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ABSTRACT: Nicotinamide adenine nucleotide (NADH) is
involved in many biologically relevant redox reactions, and the
photochemical regeneration of its oxidized form (NAD+) under
physiological conditions is of interest for combined photo- and
biocatalysis. Here, we demonstrate that tri-anionic, water-soluble
variants of typically very lipophilic iridium(III) complexes can
photo-catalyze the reduction of an NAD+ mimic in a comparatively
efficient manner. In combination with a well-known rhodium co-
catalyst to facilitate regioselective reactions, these iridium(III)
photo-reductants outcompete the commonly used [Ru(bpy)3]2+

(bpy = 2,2′-bipyridine) photosensitizer in water by up to 1 order of
magnitude in turnover frequency. This improved reactivity is
attributable to the strong excited-state electron donor properties and the good chemical robustness of the tri-anionic iridium(III)
sensitizers, combined with their favorable Coulombic interaction with the di-cationic rhodium co-catalyst. Our findings seem
relevant in the greater context of photobiocatalysis, for which access to strong, efficient, and robust photoreductants with good water
solubility can be essential.

■ INTRODUCTION
The emerging field of photobiocatalysis combines enzymatic
reactions with photocatalysis and represents an attractive
approach to selective and mild chemical transformations using
visible light as the energy source.1−7 Natural photosynthesis as
well as many other biologically relevant processes rely on
nicotinamide adenine nucleotide (NADH) as a mediator of
redox equivalents, and its oxidized NAD+ form is typically
recycled by an enzymatic reaction,8 thereby allowing the
catalytic use of this precious co-factor.1,9,10 Given its
widespread importance in many different biotransformations,
the chemical,11,12 enzymatic,13−17 electrochemical,18,19 and
photochemical reduction of NAD+ to NADH using readily
available and cheap reductants has received considerable
attention. In biological systems, the regioselective regeneration
of the 1,4-NADH isomer from NAD+ is orchestrated
enzymatically, whereas in artificial settings this is typically
achieved with an organometallic rhodium co-catalyst derived
from [Cp*Rh(bpy)Cl]+, where Cp* = C5Me5

− and bpy = 2,2′-
bipyridine.1,20 The catalytically active [Cp*Rh(bpy)H]+

species can be photochemically generated by the consecutive
transfer of two electrons from a sensitizer (Figure 1) along
with a proton transfer from a suitable source. Such catalytic
cycles necessitate robust photosensitizers that can act as very
strong electron donors under physiological conditions.1,2 To
date, several different types of heterogeneous photocata-
lysts,21−24 including graphene-based materials,21,22 semicon-
ductors, and Cd-based nanocrystals, have been used for this

purpose.23,24 Among homogeneous photocatalysts, derivatives
of [Ru(bpy)3]2+,25−29 Zn porphyrins,30−32 or xanthene dyes33

have been popular. Aside from eosin Y, which can coordinate
to the abovementioned rhodium co-catalyst,33 thus enabling
efficient intramolecular electron transfer within the resulting
photosensitizer-rhodium dyad, the turnover frequencies
(TOF) for both heterogeneous and homogeneous conditions
have remained somewhat modest in many cases, with TOF
values typically below 20 h−1 at room temperature.

Homoleptic tris(cyclometalated) iridium(III) complexes
such as fac-[Ir(ppy)3] (ppy = 2-phenylpyridine) are promising
photosensitizers for the regeneration of 1,4-NADH because
they are strong and robust photoreductants with long-lived
excited states.38−43 However, these charge-neutral homoleptic
tris(cyclometalated) iridium(III) complexes are very lipophilic
and therefore usually insoluble in water.44 Several different
groups previously obtained water-soluble cyclometalated
iridium(III) complexes, though commonly based on hetero-
leptic ligand frameworks,37,45−53 which are often less photo-
reducing and less photorobust than the homoleptic
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versions.37,54,55 Our group recently developed a tri-sulfonated
variant of fac-[Ir(ppy)3] with an excited-state oxidation
potential (Eox*) of −1.89 V versus SCE in an aqueous
phosphate buffer at pH 7 (Table 1, [Ir(sppy)3]3−).37,56,57 The
excited-state electron donor properties turned out to be further
tunable by ligand fluorination, resulting in [Ir(Fsppy)3]3−

(Eox* = −1.85 V vs SCE, Table 1) and [Ir(dFsppy)3]3−

(Eox* = −1.76 V vs SCE, Table 1). All three compounds

(structures included in Figure 1) are very well soluble in water,
and they seem to have suitably strong excited-state electron
donor properties for the photochemical regeneration of 1,4-
NADH from NAD+.36 1-Benzyl-1,4-dihydronicotinamide (1,4-
BNAH, Figure 1) has emerged as an easy-to-handle and readily
available small-molecule surrogate for NADH58−62 and hence
we focused on the photochemical reduction of the oxidized
form of this compound (BNA+) using our water-soluble

Figure 1. Photochemical regeneration of 1,4-BNAH using TEOA as a combined electron and proton source (oxidized form of TEOA),64 water-
soluble iridium(III) photosensitizers, and a rhodium co-catalyst to accomplish the regioselective 1,4-reduction of BNA+.

Table 1. Summary of Selected Electrochemical, Photochemical, and Photophysical Properties of the Photosensitizers Used in
This Study

ET/eV Eox/V vs SCE Eox*/V vs SCE τ0/ns ε455/(M−1 cm−1)

[Ru(bpy)3]2+ 2.12 +1.26 −0.86 650a 14,600
[Ir(sppy)3]3−b 2.65 +0.76 −1.89 1625 890
[Ir(Fsppy)3]3−b 2.76 +0.91 −1.85 2165 500
[Ir(dFsppy)3]3−b 2.81 +1.05 −1.76 2110 230

aDetermined by time-resolved luminescence spectroscopy using the TCSPC technique with a solution of the photosensitizer (50 μM) in a
deaerated Tris-buffer (0.1 M, pH 8.8). bDetermined in our previous investigations of the same water-soluble iridium(III) sensitizers.36,37

Figure 2. Monitoring visible-light-driven BNAH regeneration by UV−vis absorption spectroscopy. (A) Photoinduced absorption changes of a
reaction mixture containing BNA+ (1.0 mM), [Cp*Rh(bpy)Cl]+ (0.1 mM), TEOA (0.5 M), and [Ir(sppy)3]3− (10 μM) in deaerated phosphate
buffer (0.1 M, pH 7) at 22 °C. The dashed vertical arrow marks the increase of the diagnostic BNAH absorption band maximum at 358 nm as a
function of irradiation time with a 455 nm collimated LED. The inset contains calibrated UV−vis absorption spectra of BNA+ (orange trace) and
1,4-BNAH (green trace) in deaerated phosphate buffer (0.1 M, pH 7) at 22 °C. (B) Visible-light-driven BNAH regeneration from BNA+ using
identical conditions as in (A) with four different photosensitizers and in the absence of any sensitizer (control experiment). The red circles
connected by the red lines represent the data from the main plot of (A); the yields were calculated based on optical density changes (before and
after irradiation) at 358 nm with ε358 = 5070 M−1 cm−1 for 1,4-BNAH.
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iridium(III) compounds. Triethanolamine (TEOA) served as a
sacrificial electron donor, and the abovementioned rhodium
co-catalyst was used to facilitate regioselective 1,4-reduction.20

The co-catalyst enters the catalytic cycle in the form of
[Cp*Rh(bpy)(H2O)]2+, and its two-electron reduction
coupled to protonation leads to the catalytically active
rhodium(III) hydride complex that reduces BNA+ to 1,4-
BNAH.63

■ EXPERIMENTAL SECTION
Unless otherwise indicated, the used chemicals were obtained
commercially in high purity and were used as received. The
investigated iridium(III) photosensitizers were available from some
of our previous projects.36,57 The rhodium co-catalysts ([Cp*Rh-
(bpy)Cl]Cl)65 and BNACl66 were synthesized and characterized
according to previously published procedures. 1,4-BNAH was
synthesized by BNA+ reduction using Na2S2O4 and characterized
according to a previous literature report.67 Ultrapure Millipore MilliQ
water (specific resistance, 18.2 MΩ cm) was used for all spectroscopic
measurements as well as for all photoinduced reductions. All solutions
for optical spectroscopy and reductions were purged with argon (5.0,
Pan Gas) for 5 min. To ensure stable pH conditions, a Tris-buffer (0.1
M, pH 8.8) or a phosphate buffer (0.1 M, pH 7) was used. Steady-
state UV−vis absorption spectra were recorded with a Cary 5000
spectrometer (Varian). The luminescence lifetime and quenching
measurements were performed on a LifeSpec II spectrometer
(Edinburgh Instruments) using the time-correlated single-photon
counting (TCSPC) technique. The excitation source was a 405 nm
picosecond pulsed diode laser (ca. 60 ps pulse width). Laser flash
photolysis was performed on an LP920-KS apparatus from Edinburgh
Instruments with 420 nm laser pulsed excitation (14 mJ per pulse)
using a frequency-tripled Nd/YAG laser (Quantel Brilliant, ca. 10 ns
pulse width) equipped with an OPO from Opotek. The kinetics at a
single wavelength were recorded using a photomultiplier tube.

■ RESULTS AND DISCUSSION
To monitor the light-driven regeneration of the NADH mimic,
a combination of UV−vis absorption and 1H NMR spectros-
copy was employed. BNA+ and 1,4-BNAH both have distinct
UV−vis absorption features that permit to follow the
photoreaction progress over time. While both BNA+ and 1,4-
BNAH show an absorption band below 300 nm (though with
maxima at different wavelengths, inset of Figure 2), the
reduced form (1,4-BNAH) displays a characteristic absorption
ranging from 320 to 420 nm.26,30−32,68 Consequently, the
photochemical formation of BNAH from BNA+ was monitored

at 358 nm, complemented by 1H NMR experiments (see
below) to confirm the 1,4-regioselectivity of the reaction. In an
initial experiment performed with 1 mM BNA+, the [Ir-
(sppy)3]3− photosensitizer (10 μM) was used along with 0.1
mM [Cp*Rh(bpy)Cl]+ as a precursor complex to [Cp*Rh-
(bpy)(H2O)]2+, and TEOA (0.5 M) served as a sacrificial
electron donor. Upon irradiation at 455 nm with the
collimated output of an LED (1.1 W), the formation of
BNAH was readily observed within 30 min (dashed upward
arrow in Figure 2A). Since [Ir(sppy)3]3− and [Cp*Rh(bpy)-
(H2O)]2+ both have non-negligible extinction at 358 nm, the
BNAH yields were estimated based on the observable optical
density changes (before and after irradiation). Based on the
molar extinction coefficient at 358 nm (ε358) of 5070 M−1

cm−1 (Figure S1), a BNAH yield of 48% after an irradiation
time of 150 min is estimated (red trace in Figure 2B).

Aside from the 1,4-BNAH reduction product, the single-
electron transfer reaction promoted by the photosensitizer can
in principle lead to regioisomers or the well-known BNA
dimer,69 which absorbs around 356 nm.70,71 To confirm the
regioselective regeneration of 1,4-BNAH, its light-driven
formation was monitored by 1H NMR spectroscopy using a
solution containing BNA+ (10 mM), [Cp*Rh(bpy)Cl]+ (1.0
mM), [Ir(sppy)3]3− (0.1 mM), and TEOA (1.0 M). To limit
deuterium incorporation into the reduction product,63 a 1:1
mixture of CD3CN and non-deuterated phosphate buffer (0.1
M, pH 7) was used as a solvent. The characteristic 1H NMR
signals of BNA+ decrease as a function of irradiation time,
concomitant with the sole formation of 1,4-BNAH (Figures
S2−S4). After 6 h of illumination, the yield of 1,4-BNAH was
82% based on the integration of NMR resonances character-
istic for BNA+ and BNAH. The cleanliness of the conversion
(with the starting material reacting directly to one clearly
dominant product) validates the approach of using UV−vis
absorption spectroscopy for reaction monitoring.

In the following, we monitored the photochemical reduction
of BNA+ to BNAH with different photosensitizers by UV−vis
spectroscopy at 358 nm. The formation of BNAH was
observed for all employed sensitizers when irradiating the
reaction mixture with a 455 nm collimated LED (Figure S5).
The yield of BNAH using different sensitizers was traced over
150 min (Figure 2B) and increased in the order of
[Ir(sppy)3]3− (46%) < [Ir(Fsppy)3]3− (56%) < [Ir-
(dFsppy)3]3− (64%), whereas [Ru(bpy)3]2+ only gave 13%

Table 2. Yields and TOFs for the Photochemical Regeneration of BNAH, Gibbs Free Energy (ΔG) for Photoinduced Electron
Transfer from the Sensitizers to [Cp*Rh(bpy)(H2O)]2+, Excited-State Quenching Rate Constants (kq) for Bimolecular
Reactions with [Cp*Rh(bpy)(H2O)]2+, and Quenching Efficiencies (η) at a Given [Cp*Rh(bpy)(H2O)]2+ Concentration

yield/% TOF/h−1 ΔGET,1
a/eV kq

b/108 M−1s−1 η([Cp*Rh(bpy)(H2O)]2+)c/% ΔGET,2
d/eV η(TEOA)e/% initial TONf (PS)

[Ru(bpy)3]2+ 13 16 −0.07 1.2 0.77 −0.53 n/d 26
[Ir(sppy)3]3− 46 80 −1.15 41.7 40.4 0.00 n/d 92
[Ir(Fsppy)3]3− 56 111 −1.11 41.2 47.1 −0.15 n/d 113
[Ir(dFsppy)3]3− 64 146 −1.02 41.3 46.6 −0.29 6.3 128

aGibbs free energies (ΔG) were calculated based on ΔG = −e × (Ered
0 − Eox*), where e is the elementary charge, Eox* is the excited state oxidation

potential of the used sensitizers (Table 1, column 4), and Ered
0 is the ground-state reduction potential of the Rh catalyst (−0.74 V vs SCE).72

bDetermined by time-resolved luminescence spectroscopy using the TCSPC technique with solutions containing individual photosensitizers (50
μM) and [Cp*Rh(bpy)Cl]Cl (0 to 500 μM) in deaerated Tris-buffer (0.1 M, pH 8.8) at 20 °C. cThe quenching efficiency η was estimated based
on η = (τ0 − τ)/τ0 = (kq × [Q])/(τ0

−1 + kq × [Q]), where kq is the reaction rate constant, τ0 is the natural excited-state lifetime of the sensitizers
(Table 1, column 5), and [Q] is the concentration of the [Cp*Rh(bpy)(H2O)]2+ quencher under reaction conditions (0.1 mM). dGibbs free
energies (ΔG) were calculated based on ΔG = −e × (Ered

0 − Eox
0), where e is the elementary charge, Eox

0 is the oxidation potential of TEOA, and
Ered

0 is the acceptor reduction potential (Table 1, column 3). For the calculation of ΔGET,2, an oxidation potential of 0.76 V versus SCE was used
for TEOA.65 eThe quenching efficiency η was determined based on η = (τ0 − τ)/τ0, where τ0 is the natural excited-state lifetime (Table 1), and τ is
the lifetime measured in the presence of 1 M TEOA (Figure S6). fFor details, see Supporting Information Section 3.
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yield of BNAH (Table 2). When comparing the initial TOF
within the first 30 min of irradiation (Table 2 and Supporting
Information Page S11−S12), the iridium(III) photosensitizers
show comparatively high initial TOFs. Specifically, they range
from 80 h−1 ([Ir(sppy)3]3−), 111 h−1 ([Ir(Fsppy)3]3−) to 146
h−1 ([Ir(dFsppy)3]3−),25,30−33 outperforming [Ru(bpy)3]2+

with a TOF of only 16 h−1 (Table 2). Evidently, the
[Ir(dFsppy)3]3− sensitizer provides a roughly 10-fold TOF
enhancement compared to [Ru(bpy)3]2+, whereas the BNAH
yield after 150 min only shows a 5-fold improvement with
[Ir(dFsppy)3]3− relative to [Ru(bpy)3]2+ (64% vs 13%). This
discrepancy between TOF and BNAH yield improvements is
likely due to the non-negligible re-oxidation of BNAH at
longer reaction times and the limited stability of BNAH.73

These greatly enhanced TOFs and BNAH yields when using
iridium(III) sensitizers instead of [Ru(bpy)3]2+ are all the
more remarkable given the fact that the latter absorbs the
excitation light at 455 nm more than 15 times better. (The
pertinent molar extinction coefficients are ε455 < 860 M−1 cm−1

(Table 1)36 for the iridium(III) sensitizers compared to ε455 ∼
14,600 M−1 cm−1 (Table 1) for [Ru(bpy)3]2+).35 The high
TOFs and BNAH yields achievable with the iridium(III)
sensitizers likely reflect their enhanced excited state electron
donor properties, attractive Coulombic interactions with the
cationic [Cp*Rh(bpy)(H2O)]2+ co-catalyst, and longer
excited-state lifetimes compared to [Ru(bpy)3]2+ (see
discussion below).

In principle, the photochemical regeneration of BNAH can
proceed via several different reaction mechanisms. In the
reductive excited-state quenching mechanism (Figure 3, right),

the excited state of the photosensitizer accepts an electron
from the sacrificial donor TEOA, followed by onward electron
transfer from the reduced photosensitizer ([Ir(sppy)3]4−) to
[Cp*Rh(bpy)(H2O)]2+. In the oxidative excited-state quench-
ing mechanism (Figure 3, left), the excited photosensitizer
donates an electron to [Cp*Rh(bpy)(H2O)]2+ and forms its
oxidized species ([Ir(sppy)3]2−), which subsequently accepts
an electron from TEOA to regenerate the initial state of the
photosensitizer ([Ir(sppy)3]3−).

To assess the dominant pathway in Figure 3, time-resolved
luminescence quenching experiments were performed with the
different photosensitizers (Figure S6). TEOA does not quench
the luminescence of [Ir(sppy)3]3−, [Ir(Fsppy)3]3−, and [Ru-
(bpy)3]2+ to an appreciable extent (Figure S6A,B,D), whereas
for [Ir(dFsppy)3]3−, a quenching efficiency η of 6.3% is
obtained with 1 M of TEOA in 0.1 M deaerated phosphate
buffer (pH 7) at 20 °C (Figure S6C). This observation is in
line with the relatively high oxidation potential of TEOA (Eox

= +0.76 V vs SCE)65 and the estimated relatively low excited-
state reduction potentials (Ered*) of the [Ir(sppy)3]3−,
[Ir(Fsppy)3]3− and [Ru(bpy)3]2+ sensitizers. For [Ru(bpy)3]2+,
the excited-state reduction potential (Ered*) is +0.84 V versus
SCE in aqueous solution, whereas for the iridium(III)
complexes, we have been unable to determine the respective
reduction potentials in water. Using the Ered* value of the
neutral analog fac-[Ir(ppy)3] in acetonitrile as a proxy (+0.31
V vs SCE),38 we estimate a reaction free energy for reductive
excited-state quenching ΔGET,3 of +0.45 eV (= e × (Eox −
Ered*), with e the elementary charge). Thus, it seems that the
respective photoreactions with [Ir(sppy)3]3− and [Ir-
(Fsppy)3]3− are too exergonic, whereas the two-fold fluoro-
substitution in [Ir(dFsppy)3]3− seems to increase the electron-
accepting capacity to the extent that some quenching (<6.3%)
at very high TEOA concentrations (1.0 M) can occur. Thus,
even for TEOA concentrations up to 1.0 M, the reductive
excited-state quenching pathway remains negligible for all four
photosensitizers considered here.

In contrast, the luminescent excited-state of all three
iridium(III) photosensitizers is strongly quenched by [Cp*Rh-
(bpy)(H2O)]2+, yielding diffusion-controlled bimolecular
reaction rate constants (kq) around 4.1 × 109 M−1 s−1

(Table 2 and Figure S7). For [Ru(bpy)3]2+, a kq value of 1.2
× 108 M−1 s−1 is obtained (Figure S7D). Based on these rate
constants (kq, Table 2), the natural excited-state lifetimes in
absence of any quencher (τ0, Table 1), and the [Cp*Rh-
(bpy)(H2O)]2+ concentration ([Q] = 0.1 mM) used in the
UV−vis experiments, the quenching efficiency η can be
estimated from η = (τ0 − τ)/τ0 = (kq × [Q])/(τ0

−1 + kq ×
[Q]). Under reaction conditions in which 0.1 mM [Cp*Rh-
(bpy)(H2O)]2+ is present, quenching efficiencies above 40%
are estimated for all three iridium(III) photosensitizers (Table
2), whereas for [Ru(bpy)3]2+ a quenching efficiency of less
than 1% is estimated. These marked differences in kq and η
values between the iridium(III) complexes on the one hand
and [Ru(bpy)3]2+ on the other hand are in line with the much
lower excited state oxidation potentials of the iridium
photosensitizers (−1.76 to −1.89 V vs SCE, Table 1)
compared to [Ru(bpy)3]2+ (−0.86 V vs SCE, Table 1).34

Based on a reduction potential (Ered) of −0.74 V versus SCE72

for [Cp*Rh(bpy)(H2O)]2+ and the known excited-state
oxidation potentials (Eox*)36,57 for the three iridium(III)
photosensitizers, reaction free energies (ΔGET,1) of −1.0 eV
([Ir(dFsppy)3]3−), −1.11 eV ([Ir(dFsppy)3]3−), and −1.15 eV
([Ir(sppy)3]3−) are obtained (Table 2). For [Ru(bpy)3]2+,
ΔGET,1 only amounts to −0.07 eV; hence, there is far less
driving force for photoinduced electron transfer to [Cp*Rh-
(bpy)(H2O)]2+ in this case. The much higher driving force for
photoinduced electron transfer from the iridium(III) com-
plexes might be further aided by attractive Coulombic
interactions between these tri-anionic photosensitizers and
the di-cationic [Cp*Rh(bpy)(H2O)]2+ co-catalyst, in compar-
ison with the repulsive Coulombic interactions in the case of
the di-cationic [Ru(bpy)3]2+.72 Furthermore, the substantially
longer excited-state lifetimes of the iridium(III) complexes
(1625 to 2150 ns, Table 1) compared to [Ru(bpy)3]2+ (600
ns)35 are helpful in promoting photoinduced electron transfer.
Given the findings summarized in Table 2, it seems plausible
that oxidative excited-state quenching by [Cp*Rh(bpy)-
(H2O)]2+ represents the dominant reaction pathway.35

At first glance, it might seem intriguing that among the three
iridium(III) photosensitizers, the TOF does not correlate with

Figure 3. Latimer diagram for [Ir(sppy)3]3− presenting the possible
oxidative and reductive quenching cycles for the photochemical
regeneration of BNA+.
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the excited-state oxidation potential. The TOF of the complex
with the strongest excited-state electron donor properties,
[Ir(sppy)3]3− (Eox* = −1.89 V vs SCE, Table 1), is roughly a
factor of two lower than the TOF of [Ir(dFsppy)3]3− (80 h−1

vs 146 h−1), even though the twofold fluorinated complex is a
weaker excited-state donor (Eox* = −1.76 V vs SCE, Table 1).
Taking into account that [Ir(sppy)3]3− absorbs more strongly
at 455 nm (ε455 = 887 M−1 cm−1, Table 1) than
[Ir(dFsppy)3]3− (ε455 = 232 M−1 cm−1, Table 1), the observed
reactivity order might seem even more puzzling.36

Therefore, the possibility of a triplet−triplet energy transfer
(TTET) reaction mechanism was considered (Figure S8),
whereby the excitation energy would be transferred from the
triplet-excited iridium(III) sensitizers to [Cp*Rh(bpy)-
(H2O)]2+. The resulting triplet excited state of the latter
could then in principle react with TEOA to afford [Cp*Rh-
(bpy)(H2O)]+, which could ultimately lead to the reduction of
BNA+.63,74 In principle, the supposed TTET seems plausible
because the triplet energies of the used iridium(III) sensitizers
are high (up to 2.81 eV) and because the BNAH regeneration
yields and TOFs correlate with the triplet energies of the used
iridium(III) sensitizers. The triplet energy of [Cp*Rh(bpy)-
(H2O)]2+ is not known, but it seems reasonable to use the
value of 2.5 eV75 determined previously for [Rh(NH3)6]3+ as a
proxy, yielding estimated TTET driving forces (ET

Ir(III) −
ET

Rh(III)) between −0.15 eV ([Ir(sppy)3]3−) and −0.31 eV
([Ir(dFsppy)3]3−). Significantly differing excited state quench-
ing rate constants (kq) can typically be observed for TTET in
this driving-force range,76 but time-resolved luminescence
quenching experiments (Figure S7) showed almost no
differences between the kq values obtained for the three
different iridium(III) sensitizers when using [Cp*Rh(bpy)-
(H2O)]2+ as a quencher. Given this observation and the facts
that (i) electron transfer from the excited iridium(III)
sensitizers to [Cp*Rh(bpy)Cl]+ has far higher driving forces
(ΔGET,1 < −1.0 eV), and (ii) the observable excited state
quenching rate constants approach the diffusion limit (kdiff ∼
6.5 × 109 M−1 s−1),77 TTET does not seem to be a major
reaction pathway. The oxidative pathway illustrated by the left
part of Figure 3 instead seems to be of key importance.

The experimentally accessible TOF and BNAH yields
naturally represent measures of the overall reaction perform-
ance resulting from several different elementary steps,27,28

among which the initial excited-state electron transfer process
is not necessarily the decisive factor. The recovery of the initial
state of the photosensitizer after one-electron oxidation likely
becomes a key step for the iridium(III) complexes considered
here. Based on the (ground state) iridium(IV/III) redox
potentials of the photosensitizers (Table 1)36 and the
oxidation potential of TEOA (Eox = +0.76 V vs SCE),65 the
reaction free energies (Table 2, ΔGET,2) for reduction of the
individual iridium(IV) species by the sacrificial electron donor
can be estimated. This simple analysis reveals that ΔGET,2 ≈ 0
eV for [Ir(sppy)3]2− and then becomes increasingly negative
for [Ir(Fsppy)3]2− (ΔGET,2 ≈ −0.15 eV) and [Ir(dFsppy)3]2−

(ΔGET,2 ≈ −0.29 eV). In other words, the regeneration of the
initial photosensitizer from its oxidized iridium(IV) form back
to the iridium(III) state is associated with a considerably
higher driving force in [Ir(dFsppy)3]3− than in [Ir(sppy)3]3−.
It seems plausible that this is a main factor determining the
order of the TOFs among the iridium(III) complexes
considered here.

■ CONCLUSIONS
Our comparative study of three water-soluble iridium(III)
photosensitizers and [Ru(bpy)3]2+ with [Cp*Rh(bpy)Cl]Cl as
a co-catalyst for the light-driven regeneration of the nucleotide
co-factor mimic BNAH provides the following key insights: (1)
the newly used iridium(III) photosensitizers feature initial
TOFs (88−146 h−1, Table 2) that are up to 10-fold higher
than those obtained for [Ru(bpy)3]2+ (16 h−1), in line with the
much stronger electron donor properties of the photoexcited
iridium(III) complexes compared to [Ru(bpy)3]2+. (2) Among
the three iridium(III) photosensitizers, the TOF correlates
with the ease of iridium(IV) to iridium(III) reduction in the
electronic ground state, indicating that the regeneration of the
initial photosensitizer redox state by the sacrificial electron
donor TEOA can become performance limiting. Collectively,
these two key insights illustrate the importance of balancing
the excited-state donor and ground-state acceptor properties of
the photosensitizer.

The anionic nature of our tri-sulfonated iridium(III)
complexes stands in contrast to [Ru(bpy)3]2+ and many
other cationic transition metal-based photosensitizers. For the
rhodium co-catalyzed reduction considered here, this could
play an important role in the sense that electrostatic
interactions between the negatively charged iridium(III)
photosensitizers and the positively charged rhodium co-catalyst
could further facilitate the desired photoinduced electron
transfer reaction. Such pre-aggregation effects that promote
photochemical reactions beyond mere diffusion control could
indeed play an underappreciated role in photocatalysis.78−80

Furthermore, it seems that the development of water-soluble
strong photoreductants lags considerably behind recent
advances made in that regard for organic solvents.81−83 We
hope that the insights gained herein and our potent water-
soluble iridium(III) photoreductants will be useful for future
developments in photobiocatalysis.84
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