome level. 

Specifically, TP53 mutations were most found in hypoxic PDAC 

tumors. Transcription factor p53 is a negative regulator of hypoxia 
signaling, which is overexpressed in hypoxic conditions, suppresses HIF- 
1α activity and induces cell apoptosis. Thus, cells with TP53 mutation 
may be selected in hypoxic conditions. In summary, hypoxia in PDAC 
leads to a basal-like tumor phenotype with high probability of TP53 
mutated and extracellular matrix enriched. 

Previous studies revealed the potential linkage between tumor cell 
state and the complex extracellular compartments, while the mecha-
nisms were not well understood [6]. Carlo et al. subjected PDAC 
epithelia into basal/classical subtype and PDAC stroma into 
ECM-enriched/immune-enriched subtypes with the assistance of laser 
capture microdissection (LCM) and RNA sequencing [4]. They suggested 
a strong association between an ECM-rich stroma and basal-like 
epithelium while immune-rich stroma occurred more often in associa-
tion with classical epithelia. A hypothesis is that tumor cell phenotype is 
driven by stroma in PDAC, however, the origin of cancer-associated fi-
broblasts remains unclear [28]. Emerging evidence indicated that tumor 
cells could induce ECM formation in tumor microenvironment [29], for 
example, a previous study showed that in patient-derived xenografts 
(PDXs) microenvironments dominated by fibrosis and immune infiltra-
tion were regulated by tumor-stroma crosstalk [30]. These insights 
suggested that the ECM-enriched microenvironment in PDAC may be 
driven by tumor cells, although PDAC is often consisted of mostly 
stromal compartments [31]. Our results suggested that in hypoxic tumor 
cell derived secreting signals regulates fibroblasts differentiation and 
deposition, thus leading to an ECM-enriched tumor microenvironment. 
The key driver of the formation of PDAC microenvironment needs to be 
further discussed, which is important for further intervention studies. 

Moreover, we found that squamous signatures like TP63 were widely 
expressed in PDAC tumor cells. TP63 is a specific marker for squamous 
cancers, which is well-defined in former studies [32,33]. However, in 
some adenocarcinomas, TP63 overexpression was also found [34]. We 
found that TP63 overexpression is a common event in hypoxic PDAC 
tumors, with or without showing the squamous cell carcinoma patho-
logical characteristics. It was reported that adenocarcinoma and squa-
mous cell carcinoma are transformable in specific conditions, especially 
in lung adenocarcinomas and lung squamous cell carcinomas, which 
leads to chemotherapy resistance [35]. Our study revealed that 
squamous-like characteristics were widely found in hypoxic PDAC, 
similar to findings in non-small cellular lung cancers. 

Fig. 7. IHC staining validated LDHA expression 
as a prognostic biomarker related with tumor 
cell dedifferentiation in 44 FUSCC PDAC tu-
mors. (A) Representative IHC staining images of 
LDHA correlated with PDAC differentiation 
status. (B) The IHC staining intensity of LDHA 
was significantly correlated with poor differ-
entiation of PDAC in FUSCC cohort, Spearman 
correlation test, R = 0.3240, p = 0.0319. (C) 
The IHC staining intensity of LDHA was signif-
icantly correlated with poor prognosis of PDAC 
in FUSCC cohort, Log-rank test, p = 0.0178. 
Patients were divided into two groups 
(group1=LDHA moderate/strong, group2-
=LDHA weak/negative) according to their 
LDHA staining intensity.   
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In summary, hypoxia leads to a basal-like tumor phenotype, with 
high probability of p53 mutation and an ECM-enriched microenviron-
ment. We hypothesized that hypoxia is an early-stage trigger of the 
complex PDAC ecosystem. However, activation of hypoxia-related 
pathways acts as a hub regulator of oncogenesis and links with multi-
ple oncogenic pathways involved in PDAC development. Previous 
studies revealed novel regulators and mechanisms in hypoxic PDAC 
microenvironment formation, for example, KLF4 was found down-
regulate LDHA expression and inhibit hypoxia in PDAC, and further 
effect the global expression patterns of hypoxia-regulated genes, leading 
to heterogeneity of PDAC tumors. Due to limited understanding of the 
upstream regulation of hypoxia in tumors, lack of precise therapeutic 
strategies for hypoxic tumors remains a major problem in PDAC man-
agement. It was reported that small molecular drugs such as aspirin and 
Tamoxifen could block the growth of tumors by inhibiting the expres-
sion or activity of HIF-1α, leading to a decline in tumor growth [36]. Our 
results suggested inhibiting hypoxia participants in early-stage of PDAC 
may lead to a less aggressive tumor phenotype and improve survival 
outcomes of PDAC patients. 

Pancreatic adenocarcinoma is a typical low-purity tumor. In bulk 
RNA sequencing analysis, the characterization of tumoral components is 
affected by non-tumoral components such as tumor-associated fibro-
blasts, leading to limited understand on tumor development and clas-
sification. Single-cell and single-nucleus sequencing has a preference for 
the capture of different cell types, like tumor cells, fibroblasts and im-
mune cells, leading to bias in the estimation of tumor components. By 
integrating single-nucleus and bulk sequencing analysis, we separated 
PDAC tumor cells and described their evolution aspects using single- 
nucleus RNA sequencing data, and further analyzed the relationship of 
hypoxia and tumor components using bulk RNA sequencing data, made 
up for the deficiency of these two sequencing strategies. 

In conclusion, despite the fact that the ecosystem of PDAC is complex 
and remains to be understood, hypoxia provides insights on the forma-
tion of this diversity. Hypoxic PDAC tumors are most basal/squamous- 
like, with p53 mutation and extracellular matrix enriched, leading to 
unfavorable survival outcomes and lack of therapeutic strategies. 
Through multiple bioinformatic analysis, we parsed the formation and 
characteristics of hypoxic-related PDAC ecosystem, thus provide evi-
dence for studies on future PDAC management. 

Methods 

Single-nucleus RNA-seq data accessing and processing 

The processed single-nucleus RNA-seq data of fifteen treatment- 
naïve patients had pancreas resection and were pathologically were 
collected from https://singlecell.broadinstitute.org/single_cell/study/ 
SCP1089/human-treatment-naive-pdac-snuc-seq. Cells from 15 PDAC 
tumors without neoadjuvant treatment were included in this study. 
Totally 43, 817 PDAC tumor cells were extracted according to the cor-
responding annotation published [19]. 

Gene expressions were normalized by the global-scaling normaliza-
tion method “LogNormalize” in Seurat (v4.1.1), which normalized the 
gene expressions for each cell by the total expression, followed by 
multiplying by a scale factor (10,000 by default) and log-transformation. 
To remove batch effect among the samples, data integration was per-
formed using ‘Harmony’ (0.1.0), with parameter lambda=0.5, dim. 
use=1:30, theta=2. 

To identify marker genes of each cell type, the “FindAllMarkers” 
function from Seurat was applied to identify differentially expressed 
genes using ‘MAST’ (v1.20.0) [37]. Only significantly upregulated genes 
(FDR < 0.05) with 0.3 log fold change and 0.3 minimum expression 
fraction were retained as marker genes. 

Module scoring and developmental trajectory analysis 

Scores for gene sets of interest were calculated based on the average 
relative expression and implemented in the Seurat function ‘AddMo-
duleScore’. Gene sets for tumor subtypes and other PDAC components 
were obtained from previously published studies [38,39]. Clusters 
identified by Seurat were annotated according to module scores and 
specific gene expression. Pseudotime analysis were performed using R 
package ‘monocle’ (v2.26.0) [40] with default parameters. 

Cell–cell communication 

To identify and visualize the cell cross-talk among malignant clusters 
or between tumor cells and other cell types, the R package ‘CellChat’ 
(v1.1.3) was used according to the developer’s vignette (https://github. 
com/sqjin/CellChat) [41]. 

Validation cohort 

Processed data of PRJCA001063 was downloaded from zenodo 
[10.5281/zenodo.3969339], which had undergone quality control and 
annotated [11]. Ductal cells were extracted according to corresponding 
annotation published. The threshold for LY6D+ ductal cell identification 
is counts LY6D>1, using the ‘WhichCells’ function of ‘Seurat’. 

Spatial transcriptome data accessing and processing 

Spatial transcriptome data for an individual PDAC sample was 
downloaded from the Gene Expression Omnibus (https://www.ncbi. 
nlm.nih.gov/geo/) with accession number GSE203612. Seurat was 
applied to process this data. In detail, we used ssGSEA method to score 
the individual spots of the spatial transcriptome data via ‘GSVA’ 
(v1.42.0) R package [42]. 

TCGA-PAAD patients subgrouping 

Hypoxic scores of TCGA-PAAD patients were calculated using 
‘ssGSEA’ method, according to the expression of the 46 hypoxic genes. 
TCGA-patients were divided into two distinct group according to their 
median hypoxia score. 

RNA-sequencing expression (level 3) profiles, somatic mutation data 
and clinical information of TCGA patients were downloaded from 
cBioPortal (https://www.cbioportal.org) and GDC Data Portal (https:// 
portal.gdc.cancer.gov/). Somatic status of TCGA-PAAD patients were 
visualized using ‘maftools’ (v2.10.05). 

RNA-sequencing expression (level 3) profiles and corresponding 
clinical information for PACA-AU were downloaded from the ICGC 
dataset(https://dcc.icgc.org/releases/current/Projects). Log-rank test 
was used to compare differences in survival between these groups. The 
timeROC(v 0.4) analysis was used to compare the predictive accuracy of 
each gene. 

Identification of differentially expressed genes and functional analysis 

Differentially expressed genes (DEGs) between hypoxia-high patients 
and hypoxia-low patients were identified using ‘limma’ (v3.50.3). The 
standard for determining the significance of DEGs was set as P < 0.05 
and |log2FC|>1. Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment of the DEGs were performed using R 
package ‘ClusterProfiler’ (v4.2.2) [43]. 

Immunohistochemical staining 

The 44 clinical tissue samples used in this study for immunohisto-
chemical staining were obtained from patients pathologically diagnosed 
with PDAC and underwent resection at Fudan University Shanghai 
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Cancer Center (FUSCC). Patient consent and approval from the Institu-
tional Research Ethics Committee were obtained prior to the study. 
Postsurgical follow up of patients was performed as previously 
described. Overall survival (OS) was defined as the time interval from 
surgery to death. 

Statistical analysis 

Bioinformatics analysis and associated statistical calculations were 
performed with R 4.0.3. The Kaplan–Meier survival curves were plotted 
using the R packages ‘survival’ (v3.4.0) and ‘survminer’ (v0.4.9). Coxph 
test was used to determine the hazard ratio (HR) and 95% confidence 
interval of hypoxic gene signatures in TCGA-PAAD through the GSCA-
Lite website (http://bioinfo.life.hust.edu.cn/web/GSCALite/) [44]. 
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