Skip to main content
. 2023 May 23;23:99. doi: 10.1186/s12911-023-02196-2

Table 3.

Comparison of the performance in six traditional models and the proposed DXLR model

Models Metric [Mean ± SD]
Precision Recall Accuracy F1 score AUC
LR 0.538 ± 0.016 0.649 ± 0.016 0.712 ± 0.008 0.589 ± 0.013 0.766 ± 0.009
SVM 0.540 ± 0.016 0.644 ± 0.015 0.713 ± 0.008 0.587 ± 0.013 0.765 ± 0.009
DT 0.647 ± 0.015 0.827 ± 0.020 0.802 ± 0.007 0.726 ± 0.011 0.879 ± 0.006
RF 0.681 ± 0.015 0.833 ± 0.013 0.823 ± 0.007 0.749 ± 0.011 0.905 ± 0.005
XGBoost 0.714 ± 0.014 0.878 ± 0.012 0.850 ± 0.006 0.788 ± 0.010 0.928 ± 0.005
LightGBM 0.674 ± 0.015 0.836 ± 0.011 0.820 ± 0.007 0.746 ± 0.011 0.901 ± 0.005
DXLR 0.723 ± 0.014 0.892 ± 0.012 0.857 ± 0.007 0.798 ± 0.010 0.934 ± 0.004
P-valuea < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

a: t-test for the DXLR model and the best performing traditional model (XGBoost); The bold font is the best performing model