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Abstract
Ever since its discovery as the first human oncogenic virus, Epstein-Barr virus (EBV) has been the focus of many
researchers and is one of the best-studied pathogens. EBV is a major causative agent of Burkitt lymphoma, Hodgkin
lymphoma, post-transplantation lymphoproliferative disorder, NK/T cell lymphoma, chronic active EBV disease,
nasopharyngeal carcinoma, gastric carcinoma, and infectious mononucleosis. Although a truly comprehensive
understanding of the virus and the associated disorders remains elusive, major breakthroughs in molecular cloning
and omics analyses are shedding new light on this important virus. For example, EBV is now implicated in
autoimmune diseases and neurodegenerative disorders. This review provides an overview of the molecular biology
of EBV, the research history, the associated disorders, and the epidemiology.
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Introduction

Epstein-Barr virus (EBV) is a human pathogen in
the Herpesviridae family; a family that contains the α-,
β-, and γ-herpesvirus subfamilies. The human α- and β-
herpesviruses include herpes simplex virus, varicella zoster
virus, and cytomegalovirus. EBV and Kaposi sarcoma-associated
herpesvirus are members of the γ-herpesvirus subfamily and are
both oncogenic. EBV infection of resting B cells leads to efficient
B-cell transformation in vitro, reflecting the initial step of B-
cell oncogenesis. Viral transmission between individuals most
often occurs via saliva. The virus predominantly targets B cells,
although it can also infect epithelial cells.1,2 Like other typical
human herpesviruses, EBV is ubiquitous, asymptomatically
infecting more than 90% of adults worldwide.

EBV infection during infancy is generally asymptomatic,
though initial infection during or after adolescence can
sometimes trigger infectious mononucleosis (IM). Because
EBV can establish a latent infection and thus evade host
immunity, the virus is impossible to eliminate, and most
people will remain asymptomatic for life.3,4 However, EBV can
cause low frequencies of several types of cancers: Burkitt
lymphoma (BL), Hodgkin lymphoma (HL), post-transplantation
lymphoproliferative disorder (PTLD), chronic active EBV disease
(CAEBV), NK/T cell lymphoma (NKTCL), nasopharyngeal
carcinoma (NPC), and gastric carcinoma (GC).4,5 In addition, EBV
has been implicated in the development of some immunological
diseases, including Sjogren’s syndrome (SS), systemic lupus
erythematosus (SLE), rheumatoid arthritis (RA), multiple
sclerosis (MS), and systemic sclerosis (SSc).6–10

Basic research on EBV has been challenging, as the cell
tropism is narrow, the genome is large, there are repetitive
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sequences, and replication is inefficient. Clinical EBV research
has been hampered by the low incidence of the associated
disorders, regional differences, and the low ratio of EBV-positive
cell in healthy individuals (only 1 in 105 B cells are EBV-
positive). Nevertheless, more than 37,000 EBV papers have
been published as of 2022, and the number is increasing every
year. EBV is one of the most extensively studied human viral
pathogens; recent technological advances have greatly enhanced
progress. In this review, we provide an overview of EBV and
the associated disorders from molecular virological, historical,
epidemiological, and clinical perspectives.

Molecular biology of EBV

Viral structure
EBV has a linear double-stranded DNA genome of

approximately 175 kilobases, although the genome becomes
circular in cells. The viral genome encodes more than 80 genes
and 40 non-coding RNAs, and is incorporated in an icosahedral
capsid. The nucleocapsid is enclosed within a lipid envelope
(creating a virion); the space between the nucleocapsid and the
envelope is termed the tegument.4

Latent infection
Like other herpesviruses, EBV exhibits both latent and lytic

states.11,12 During latency, EBV expresses only a limited number
of genes, and the genome exists as an episome inside the
nucleus. Latent infection is categorized into latency 0, I, IIa,
IIb, and III types by the expression patterns of EBV genes4,13

(Table 1). Of the >80 open reading frames (ORFs), nine
encode for proteins that are indisputably associated with latency:
EBV nuclear antigen 1 (EBNA1), EBNA2, EBNA3A, EBNA3B,
EBNA3C, EBNA leader protein (EBNA-LP), latent membrane
protein 1 (LMP1), LMP2A, and LMP2B. Latency III status is
evident in transformed B cells, commonly termed lymphoblastoid
cell lines (LCLs), and in PTLD, all nine latent viral genes are
expressed. In HL, CAEBV, NKTCL, and NPC, the production
of EBNA2, EBNA3A, EBNA3B, EBNA3C, and EBNA-LP are
restricted because the C and W promoters (Cp and Wp) are
inactive. EBNA1 is expressed from the Q promoter (Qp), and
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LMP expression is preserved. The latency type IIb can be seen
in a proportion of B cells in patients with IM, and in infected
primary B cells for a few days or one week after infection.
The infected B cells cannot express LMPs, but all EBNAs are
expressed. Cancer cells from patients with BL and GC typically
express EBNA1, but no other latent gene; this is characteristic
of latency type I. The most silent pattern, latency type 0, in
which no viral protein is detectable, can be found in EBV-positive
memory B cells in asymptomatic healthy individuals.

If infected cells express more latent EBV genes (such as found
in latency type III), the latent genes confer a growth advantage
on the cells, but provide more antigens that may attract the
attention of host immunity. Conversely, if the cells express
limited numbers of latent genes (e.g., as in latency type I), the
cells may evade the host immune system, but will require more
genetic and/or epigenetic alterations for proliferation. In other
words, the EBV latent gene expression pattern is determined at
least partly by the balance between the individual or local host
immune response and the ability of cells to proliferate.

Apart from these latent ORFs, other viral non-coding genes
are expressed in latent cells, including the EBV-encoded RNAs
(EBERs) and microRNAs (miRs) encoded in the BamHI H
fragment rightward frame 1 (BHRF1) and the BamHI A fragment
rightward transcript (BART) regions. EBERs are abundantly and
ubiquitously transcribed by RNA polymerase III, even in latency
type 0. miR-BARTs are more abundant in the latency types I
and II of GC, NPC and NKTCL, whereas miR-BHRF1s are more
highly expressed during type III latency.14

Some other genes are also expressed in latent cells. For
example, the viral homolog of the BCL-2 gene, BHRF1, is
expressed (under the control of Wp) and contributes to B-cell
transformation.15–17 The BNLF2A protein, that blocks antigen
presentation by inhibiting TAP, is expressed during latency and
protects infected cells from immune recognition.18,19

Latent genes
EBNA1

The protein EBNA1 is not required to initiate B-cell
transformation, but it is required for efficient, continued cell
proliferation.20 EBNA1 tethers the EBV episome to the host

chromosome via mechanical binding between the oriP motifs
of the EBV genome and the chromosome. Such tethering is
important for delivery of viral episomes into the nuclei of
daughter cells. In addition, by binding to oriP, EBNA1 mediates
latent viral DNA synthesis and activates the Cp and LMP1
promoter.21 As the presence of EBNA1 is sufficient for both
replication and maintenance of a recombinant plasmid bearing
oriP sequence in mammalian cells, the combination creates an
efficient expression vector.

The EBNA1 protein is composed of N-terminal region (amino
acid (aa) 1–89), a Gly-Ala repeat (GAr) (aa 90–326), and C-
terminal region (aa 327–641). Given this very repetitive and
lengthy sequence of GAr, EBNA1 translation is inhibited, and
antigen presentation is reduced, aiding in the evasion of host
immunity.22 EBNA1 also has a motif rich in Gly and Arg and
is thus termed the GR motif. The GR motif is divided into
two parts, with each part at either end of the GAr. The basic
residues present in the GR domains allow EBNA1 to “stick” to
the chromosome.23

Upon infection of B cells, EBNA1 is initially transcribed from
the Wp and later from the Cp. In the latency types I and IIa,
both Wp and Cp are inactive; however, EBNA1 expression is
maintained because another latent promoter, Qp, is active. As Qp
is activated in a broad range of cell types, EBNA1 can be found in
all EBV-positive B, epithelial, and NK/T cancer cells.13,24

EBNA2
The protein EBNA2 is a transcriptional cofactor transcribed

from Wp immediately after infection of B cells, and is later
transcribed from Cp.21,25 While EBNA2 does not directly bind
DNA, this protein can either induce or suppress transcription of
cellular and viral genes by associating with cellular transcription
factors such as RBPJκ, PU.1, EBF, NF-κB, and RUNX1.26–29

Additionally, EBNA2 is a component of several super-enhancers,
as are EBNA-LP and other viral and cellular transcriptional
activators.30,31 EBNA2 induces transcription of many cellular
genes, of which one of the most important is the MYC,32,33

a transcription factor with basic helix-loop-helix and leucine
zipper motifs. MYC up-regulates and down-regulates cellular
genes involved in the cell cycle, apoptosis, and nucleotide
metabolism, and potently promotes cell proliferation. Indeed,

Table 1 EBV latent genes and their expression patterns

Latent gene Function Necessary for B cell transformation

Latency
type 0

Latency
type I

Latency
type II (or IIa)

Latency
type IIb

Latency
type III

Memory B BL, GC
HL, CAEBV,

NKTCL, NPC
IM,

pre-latency
IM, PTLD,

LCL

EBERs Non-coding RNA No + + + + +

EBNA1 Tethers episomal DNA to chromosome Essential + + + +

EBNA2 Transcriptional cofactor Essential + +

EBNA-LP Cofactor of EBNA2 Essential for naïve B, important for memory B + +

EBNA3A Cofactor of EBNA2 Essential + +

EBNA3B Cofactor of EBNA2 No (tumor suppressor) + +

EBNA3C Cofactor of EBNA2 Essential + +

LMP1 CD40 mimic, activates NFkB pathway Essential + +

LMP2A BCR mimic, activates AKT pathway Important + +

LMP2B Negative regulator of LMP2A No + +

BCR, B cell receptor; BL, Burkitt lymphoma; CAEBV, chronic active Epstein-Barr virus; EBERs, Epstein-Barr virus-encoded small RNAs; EBNA1,
Epstein-Barr virus nuclear antigen 1; EBNA2, Epstein-Barr virus nuclear antigen 2; EBNA3A, Epstein-Barr virus nuclear antigen 3A; EBNA3B,
Epstein-Barr virus nuclear antigen 3B; EBNA3C, Epstein-Barr virus nuclear antigen 3C; EBNA-LP, Epstein-Barr virus nuclear antigen leader protein;
EBV, Epstein-Barr virus; GC, gastric carcinoma; HL, Hodgkin lymphoma; IM, infectious mononcleosis; LCL, lymphoblastoid cell lines; LMP1, latent
membrane protein 1; LMP2A, latent membrane protein 2A; LMP2B, latent membrane protein 2B; NKTCL, NK/T-cell lymphoma; NPC, nasopharyngeal
carcinoma; PTLD, post-transplant lymphoproliferative disease.
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MYC upregulation has been reported in many types of cancers
and is associated principally with B-cell oncogenesis. EBNA2
also activates the viral LMP1 promoter and Cp.34,35 EBNA2 is not
expressed in epithelial or NK/T cells.13

EBNA-LP
EBNA-LP transcription commences at the Wp and Cp in

latency type III, like EBNA2. Most of the protein is encoded
by the W repeat (also termed the IR1) region, and therefore
the sequence is very repetitive. EBNA-LP associates with the
viral transcriptional cofactor EBNA2 to increase transcriptional
activity.36 Presence of EBNA-LP can promote the transformation
of adult B cell, but is not required for this process; in contrast,
EBNA-LP is essential for transformation of naïve B cells.37

EBNA3A/B/C
The EBNA3 cluster has three members: A, B, and C. The

sequences have similarity; the genes lie adjacent in the viral
genome and are transcribed from the same promoters (Wp
and Cp). EBNA3 proteins have RBPJ-binding domains in the
N-terminal regions and thus function as regulatory cofactors
of EBNA2.38 EBNA3A and EBNA3C play critical roles in the
efficient transformation of B cells. For example, EBNA3A and
3C repress the transcription of p14ARF and p16INK4A (that are
CDK inhibitors that block cell cycling), thereby promoting the
proliferation of infected B cells.39 Conversely, EBNA3B is not
only not required for B-cell transformation; it is in fact a
tumor suppressor.40 Notably, the sequences of the EBNA3s differ
between EBV-1 and EBV-2.41

LMP1
The LMP1 gene is transcribed from a unique promoter in the

latency types IIa and III.42,43 Although expression of the gene
is limited to resting B cells for several days after infection,25

expression is later increased by EBNA2 protein.44 LMP1 is
regarded as a oncoprotein and is required for the efficient
transformation of B cells. LMP1 is a transmembrane protein
with six transmembrane domains and two intracellular effector
domains termed C-terminal activation regions 1 and 2 (CTAR1
and 2) or transformation effector sites 1 and 2 (TES1 and 2).45

The effector domains mediate constitutive activation of TNFR/
CD40 signaling, activating the NF-κB, JNK, and MAPK pathways.
LMP1 increases the expression of many genes in infected cells,
including ICAM-1, LFA-1, BCL-2, and A20.46–48

LMP2A/B
LMP2A and B share a C-terminal sequence, but the N-

terminal domains differ. The LMP2A gene has a unique
promoter, but the LMP2B promoter shares cis-acting elements
with the LMP1 promoter.49 Both genes are adjacent to each
other and are expressed in latency types IIa and III, as is
LMP1. LMP2A features 12 transmembrane domains in the
C-terminus; the N-terminal region of the protein lies in the
cytoplasm. This N-terminal region contains immunoreceptor
tyrosine-based activation motifs and PPPY motifs, which mediate
downstream signaling. LMP2A mimics the B-cell receptor (BCR)
and constitutively activates signaling of Syk and PI3K/AKT.50

Knockout of LMP2A significantly reduces B-cell transformation
by EBV, but the gene is not required for transformation in
vitro.17,51

As LMP2B lacks the N-terminal cytoplasmic domain of
LMP2A, LMP2B cannot elicit signaling. Rather, LMP2B serves
as a negative regulator of LMP2A.52 The LMP2B gene
is assumed to be non-essential for B-cell transformation.
Studies on deletion mutants of the C-terminal transmembrane
domains shared by LMP2A and B showed that neither

gene was required for B-cell transformation if they were
simultaneously disrupted,53,54 although deletion of LMP2A alone
significantly reduced the transformation efficiency.17,55 Recent
genomic analyses revealed that many B-cell lymphomas exhibit
simultaneous deletions of LMP2A and LMP2B,56 also suggesting
that LMP2A is oncogenic and that LMP2B is an LMP2A
antagonist.
Lytic infection

Although the trigger(s) of EBV reactivation in vivo remain
unclear, reactivation can be induced at the cell culture level
by anti-immunoglobulin (Ig), TGF-β, TPA, an HDAC inhibitor,
and hypoxia, that triggers rapid expression of lytic viral genes,
extensive viral DNA synthesis in the nucleus, and progeny virion
production.57 Lytic genes are divided into three classes by the
timing of expression: Immediate-Early (IE), Early, and Late.
Typical lytic genes are described in the following section.

Lytic genes
BZLF1/BRLF1

After induction of reactivation, EBV rapidly expresses two
IE genes, BZLF1 and BRLF1. These are both transcriptional
activators that induce transcription of viral genes, especially
Early genes. The BZLF1 gene encodes a b-ZIP-type transcription
factor that has a unique ability to efficiently induce activation
of CpG-methylated promoters.58 The BRLF1 protein induces
transcription by either directly or indirectly binding to target
gene promoters, or by activating cell signaling pathways.
Replication genes

Viral genes involved in synthesis of viral DNA are expressed
during the Early phase. EBV encodes BALF5 (the catalytic
polymerase subunit), BMRF1 (a polymerase processivity factor,
also termed EA-D), BALF2 (a single-stranded-DNA-binding
protein), BBLF4 (a helicase), BSLF1 (a primase), and BBLF2/3
(a primase-binding protein). Additionally, the BZLF1 protein
serves as an origin-binding protein during lytic replication. The
expression of these seven genes are required for viral DNA
synthesis, as is the gene encoding BKRF3 (an uracil-DNA
glycosylase).59

vPIC
Other Early proteins of the lytic stage include those that

create the viral pre-initiation complex (vPIC), which induces
transcription of Late viral genes after viral DNA synthesis.60 The
vPIC includes BcRF1, BDLF3.5, BDLF4, BFRF2, BGLF3, and
BVLF1. BcRF1 may be a TATT-binding protein; however, the
roles of the other proteins remain unclear.
Structural proteins

Genes associated with the Late stage include many structural
genes that encode for the capsid, tegument, and glycoproteins.61

Capsid proteins form the icosahedral container for the viral
progeny genomic DNA. Tegument proteins are incorporated into
the space between the nucleocapsid and envelope and play roles
in progeny virion maturation, transportation, and enhancement
of infectivity. Envelope glycoproteins are required for progeny
virion maturation, transportation, viral attachment and cell entry.

Disorders

IM
EBV was associated with IM only a few years after the

virus was discovered in BL.62 The symptoms of IM include
fever, pharyngeal inflammation, lymphadenopathy, fatigue, and
hepatosplenomegaly that persist for 1–2 weeks. Most IM patients
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exhibit leukocytosis and atypical lymphocytes. Many of these IM
symptoms are attributable to the abnormal expansion of T cells
that counter the initial EBV infection. EBV of IM patients exhibit
expression patterns characteristic of either latency types IIb, III,
or the lytic phase. Antibodies against lytic EBV genes (such as
VCA and EA-D) can be detected in IM patients.

BL
endemic BL (eBL), a disease endemic in sub-Saharan Africa,

was first identified by Denis Burkitt in children.63 Michael
Epstein, Bert Achong, and Yvonne Barr cultured cells from
biopsied BL tissue from African patients and, in 1964, reported
microscopic objects reminiscent of herpesvirus particles64; these
particles were later recognized as EBV. The eBL is more
frequent in men and children than women; the tumor typically
grows rapidly in an area between the upper jaw and the abdomen.
Almost 100% of eBL is associated with EBV, but the association
is lower for sporadic BL (sBL). Tumors of both eBL and sBL
patients characteristically have translocations between the MYC
and IgH (or IgL) genes; the oncogenic MYC gene is thus
overexpressed in BL cells.65

EBV of BL cells usually exhibits the latency type I gene
expression pattern. However, after long-term in vitro culture,
there can be a change to latency type III status, whereby all
latent genes are expressed. The expression of EBNA and LMP is
limited in vivo, which enables the virus to avoid the host immune
system; however, in the absence of an immune response (e.g.
in vitro) expression of EBNA and LMP may confer a growth
advantage to the cells. In addition to the MYC translocation, BL
often features somatic mutations in TP53, ID3, RET, SWI/SNF,
and ARID1A.66

HL
HL is a B-cell lymphoma identified by Thomas Hodgkin in

1832. Histologically, the essential feature of the disorder is that
of large tumor cells, termed Hodgkin and Reed–Sternberg (HRS)
cells, surrounded by non-malignant inflammatory cells including
T cells, macrophages, and fibroblasts. As HRS cells cannot grow
when isolated, the surrounding cells are presumed to support
HRS proliferation. EBV was linked to HL as early as 1969,
when HRS-like cells were found in IM patients.67 Additionally,
a history of IM was associated with a higher risk of developing
HL.68 However, a direct link between EBV and HL was not
found until 1987, when EBV DNA was detected in HL tissues.69

EBV positivity is dependent on the lymphoma subtype; EBV is
present in approximately 70% of mixed cellularity HL, >95% of
lymphocyte-depletion HL, 10–40% of nodular sclerosis, and 0%
of lymphocyte-predominant HL.70 The incidence of HL is higher
in the West, accounting for about 30% of all lymphomas, but is
lower in the East, such as in Japan (≤5%). EBV of HL typically
exists in the latency type II pattern, suggesting the involvement
of LMP1 and LMP2A in oncogenesis. Furthermore, EBV-positive
HRS cells sometimes lack functional BCR (reflecting apoptotic
cell death in the germinal center) but LMP1 and LMP2A
may inhibit apoptosis and thus compensate for the absence of
BCR.71–73 Somatic mutations in genes encoding NF-κB signaling
molecules have also been reported.74

PTLD and AIDS-related lymphoproliferative disease
In patients with congenital or acquired immunodeficiency, or

who are prescribed immunosuppressants, lymphoproliferative
disease (LPD) or lymphomas are common. EBV was first linked

to PTLD in 198075; it is now known that 60% to 90% of
PTLD cases are associated with EBV.76 The terms “PTLD”
and “AIDS-related LPD” are generic in nature; they in fact
include heterogenous disorders. In the early stages, LPDs are
often polyclonal or oligoclonal; later, the disease may appear
similar to BL, HL, and diffuse large B-cell lymphoma (DLBCL).
As the patient’s immunity is compromised, the EBV of LPDs
expresses many latent genes, thus exhibiting latency type III
status, but cases with restricted latent gene expression have also
been described. MYC translocations and mutations in TP53 and
BCL6 have been found in some PTLD cases,77 but such somatic
mutations in EBV-positive PTLD patients are less frequent than
in EBV-negative PTLD cases.76

CAEBV and NKTCL
CAEBV and NKTCL are LPD and lymphoma of T or NK

cells associated with EBV. The incidence is highest in east
Asia; however, the reason for this is unknown.78,79 CAEBV is
commonly found in subjects aged <20 years, while NKTCL is
more frequently diagnosed in middle-aged or older men. EBV
was first detected in patients with CAEBV and NKTCL in 198880

and 1990,81 respectively. In both cases, the virus exhibits latency
type II status, suggesting that LMP1 is important in terms
of oncogenesis.82 Somatic mutation accumulations are found in
DDX3X, KMT2D, TP53, BCOR, TET2, STAT3, ARID1A, and
PD-L1.56,83 Furthermore, intragenic deletions of viral genes are
frequently found in CAEBV and NKTCL specimens. Because
these deletions can lead to more efficient expression of viral lytic
genes, it is suggested that viral lytic cycle genes contribute to
the pathogenesis of these disorders.56

NPC
Even before Denis Burkitt reported eBL in Africa, the

incidence of NPC in southern China was known to be higher
than elsewhere in the world.84–86 Middle-aged or older males are
at higher risk than other groups. Two years after the initial report
of EBV in BL cells, EBV was first implicated in NPC.87 Sera from
African and American NPC patients reacted with BL cell lines
more strongly than sera from BL patients. Soon afterwards, EBV
DNA was detected in NPC biopsy material.88,89 An oncogenic
role for EBV in NPC was described in 2010; EBV reproducibly
immortalized pre-malignant, nasopharyngeal epithelial cells.90

EBV infection triggered anchorage-independent cell growth,
invasion, and survival even in the absence of growth factors
or nutrients. The EBV present in NPC cells typically exhibit
a latency type II pattern, suggesting that LMP1 plays a role
in the oncogenesis of this type of cancer.91 Somatic mutations
have been reported in CDNK2A, CCND1, ARID1A, AKT2, TP53,
KRAS, and PIK3CA.92 Genomic analyses of the EBV in NPC
specimens revealed that certain nucleotide variations, especially
in the BALF2 gene, are highly associated with an increased risk
of NPC, in the region-dependent manner93,94; this suggests the
contribution of viral lytic cycle in the carcinogenesis.

GC
The presence of EBV in GC was first reported in 199295; it is

now known that approximately 10% of GCs are EBV-positive. In
patients with EBV-positive GC, both the host and viral genomes
exhibit more extensive CpG methylation than in patients with
EBV-negative GC.96 In addition to epigenetic alterations, somatic
mutations in TP53, KRAS, ARID1A, PIK3CA, BCOR, and PD-
L1 are present in GC cells.97 The EBV of GCs generally
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exhibits restricted expression of latent genes (latency type I), but
involvement of LMP2A has also been suggested.98 Histologically,
infiltrations of lymphocytes are typically found in EBV-positive
epithelial cancers, GC, and NPC.

SS/SLE/RA/MS/SSc
SS, SLE, RA, MS, and SSc are complex autoimmune diseases.

Both genetic and environmental factors play crucial roles; EBV
has been suggested to be an environmental risk factor for
the development of these diseases.8 One of the earliest links
discovered between EBV and autoimmune disease was that some
patients with IM developed SS or SLE. Additional circumstantial
evidence followed; the levels of EBV antigen, antibody, and DNA
were higher than normal in either the peripheral blood or the
disease loci of SS and SLE patients. Recently, a study in the
United States of 10 million young adults revealed that the MS
incidence increased 32-fold after de novo EBV infection but not
after other infections.6

Several pathogenetic mechanisms have been proposed: (i) an
EBV antigen may mimic a host autoantigen; (ii) EBV infection
may induce an excessive or abnormal immune response,
destroying self-tolerance; and/or, (iii) salivary gland cells may be
directly killed by EBV lytic reactivation. The GAr of EBNA1 can
mimic the autoantigens of RA and MS.99,100 Single-cell repertoire
analysis of the B cells of MS patients revealed molecular mimicry
between a non-GAr epitope of EBNA1 and a glial cell adhesion
molecule expressed in the central nervous system.101 The viral
transcriptional cofactor EBNA2 can trigger dysregulation of host
autoimmunity risk loci.102,103 LMP1 and LMP2A constitutively
transmit CD40 and BCR signals, respectively, facilitating the
survival of auto-reactive B cells in the germinal center.104,105

One viral lytic gene, vIL-10 (BCRF1), can alter the balance of
the immune system.9 A synergistic effect between a patient’s
genomic predisposition and an environmental factor has also been
suggested; genome-wide association studies found that HLA-
DR15 was associated with the strongest predisposition toward
MS, and EBV is amplified more efficiently (because of weaker
anti-EBV immunity) in patients with the HLA-DR15 allele.10

Conclusion

Recent technological advances in genetic and epigenetic
analyses have enhanced our molecular understanding of EBV
and have revealed further features of disorders caused by the
virus. We propose that our next goal should therefore be the
development of effective preventative and therapeutic measures.
Such work is already in progress worldwide.
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