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Abstract 

Since the past decades, more lung cancer patients have been experiencing lasting benefits from immunotherapy. 
It is imperative to accurately and intelligently select appropriate patients for immunotherapy or predict the immu-
notherapy efficacy. In recent years, machine learning (ML)-based artificial intelligence (AI) was developed in the 
area of medical-industrial convergence. AI can help model and predict medical information. A growing number of 
studies have combined radiology, pathology, genomics, proteomics data in order to predict the expression levels of 
programmed death-ligand 1 (PD-L1), tumor mutation burden (TMB) and tumor microenvironment (TME) in cancer 
patients or predict the likelihood of immunotherapy benefits and side effects. Finally, with the advancement of AI and 
ML, it is believed that "digital biopsy" can replace the traditional single assessment method to benefit more cancer 
patients and help clinical decision-making in the future. In this review, the applications of AI in PD-L1/TMB prediction, 
TME prediction and lung cancer immunotherapy are discussed.

Introduction
Lung cancer is the deadliest cancer type in China and 
one of the deadliest cancers in the world [1]. Currently, 
immunotherapy has shown promising results in lung 
cancer patients. However, the objective response rates 
vary considerably among patients. Therefore, it is impor-
tant to accurately identify lung cancer patients sensitive 
to immunotherapy.

AI has become increasingly relevant to all aspects of 
human life due to the development of statistical  meth-
odology and big data science. AI focuses on simulating 
human intelligence, thinking, and reasoning models to 
solve problems, provide decisions and automate labor. 

As a subset of AI, ML is defined as a method of analyz-
ing a large amount of sample data with a target task and 
then, parsing that data into predictive models and clus-
tering by itself, which is then analyzed by the computer 
[2]. AI specifically refers to the concept of a "thinking 
machine," emphasizing the computer’s ability to make 
independent decisions, while ML refers to a "learning 
machine," which can complete tasks without explicit 
programming instructions by inputting data and imple-
menting algorithms to create a computing framework 
[3]. Deep learning (DL) algorithms, a subset of ML, are 
AI-driven algorithms that can profoundly impact bio-
medical research, personalized medicine, and precision 
medicine [4]. By analyzing genomics, pathomics, imag-
ing, and other biological data with computers, mathe-
matical modeling, and applying it to clinical and scientific 
research, ML is a method for discovering new things 
about patients. It has become a hot topic of development 
these days to cross-fertilize medicine and artificial intel-
ligence [5].

PD-L1 and programmed cell death protein 1 (PD-
1)-based lung cancer immunotherapy is the most suc-
cessful immune checkpoint blockade (ICB) therapy. The 

*Correspondence:
Teng Ma
mateng82913@163.com
1 Cancer Research Center, Beijing Chest Hospital, Capital Medical 
University, Beijing Tuberculosis and Thoracic Tumor Research Institute, 
Beijing 101149, China
2 Department of Respiratory and Critical Care Medicine, Beijing Chest 
Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic 
Tumor Institute, Beijing 101149, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-023-01456-y&domain=pdf


Page 2 of 18Gao et al. Journal of Hematology & Oncology           (2023) 16:55 

tumor intrinsic characteristics such as TMB and TME 
also affect the immunotherapy efficacy. In this review, 
we comprehensively examine the advances in AI and 
ML-driven applications in lung cancer immunotherapy.

AI and ML
The conceptions and applications of AI and ML
The training process in ML can be categorized into 
three main types: supervised learning, unsupervised 
learning (UL), and semi-supervised learning (SSL). 
Supervised learning involves using labeled data to 
train the model. Some typical classification and regres-
sion models for supervised learning include k-nearest 
neighbor (KNN), linear regression (LR), support vec-
tor machine (SVM), decision trees (DT), and random 
forests (RF). In contrast, UL does not involve labeling 
the data, and SSL combines labeled and unlabeled data. 
The labeling process can be time-consuming and labor-
intensive, but it can result in better performance of the 
models since they have been externally validated [6]. 
Clustering models are common UL algorithms, includ-
ing k-means clustering, hierarchical clustering, and 
principal component analysis (PCA).

Overall, the choice of learning type depends on the 
data and the task at hand. Supervised learning is suit-
able for tasks that require predicting a specific output 
from input data with known labels, while UL is used to 
discover hidden patterns and structures in data. SSL 
is used when there is a limited amount of labeled data 
available.

DL is a subset of ML that utilizes neural networks as 
its fundamental algorithm. Unlike traditional ML, DL 
does not rely on domain experts to manually engineer 
features. Instead, it mimics the iterative transmission of 
information in the human brain by using neural networks 
to automatically learn representations of data. During 
training, the algorithm adjusts its parameters to optimize 
the model and produce the best output. DL has found 
applications in various fields, including computer vision 
(CV), natural language processing (NLP), and speech 
recognition.

In the medical field, NLP has been applied to various 
scenarios, including simple internet-based AI consulta-
tions, information extraction from electronic medical 
records, and automatic case writing [7]. Additionally, CV 
has been extensively employed for medical image rec-
ognition in areas such as computer tomography (CT), 
X-ray, positron emission tomography/computer tomog-
raphy (PET/CT), and immunohistochemistry (IHC) [8]. 
Many reported models for predicting lung cancer risk 
utilize supervised ML, such as artificial neural network 
(ANN), DT, RF, SVM and Bayesian classification.

The history of AI and ML
The concept of AI was officially proposed at the Dart-
mouth Conference in 1956 (Fig.  1). Scientists want to 
create machines that can mimic human intelligence [3].

During the early days of the 1960s, computers’ opera-
tion relied on the “expert system”, which refers to a large 
number of manual interpretation rules input by experts, 
forming a knowledge database [3].

In the 1970s, the limitation of the development of hard-
ware equipment led to insufficient computing power, 
making it difficult to calculate large-scale data and com-
plex missions. As a result, capital investment gradually 
decreased, and the evolvement of AI reached a stalemate, 
entering the “AI winter” period in history [3].

Until the 1980s, the concepts of ML and neural net-
works emerged. Canadian scholar Geoffrey Hinton 
improved the traditional perceptual network structure, 
coupled with the invention of back propagation and the 
extensive application of statistical principles, AI gained 
the ability to solve practical problems and gradually had 
commercial value [9]. Concurrently, AI has also devel-
oped in the fields of life sciences and medicine. Addition-
ally, the development of the Internet promoted progress 
in NLP and data mining greatly.

In 2009, Li Feifei presented the ImageNet database for 
the first time as an academic poster at the Conference 
on Computer Vision and Pattern Recognition (CVPR), 
which expanded the types of samples that can be used for 
AI training, promoting the process of CV and image rec-
ognition greatly. With the advent of the Big Data era and 
the development of computer hardware, the concept of 
DL was proposed and emerged, which led to the devel-
opment of convolutional neural networks (CNN) and 
deep neural networks (DNN). Since then, AI has entered 
a peak period of research and development, becoming 
well-known to the public [3].

Additionally, bioinformatics and semantic analysis 
technologies were also developed rapidly. In 2015, Can-
ada’s DNA sequencing data enabled the identification of 
mutation sites and therapeutic targets, thus providing 
personalized treatment plans for patients. Furthermore, 
a speech recognition assistant developed by iFlytek and 
Tsinghua University was able to analyze patients’ condi-
tions and provide auxiliary diagnoses [3].

Later on, with the development of big data, the evolu-
tion of ML algorithms, and  the improvement of model 
prediction performance and generalization capabilities, 
AI is increasingly being applied in the field of biomedi-
cine, including protein structure and function predic-
tion, nucleotide sequencing analysis, drug characteristics, 
speech recognition and network consultation, auxiliary 
diagnosis mapping, risk prediction modeling, robot-
assisted surgery and other fields [3] (Fig. 1).
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However, individualized diagnoses and therapeutic 
strategies, such as early screening and diagnosis, func-
tional visualization of key molecular events and targeted 
drugs, are still imperative for lung cancer treatment. New 
technologies such as tumor-assisted diagnosis combined 

with AI, analysis of molecular pathology information, 
prediction of tumor invasion and treatment resistance, 
and multi-omics fusion modeling to predict treatment 
outcomes and prognosis are providing new ideas and 
opportunities for clinicians.

Fig. 1  A The Development History of Artificial Intelligence and Machine Learning. Timeline of the development history of artificial intelligence 
and it’s milestone events of applications in medical care. B A brief timeline of Al in lung cancer immunotherapy prediction. Abbreviation: NSCLC: 
Non-small cell lung cancer; CAD: Computer-aided diagnosis. Figure 1B was created with BioRe​nder.​com

http://BioRender.com
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AI in lung cancer PD‑L1 and TMB prediction
The role of PD‑L1 and TMB in lung cancer immunotherapy
Lung cancer is one of the most common cancers in the 
world with the highest mortality rate (1). Immune check-
point inhibitors (ICIs) targeting PD-1, cytotoxic T-lym-
phocyte-associated protein 4 (CTLA-4) and PD-L1 have 
been widely developed and have shown good efficacy in 
treating non-small cell lung cancer (NSCLC). However, 
only about 30% of patients are eligible for treatment. 
Immune-related adverse events (irAEs) always occurred 
with patients, too. Traditional inspection methods are 
often limited in their ability to achieve expected benefits 
[10, 11].

PD-L1 expression and TMB were the first clinically 
assessed biomarkers. TMB is the total number of non-
synonymous somatic mutations per megabase in the 
coding region of the tumor genome, with a wide range 
of mutations [12]. High TMB is positively associated 
with more tumor-associated neoantigens and improved 
immunotherapeutic efficacy [12]. Whole exome sequenc-
ing (WES) is the gold standard for assessing TMB. Stud-
ies have shown that NSCLC patients with above-median 
WES mutations have longer overall survival (OS) [13]. 
TMB is commonly used as a pan-cancer biomarker to 
identify patients who may benefit from PD-1 therapy, as 
it is a surrogate for tumor neoepitope burden. In addi-
tion, the expert consensus on immunotherapy for lung 
cancer recommends the use of mutational landscapes to 
assess the efficacy of PD-L1 immunotherapy in NSCLC 
[11].

The application of AI and ML in lung cancer PD‑L1 and TMB
According to the National Comprehensive Cancer Net-
work (NCCN) guidelines, the expression status of PD-L1 
protein levels determined by IHC via biopsy is the sole 
clinically approved biomarker for the evaluation of ICI 
therapy [14]. Higher levels of PD-L1 expression are typi-
cally associated with more favorable immunotherapeu-
tic outcomes [15], but this relationship is not necessarily 
positive [16].

PD-L1 values obtained through routine pathology 
reports are lacking in a definitive gold standard and are 
instead crude, subjective, and semi-quantitative [17], 
resulting from gene mutations and sampling site differ-
ences. These factors result in significant inter-observer 
variability and approximately 30% inconsistency in judg-
ments around the cut-off point [18, 19].

Moreover, due to the highly invasive nature of puncture 
biopsies or surgical specimens, which are often sampled 
during a single visit, the results are susceptible to static 
tumor characteristics and intratumoral heterogeneity 
making them less effective in predicting the benefit of 
immunotherapy [20, 21]. Thus, it is crucial to develop 

noninvasive and robust methods for interpreting PD-L1 
expression that can be reviewed multiple times during 
follow-up or to identify alternative biomarkers [12].

The accumulation of patient demographics, imag-
ing, pathology images, laboratory data, medical history, 
sequencing data and other comprehensive information 
furnishes clinicians and statisticians with a substantial 
foundation of big data to analyze and identify the char-
acteristics of people who benefit from ICIs. The utili-
zation of ML to analyze multi-omics data for modeling 
and prediction efficiency and survival status has become 
the most promising development in precision medicine 
(Fig. 2) (Table 1).

Radiomics‑based AI in PD‑L1 and TMB prediction
Radiomics-based AI extracts subtle change features from 
noninvasive radiomic images, quantifying them based on 
the relationship between quantitative imaging and gene 
expression, and combining this with clinical data mode-
ling to predict PD-L1 expression levels [22]. These AI sys-
tems can effectively avoid the invasive nature of biopsies 
and inter-tumor heterogeneity and provide unbiased and 
robust PD-L1 scores with greater clinical reference value 
[14].

Several ML algorithms based on PET/CT imaging have 
been utilized for feature extraction and modeling to fore-
cast PD-L1 expression levels.   the In the three-variable 
linear discriminant model, metabolic parameter fea-
tures from PET/CT images were extracted, achieving  a 
sensitivity of 81% and a specificity of 82% in the test set 
[23]. Although these models are promising in predicting 
strong PD-L1 expression, distinguishing positive PD-L1 
(PD-L1 > 1%) remains challenging. The small-residual-
convolutional-network (SResCNN) was used to examine 
images and clinical data of PET/CT NSCLC patients, and 
a deep learning score (DLS) model was used to predict 
PD-L1 expression levels. This approach has shown signif-
icant improvements in predicting positive and negative 
patients with a receiver operating characteristic curve 
(ROC) = 0.82 and may serve as an alternative to IHC [14].

Although PET/CT can provide more image and para-
metric information, its high cost and technical require-
ments restrict its availability to many patients, making 
it difficult to gather PET/CT image data. But CT images 
are universal, easier to read and can provide compre-
hensive follow-up data. Therefore, there are also many 
studies that  focus on predicting PD-L1 expression 
based on CT images.

Vaidya et  al. [22] utilized the texture and quantitative 
vascular tortuosity (QVT) as the training features in CT 
images of NSCLC patients and then, used an RF classifier 
to forecast progression risk in patients receiving PD-1/
PD-L1 therapy. In another study of 125 NSCLC patients 
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Fig. 2  General process for AI-based PD-1/PD-L1 and TMB prediction. In the modeling process of machine learning, it generally goes through 
the process of feature collection, data preprocess, feature extraction, model establishment, performance evaluation, etc., and finally, obtains a 
prediction model. Abbreviation: WSI: Whole slide image. Created with BioRe​nder.​com. The heatmap was reprinted from Mol Cancer, Jin R, Liu B, Yu 
M, Song L, Gu M, Wang Z, et al. Profiling of DNA damage and repair pathways in small cell lung cancer reveals a suppressive role in the immune 
landscape. 2021;20(1):130, Copyright (2021) [80], licensed under CC BY 4.0 from Springer Nature

http://BioRender.com
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before treatment, the logistic regression model is uti-
lized to predict PD-L1 expression with the best perfor-
mance, with an AUC of 0.85. During the training process, 
researchers used  a ridge regression-based recursive fea-
ture elimination approach to select valuable features by 

manually determining the tumor area and radiomics fea-
tures [24].

Jiang et  al. used a cohort of 399 patients with stage 
I-IV NSCLC to perform tumor segmentation on PET/
CT images and selected primary lesions. They correlated 

Table 1  Machine learning algorithm predicts PD-L1, TMB, TME in lung cancer

PD-L1 Programmed Death Ligand 1, TMB Tumor Mutation Burden, TME Tumor Microenvironment, CT Computer Tomography, RF Random Forests, SResCNN Small 
Residual Product Network, LightGBM Light Gradient Boosting Machine, DL Deep Learning, ML Machine Learning, ICI Immune Checkpoint Inhibitor, WSI Whole Slide 
Image, TIL Tumor Infiltrating Lymphocyte, CNN Convolutional Neural Networks, SVM Support Vector Machine, SMG Significantly Mutated Gene, CNV Copy Number 
Variation, TIME Tumor Immune Microenvironment, OS Overall Survival, pGGO Pure Ground-Glass Opacity

Omics Category Task Secondary task Algorithm Year Description

Radiomics PD-L1 Expression Prognosis RF 2020 [22] Extracting image features from CT images to predict 
PD-L1 expression level and progression risk

Radiomics PD-L1 Expression SResCNN 2021 [14] Using SResCNN to analyze PET/CT images and clinical 
data, using DLS score to predict PD-L1 expression

Radiomics PD-L1 Expression Logistic regression, RF 2020 [25] Extracting features from CT, PET, and PET/CT images to 
model and predict the positive and high expression of 
PD-L1 simultaneously

Radiomics PD-L1 Expression Survive DL 2020 [5] Using deep learning to find CT image features to 
distinguish TMB expression and to predict survival in 
patients treated with ICIs

Pathomics PD-L1/TMB Expression Treatment ML 2023 [29] Extraction of the tumor, mesenchymal, and TIL counts 
from HE-stained images for modeling and assess-
ment of TMB and PD-L1 expression levels and efficacy 
prediction

Multi-omics PD-L1 Treatment ML 2022[30] Combining sequencing data, IHC images, demo-
graphic data and laboratory data to predict the 
efficacy of immunotherapy

Multi-omics PD-L1 Expression Pneumonia LCI-RPV 2023 [20] The LCI-RPV model was developed to predict the ratio 
of PD-L1 expression to pneumonia by collecting CT 
images, CD274 counts and PD-L1 mRNA expression 
data

Multi-omics TMB Expression ML 2022 [31] Combining genomic and epigenetic data to predict 
TMB

Radiomics TME Prognosis Treatment ML 2020 [39] Extracting PET/CT image features to + distinguish 
groups who benefit from immunotherapy

Radiomics TME Expression Treatment ML 2022 [37] Predicting TME by modeling PET/CT image features 
with CD8+T expression data to predict the immune 
status

Radiomics TME Expression Prognosis ML 2022 [38] Extracting pGGO features from CT images combined 
with associated risk genes modelling to predict TME

Pathomics TME/TIL Expression Prognosis CNN 2018 [40] Use CNN to analyze HE images in the database, model 
and predict TME and OS

Pathomics TIL Expression Prognosis CNN 2022 [41] Development of I-score to predict clinical risk using 
CNN analysis ofCD3+ T cell and CD8+T cell densities in 
WSI images

Pathomics TME Prognosis CNN 2020 [42] Improved boundary recognition for WSI images, 
extraction of spatial features modeling prognosis

Pathomics TIL Prognosis Lunit SCOPE IO 2022 [43] Segmentation and quantification of WSI images to 
build the model Lunit SCOPE IO analysis TIL

Multi-omics TIL Prognosis Unsupervised clustering 2022 [44] Extraction of TIME, patient survival data, SMG and CNV 
modeling to analyze TIL

Multi-omics TME Prognosis Treatment ML 2022 [45] Screening gene combinations and modelling to 
predict OS and efficacy

Multi-omics TME Expression K-means, SVM  2022 
[46]

 Screening, modeling, and predicting TIME of gene 
profiles using K-means and SVM
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the expression status of PD-L1 with the features of CT, 
PET, and PET/CT images to build prediction models. The 
results showed that both CT and PET/CT obtained good 
performance, and the prediction model derived from CT 
performed the best, reaching the score of AUCs at 0.97 
and 0.80 for PD-L1 > 1% and PD-L1 > 50% prediction [25]. 
These results indicated that  radiomic-based approaches 
can predict PD-L1 expression accurately by combining 
features. And it deserves further exploration for guiding 
PD-L1 examination during clinical immunotherapy.

Furthermore, combinatorial multi-omics approaches 
were also used. Chen et  al. [20] collected CT images, 
CD274 counts, and PD-L1 mRNA expression data from 
NSCLC patients, and they developed an LCI-RPV model 
to predict the ratio of PD-L1 expression to pneumonia 
with an AUC of 0.7.

A TMBRB model was generated to distinguish the effi-
cacy of ICIs in NSCLC patients by assessing the expres-
sion level of TMB [5].

In conclusion, AI has demonstrated potential in pre-
dicting PD-L1 expression in lung cancer patients in radi-
omics image analysis and modeling (Fig.  2). Combining 
multi-omics data may be the promising direction for its 
further improvement and performance.

Pathology‑based AI in PD‑L1 and TMB prediction
In addition to imaging data, pathological slice images can 
also be used to establish predictive models for PD-L1 and 
TMB [26].

Whole slide image (WSI) technology uses digital patho-
logical scanning systems to convert traditional pathologi-
cal slices into high-resolution images. The fragmented 
images are stitched together into a complete image by 
computers, solving the problems related to preserva-
tion, loss and image fading [27]. WSI also can perform 
preprocessing such as homogenization on digital images. 
Furthermore, this digital method has the advantages of 
high efficiency and is not limited by sequencing. How-
ever, it is still difficult to achieve uniform batch variation 
due to time differences, reagent differences, and staining 
method differences [28].

Currently, the WSI-based AI classification tool "HALO 
AI" has been developed and is widely used in scientific 
research experiments related to tumor immunity. HALO 
AI has undergone supervised ML training of pathologists’ 
marked features and can automatically classify tissues or 
cells on the entire pathological image or evaluate tumor 
areas, stromal areas, non-tumor non-stromal areas, etc. 
HALO AI can generate visual feature reports quickly and 
efficiently.

Besides HALO AI, Rakaee et  al. developed an auto-
mated method based on ML to evaluate the expression 
of TMB and PD-L1 by counting the tumor, stroma, and 

tumor infiltrating lymphocyte (TIL) cells in hematoxylin 
and eosin (HE) stained images. The clinical outcomes of 
NSCLC patients were then linked to construct the model. 
The results showed that the combination of TILs/PD-L1 
(AUC = 0.77) or TMB/PD-L1 (AUC = 0.65) had a bet-
ter ability to predict the response to ICI treatment than 
using single PD-L1 prediction, and this approach may be 
used for accurate treatment [29].

To resist the visual deviation, Liesbeth M Hondelink’s 
group developed a tumor proportion score (TPS) algo-
rithm based on DL using PD-L1 to predict the efficacy of 
immunotherapy. They used WSI image data training of 
patients diagnosed with stage IV NSCLC, and the results 
showed more than 75% consistency with the reference 
score and the judgment of the pathologist. This algorithm 
can be used as a scoring assistant [19].

Due to the correlation between PD-L1 score and 
immune benefit, most models based on pathological 
slides can predict the efficacy of immunotherapy or the 
survival time of patients via predicting PD-L1 and TMB.

Multi‑omics‑based AI in PD‑L1 and TMB prediction
Byeon et  al. [30] presented a model to anticipate the 
efficacy of immunotherapy, for instance, PD-1/PD-L1, 
by integrating demographic data, laboratory test data, 
sequencing data, and IHC images.

To predict TMB, scholars segregated adenocarcinoma 
patients from The Cancer Genome Atlas (TCGA) based 
on their TMB levels and utilized the differential mRNAs, 
miRNAs and Methylated CpG sites as prognostic fea-
tures. They established a TMB prediction model using 
ML methods, which yielded an AUC of 0.895 in the vali-
dation cohort. This model can be validated using quan-
titative real-time-polymerase chain reaction (qRT-PCR), 
thus replacing traditional WES and circumventing cer-
tain conventional limitations [31]. Meanwhile, the RF 
classifier was used to train the model, and the number 
of frameshift mutations and other features are obtained 
by the public anti-PD-1 dataset. The results demon-
strate that the integrated feature model’s prediction per-
formance is superior to that of a single TMB [32]. Such 
studies have shown that mutations in oncogenes relative 
to TMB levels disproportionately modulate anti-PD-1 
responses. Perhaps while optimizing the algorithm, 
integrating other biomarkers is also an effective way to 
improve the performance of the model.

TMB is also independent of TME which includes quan-
titative values of TPS, stromal CD8+ TIL’s density, and 
stromal Foxp3+ TIL density, while smoking, serum CEA 
(sCEA), etc., may act as independent predictors of TMB 
[33].
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The application of AI and ML in lung cancer TME 
prediction
TME comprises a complex interaction of tumor cells, 
immune cells, cancer-associated fibroblasts (CAFs), sign-
aling molecules and extracellular matrix components. 
The immunosuppressive TME in lung cancer has been 
shown to promote tumorigenesis [34, 35].

WSI can facilitate TME evaluation. Most models can 
analyze morphological features of cells and structures in 
tissues by the processes such as image segmentation, fea-
ture extraction and scoring. The higher percentage of TIL 
in TME is a favorable prognostic factor for patients’ out-
comes, whereas features such as angiogenesis are adverse 
prognostic factors [17]. Moreover, there is compelling 
evidence to suggest that the spatial distribution of lym-
phocytes in TME (central versus infiltrating margins) is a 
highly predictive factor of cancer prognosis [36]. There-
fore, leveraging AI to score TME and TILs through image 
analysis and modeling has significant research value and 
broad application prospects in predicting the efficacy of 
tumor immunotherapy (Fig. 3) (Table 2).

Radiomics‑based AI in TME prediction
In prior investigations about NSCLC, radiomics images 
have been implemented to anticipate alterations in 
tumor-infiltrating CD8+ T cell levels, with the aim of 
distinguishing patients who would benefit from PD-L1 
therapy. Such endeavors have revealed the potential of 
radiomics in predicting TME [31].

Understanding the individual differences in TME can 
aid in the screening of populations who may respond 
to immunotherapy. Researchers have collected baseline 
PET/CT radiomics data and CD8 expression data from 
tumor specimens of 221 NSCLC patients. They employed 
ML models to predict the TME phenotype, thus ascer-
taining the immune status of NSCLC. This constitutes 
one of the several attempts to achieve noninvasive TME 
prediction through imaging-clinical joint models [37].

Presently, the utilization of CT scans for the early 
detection of lung cancer in high-risk groups is being 
widely advocated. Ground-glass opacity (GGO) has been 
identified as an imaging characteristic of early lung can-
cer. Although the corresponding pathological features 
do not meet surgical criteria, the diagnostic potential of 

Fig. 3  AI-based lung cancer TME prediction. Abbreviation: WSI: Whole slide image. Created with BioRe​nder.​com

http://BioRender.com
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GGO for early-stage lung cancer cannot be disregarded. 
Consequently, a team of researchers has constructed a 
15-gene risk signature related to pure ground glass opac-
ity (pGGO) through transcriptome analysis. They have 
utilized this signature to predict the prognosis of early-
stage lung adenocarcinoma (LUAD) and to investigate 
the immune microenvironment of GGO. The predic-
tive ability of this signature for patients with early-stage 
adenocarcinoma has been verified in TCGA and Gene 
Expression Omnibus (GEO) datasets [38].

Many studies of similar nature are currently emerg-
ing, and the algorithms and performance of the mod-
els are being continuously improved [39]. These studies 
substantiate the promising future of radiomics in TME 
prediction.

Pathology‑based AI in TME prediction
Researchers use both authentic cases and HE stained 
images in databases to train models. Previous research 
endeavors incorporated HE images of thirteen cancer 
types from TCGA in order to map TILs using CNN. 
Researchers try to elucidate the local spatial structure in 
TME and its association with OS [40].

By assessing the density of CD3+ T cells and CD8+ T 
cells in the tumor area through WSI, Lin et al. [41] estab-
lished an automatic assessment model of I-score cell 
density that can be utilized for clinical risk prediction, 
demonstrated that a high immune infiltration rate of 
TME was related to a favorable prognosis of NSCLC.

In a separate investigation by Wang et  al., research-
ers attempted to address the unclear boundaries in con-
ventional pathological image recognition by refining the 
method for identifying cell boundaries. Then, they pro-
ceeded to segment and classify cell nuclei, while repre-
senting blood vessels and necrosis using images of red 
blood cells and nuclear lysis. Finally, 48 features related 
to the  cellular spatial organization were extracted and 

combined with the National Lung Screening Trial 
(NLST) dataset to develop a prognostic model, which 
was validated in TCGA. It was demonstrated that the 
predicted survival rate of the high-risk group was signifi-
cantly lower than that of the low-risk group (p = 0.001) 
[42].

Park et al. [43] developed the TIL spatial analysis model 
Lunit SCOPE IO, which can segment and quantify tissue 
components in WSI images and was successfully utilized 
to predict the benefit of ICIs in patients with advanced 
NSCLC. Presently, numerous studies have used patho-
logical image analysis to demonstrate the correlation of 
TMB, CD8+ T cells, regulatory T (T-reg) cells, and TILs 
with PD-1 therapy [29].

Multi‑omics‑based AI in TME prediction
Just like PD-L1 and TMB, the compositional changes of 
TME are influenced by various factors [44]. Therefore, 
several studies have focused on multi-omics to predict 
TME.

In a recent study, experts used unsupervised cluster 
analysis with tumor immune microenvironment (TIME) 
data and survival data of 1906 adenocarcinoma patients. 
The resulting TIME score scoring model is characterized 
by significantly mutated genes (SMG), copy number vari-
ation (CNV), and cancer stemness. This model distin-
guishes immune infiltration and effectively predicts the 
sensitivity of immunotherapy and the accuracy of prog-
nosis [44].

As is known to us, immunotherapy resistance may 
relate to dysregulated lactic acid metabolism that inhibits 
dendritic cell (DC) maturation, thereby minimizing T cell 
infiltration. A study screened a gene map associated with 
lactate metabolism with ML and verified the effectiveness 
of the seven screened genes related to lactate metabolism 

Table 2  Summary of machine learning methods in lung cancer immunotherapy prediction

CT Computer Tomography, PET/CT Positron emission tomography/Computer Tomography, DT Decision Trees, BT Boosting Tree, RF Random Forests, SVM Support 
Vector Machine, GLM Generalized Linear Model, ANN Artificial Neural Network, CNN Convolutional Neural Network, MLP Multilayer Perceptron, XGBoosted eXtreme 
Gradient Boosting

Material Task Secondary task Algorithm

CT, PET/CT Prognosis Efficacy of immunotherapy DT, BT, RF, SVM, GLM, ANN, CNN

Genomics Treatment response Survive RF, MLP, unsupervised clustering

Proteomics Survive Iterative unsupervised machine learning

Microbiology Survive Treatment response RF, MLP

Blood Survive Efficacy of immunotherapy RF, MLP, SVM, elastic network, partial least 
squares discriminant analysis, Gaussian process 
classifier

Blood irAE ANN

Database irAE XGBoosted
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in predicting survival and immunotherapy efficacy in a 
cohort of adenocarcinoma patients [45].

Costimulatory molecules play a vital role in activat-
ing immune cells. However, the characterization of 
the many co-stimulatory molecular genes (CMGs) in 
LUAD is poorly understood. Thus, some scholars esti-
mated the composition of stroma and immune cells in 
malignant tumor tissues through K-means clustering. 
They used SVM to screen out the CMG (CD80, LTB 
and TNFSF8) as the final markers to predict the TIME 
status of patients, achieving the purpose of predicting 
the effect of immunotherapy [46]. IHC verification of 
16 specimens revealed a significant positive correlation 
between the screened biomarkers and the response to 
immunotherapy.

Taken together, these studies underscore the potential 
value of genomics in predicting TME and offer a promis-
ing direction for future research.

The applications of AI and ML in lung cancer 
immunotherapy prediction and adverse effects
The prediction of therapy efficacy can be classified into 
direct predictions and indirect predictions. Common 
approaches such as radiomics, pathomics, and genom-
ics can indirectly predict the relationship between 
PD-L1, TMB, and other biomarkers with survival and 
therapy efficacy. Conversely, proteomics and laboratory 
inspection data are mainly utilized for direct predictions 
(Fig. 4).

Radiomics‑based AI in immunotherapy prediction
Similar to the utilization of radiomics for the predic-
tion of other biomarkers, when utilizing image data to 
predict the efficacy of immunotherapy, the majority of 
studies rely on feature extraction, amalgamated with 
immunotherapy data, and modeled with a range of ML 
algorithms. Although adjuvant therapy such as immu-
notherapy can control the progression of lung cancer 
patients to a large extent and prolong patients’ survival 
time with subsequent radiotherapy, chemotherapy, and 
surgery, there are still many patients who do not benefit 
from immunotherapy or are not suitable for surgery.

Clinical benefit such as progression-free survival 
(PFS) is the top predictive value for radiomics-based AI 
models. When utilizing durable clinical benefit (DCB, 
PFS ≥ 6 months) and non-DCB (NDCB, PFS < 6 months) 
as the endpoints to conduct predictive models, research-
ers found that weighted radiomics signatures of multi-
ple intrapulmonary lesions have the potential to predict 
long-term PFS benefit in PD-1/PD-L1 immunotherapy 
candidates, which aggregates performance across all 
models and yields excellent results (AUCs: 0.75–0.82) 
[47].

Additionally, different algorithms were used to predict 
the immunotherapy efficiency or response rate. Tang 
et al. extracted image features from 422 NSCLC patients, 
assessing radiological parameters using DT, boosting 
tree (BT), RF, SVM, generalized linear model (GLM), 
and deep learning artificial neural network (DL-ANN). 
An AUC > 0.7 result was obtained for the prognostic 
performance of omics features. RF achieved an excel-
lent performance of AUC = 0.938 among the models. 
This comparative study demonstrates the value of ML 
algorithms in the prediction process of immunotherapy. 
It is believed that with the iterative update of modeling 
methods, AI-assisted clinical decision-making will even-
tually become a reality [48]. Another study focuses on 
CT-based short-term follow-up radiomics features, uti-
lizing an SVM model to predict the response to immuno-
therapy and PFS in patients with advanced NSCLC [10].

Moreover, Gong et  al. used short-term follow-up CT 
images of patients for radiological histological features 
extraction, and performed a SVM model to predict  the 
response of advanced NSCLC to immunotherapy and 
the PFS of patients [49]. Tian et al. analyzed a cohort of 
939 patients with IIIB-IV NSCLC using a deep convo-
lutional neural network (Deep CNN) algorithm to train 
the model "PD-L1ES". The test set results showed that 
PE-L1ES was able to predict high PD-L1 expression (PD-
L1 ≥ 50%) with the AUC = 0.76. Meanwhile,  a low PD-
L1ES score was associated with the improvement of PFS 
(p = 0.010). When features commonly used in clinical 
prediction models such as age, gender, smoking history, 
and family history of malignant tumors are added to this 
prediction model, it can better predict the response of 
patients to immunotherapy and improve the stratification 
ability of the model [50]. The results showed that PD-L1 
classification with DL features and quantitative radiom-
ics features are complementary, which may be one of 
the directions to optimize the model performance in the 
future. Follow-up studies can incorporate more compre-
hensive immunotherapy patients’ information to improve 
the performance of the model in predicting the effect of 
immunotherapy, too.

Furthermore, the tumor and tumor organismal envi-
ronment (TOE) features of pre-treatment CT images 
were extracted. SVM was used to make a risk stratifica-
tion model. AUC = 0.869 was achieved in the validation 
set, which assists in predicting the differences in treat-
ment response and survival outcomes in patients with 
standard locally advanced non-small cell lung cancer 
(LANSCLC) after radical concurrent chemoradiotherapy 
[51]. Moreover, Yan’s team developed a detection model 
from the LUNA16 public database using DL. They per-
formed detection on the Anti-PD-1_Lung dataset, com-
paring it  with the effectiveness of immunotherapy, and 
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Fig. 4  A Methods of lung cancer immunotherapy prediction. The application of AI-based technologies in lung cancer immunotherapy can process 
radiomics images, pathology images, genetics information, epigenetic information, microbiology information, hematology values, proteomics 
information, multi-omics data and so on. AI can use diverse data to predict immunotherapy benefits in lung cancer patients. B Al predicts lung 
cancer immunotherapy adverse effects. Abbreviation: irAEs: immune-related adverse events; BMI: Body mass index; ECOG PS: Eastern Cooperative 
Oncology Group performance status; NLR: Neutrophil to lymphocyte ratio; ALB: Albumin; PLR: Platelet-to-lymphocyte ratio; TSH: Thyroid-stimulating 
hormone; LDH: Lactate dehydrogenase. Created with BioRe​nder.​com

http://BioRender.com
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ultimately demonstrating the ability of the model to pre-
dict immunotherapy in lung cancer [10]. Simultaneously, 
Mu et  al. [4] collected PET-CT images before receiving 
ICI treatment, extracted features, and modeled  them to 
predict clinical outcomes such as OS and PFS of patients.

In general, the research on radiomics to predict lung 
cancer immunotherapy efficacy is very popular and vari-
ous algorithm types based on various characteristics have 
shown good model performance.

Genomics‑based AI in immunotherapy prediction
Changes in genetic material, epigenetic information, 
oncogenic and tumor suppressor signals, and transcrip-
tion factors in tumors also influence the expression of 
PD-L1 in addition to TME. A reliable assessment of treat-
ment efficacy requires accurate characterization of these 
compositions [30].

Immune regulation-related gene profiles in patient 
biopsy samples were analyzed by Wiesweg et  al. [52] to 
develop an ML model to predict the impact of genomic 
information and TME on the therapeutic response for IV 
NSCLC.

DNA methylation (DNAm) or RNA methylation can 
serve as an epigenetic marker to predict cancer recur-
rence risk at a molecular level. ML algorithms were used 
to identify 4 CpG methylation markers associated with 
cell proliferation markers, somatic changes, TMB and 
DNA damage response (DDR) genes in a recent study. 
These markers were combined with clinical stage and 
survival data to construct a risk score model. And the 
model effectively predicted recurrence-free survival and 
prognosis of NSCLC patients (p = 0.0002). This 4-DNAm 
marker panel was useful for NSCLC prognosis, treat-
ment decision-making and assessment of treatment 
response [53]. Similarly, Shang et al. developed MeImmS, 
a DNAm scoring system that accounts for differences in 
the methylation status of 8 CpG islands. They analyzed 
its correlation with T cell exhaustion, immune regula-
tion, and immune cell activation. The researchers also 
confirmed that the combination of DNA methyltrans-
ferase inhibitors (DNMTi) and ICIs has a favorable effect 
on the outcome of NSCLC patients [54]. m6A-mediated 
immune genes were also developed in a prediction model 
by various ML algorithms. The model demonstrated its 
applicability to predict survival and distinguish patients’ 
TME, genomic background, chemotherapy response and 
immunotherapy response propensity. It shows the poten-
tial of m6A modification in changing the TME of LUAD, 
participating in tumorigenesis as well as predicting effi-
cacy [55].

Acetylation is also a common and reversible epigenetic 
alteration that plays a critical role in the initiation and 

progression of malignant tumors. However, the prog-
nostic value of acetylation-related genes in early-stage 
LUAD remains unclear. Some scholars collected acety-
lation-related genes in the transcriptome of early LUAD 
patients in the TCGA database to  try to identify the 
important biomarkers of early LUAD recurrence through 
differential analysis and protein–protein interaction net-
work construction. Finally, they concluded that the two 
gene signatures of RBBP7 and YEATS2 can be used to 
predict the recurrence-free survival of early LUAD [56].

Currently, many studies attempt to filter gene combina-
tions [57, 58], transcriptional profile information, blood 
microRNA, etc., as features for modeling. And these 
studies have exhibited the predictive performance not 
inferior to existing markers.

Proteomics‑based AI in immunotherapy prediction
Proteomics is an intuitive biomarker distinct from 
genomics for the reason that expressed proteins undergo 
post-translation modifications and interact directly with 
the host immune system and TME. Recently, mass spec-
trometry (MS) analysis of serum samples has been uti-
lized to characterize independent proteome features and 
develop models for predicting clinical outcomes and side 
effects of patients [59].

Over 1,600 autoantibody biomarkers in serum were 
trained through an iterative unsupervised ML algorithm. 
Ultimately 13 were selected as features for modeling. The 
results showed that high expression of these features was 
associated with an overall 5-year survival rate of 7.6% in 
lung cancer patients, further highlighting the potential of 
serum proteomics in predicting survival [60].

Microbiology‑based AI in immunotherapy prediction
In recent years, research pertaining to the gut micro-
biome has garnered significant attention. Numerous 
studies have explored the correlation between the gut 
microbiome and the effectiveness of immunotherapy. 
However, there exists a dearth of models that predict the 
correlation between them.

Liu et al. conducted an analysis of gut microbiome sam-
ples from 79 NSCLC patients who underwent immuno-
therapy. The study utilized RF and multilayer perceptron 
(MLP) neural network models to predict PFS. Notably, 
the results indicated that two prediction models based on 
function rather than classification were both AUC ≥ 0.95. 
These outcomes suggest that the models can effectively 
predict the potential benefits of immunotherapy for 
NSCLC patients. Furthermore, it highlights the promis-
ing future of gut microbiome analysis in predicting can-
cer immunotherapy outcomes [52].
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Blood biomarkers‑based AI in immunotherapy prediction
Due to the intricate mechanisms governing anti-tumor 
immune responses, conventional biomarkers are inad-
equate in dynamically illustrating tumor-immune sys-
tem interactions and identifying patients who would 
benefit from ICI therapy [61]. Consequently, there is an 
urgent need to develop new markers. Recent research 
has focused on mining simple and readily available lab-
oratory blood data. Some researchers collected medi-
cal history and laboratory examination data of NSCLC 
patients receiving ICI treatment and utilized various ML 
algorithms to model and screen predictive feature mark-
ers. Among these, the neutrophil to lymphocyte ratio 
(NLR) has exhibited predictive value for disease control 
rate (DCR) and 6-month survival in multiple studies [62, 
63]. In addition to directly using routine inspection data, 
studies have employed techniques such as MS to obtain 
phenotypic characteristics of immune cells. By applying 
algorithms such as RF, partial least squares discriminant 
analysis, MLP and elastic network, scholars have dis-
covered that B cell-related phenotypes can be used as 
features to distinguish healthy, responders and  baseline 
non-responders and predict the ability to respond to 
immunotherapy [64].

Furthermore, another study employed 10 ML algo-
rithms to screen data from three NSCLC immunotherapy 
cohorts for TMB, intratumoral heterogeneity and loss of 
heterozygosity for human leukocyte antigen. By combin-
ing these three genomic biomarkers using the SVM-poly 
method, a model was constructed to predict DCB, with 
the model exhibiting an AUC of 0.78 [61]. Expanding the 
training samples in such models is expected to enable the 
development of additional biomarkers, providing more 
personalized treatment options and promoting precision 
medicine.

AI in lung cancer immunotherapy adverse effects 
prediction
Approximately one-third of patients who received immu-
notherapy experienced irAEs [65]. The progression of 
irAEs is the primary reason for discontinuing immu-
notherapy. Meanwhile, irAEs are a significant factor 
that affects the prognosis of patients [66, 67]. Currently, 
there are no biomarkers that can predict the early occur-
rence of irAEs, and few studies have been conducted in 
this regard. Therefore, creating a painless, accurate and 
standardized prediction method is a considerable chal-
lenge that requires further research [68].

Neural network models were utilized to predict skin 
irAEs caused by PD-L1 therapy considering variables 
such as tumor type, treatment drug, age, autoimmune 
history, derived NLR, lactate dehydrogenase, albumin, 

body mass index, Eastern Cooperative Oncology Group 
performance status (ECOG PS) and tumor M-stage fea-
tures. The results demonstrated that ML has a high sen-
sitivity and ability to predict cutaneous irAEs in the early 
stages of immunotherapy, with a positive predictive value 
(PPV) of 76.5% (± 10.5%), a negative predictive value 
(NPV) of 79.4% (± 11.9%), a sensitivity of 85.3% (± 8.8%), 
and a specificity of 67.6% (± 15.8%) [67].

Cardiac irAEs could be deadly. XGBoosted deci-
sion tree was used to predict the probability of cardiac 
adverse events in patients receiving PD-1 or PD-L1 
therapy by modeling 356 basic medical history informa-
tion as potential risk factors. In this study, 4,960 patients 
receiving PD-1/PD-L1 therapy were included, among 
whom 418 experienced cardiac events. The final model 
showed that age, corticosteroids, heart disease history 
drugs, extreme body weight, low lymphocyte percentage 
and high neutrophil percentage were associated with the 
occurrence of cardiac adverse events, but the model had 
limited predictive value with an AUC of 0.65 [69].

To predict adverse events in atezolizumab-treated 
advanced NSCLC patients, seven ML methods were 
employed to explore the role of 21 blood markers. 
XGBoost and LASSO methods performed the best, and 
the AUC of XGBboost for 10 markers was 0.692. How-
ever, even after narrowing down to the combination of 
C-reactive protein (CRP), platelet-to-lymphocyte ratio 
(PLR), and thyroid-stimulating hormone (TSH), the pre-
dictive effect was still not satisfactory, despite the high 
consistency between the training set and the test set [68].

It is evident that the results of irAE prediction studies 
have been unsatisfactory, and the biomarkers screened 
out by ML are just primarily related to adaptive immu-
nity, inflammatory state, liver and thyroid function. 
Although these indicators correspond to clinical symp-
toms such as fatigue, vomiting and elevated transami-
nases, their abnormality already signifies that irAEs are in 
progress, rendering them of little predictive value. There-
fore, exploring inflammatory pathway targets of different 
types of irAEs from a mechanistic perspective and real-
izing early prediction and targeted therapy of irAEs are 
future research directions (Fig. 4).

Discussion and prospect
Although using ML to predict clinical information is cur-
rently a hot research topic, it is still in its early stages. It’s 
an innovative and cooperative attempt between com-
puter experts and clinical doctors which has not yet 
been fully established. Due to practical reasons such as 
the  non-sharing of cohort data and insufficient sample 
sizes, the models can only achieve good performance in 
internal validation sets, making it difficult to generalize 
and practice in real-world clinics.
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During the pathology images training process, super-
vised learning requires pathologists to manually label 
features, which is difficult to apply to the entire gigapixel 
image. Therefore, it is necessary to optimize the DL 
framework and weaken the supervision mechanism to 
achieve high-throughput sample training [70].

Currently, many predictive models based on ML algo-
rithms have emerged due to the development and pop-
ularization of digital images worldwide. Each model 
or algorithm has its strength and weakness (Table  3). 
However, the predictive performance of a single marker 
is mostly not ideal. Therefore, it is important to com-
prehensively use various features such as PD-L1, TMB, 
TME, miRNA, immune genes, gut microbiome, radiom-
ics, baseline data and other omics features to continu-
ously refine and improve the algorithms. With the aid of 
AI, doctors and patients can receive personalized deci-
sion-making assistance.

With the development of lung cancer screening, 
accurately judging the benign or malignant character-
istics of pulmonary nodules or ground-glass opacities 
is the key point for early screening. Even experienced 
radiologists are also prone to misdiagnosis. As a 

computer-aided diagnosis (CAD) system developed 
earlier and with better performance, the CT-assisted 
image reading tool has been already applied in some 
hospitals to identify, classify and  qualitatively evalu-
ate the malignancy of pulmonary nodules and predict 
treatment response through AI [71]. Its auxiliary diag-
nostic value has been clinically recognized.

In the future, AI-based radiomics may solve the lim-
ited predictive performance of the model through code 
and case sharing to increase the universality of the 
model and the possibility of entering into clinical appli-
cations. At the same time, the application of radiomics 
images is no longer limited to predicting the expression 
levels of immunotherapy biomarkers. At present, there 
are a few studies that  combined deep learning models 
with reinforcement learning algorithms to improve and 
optimize algorithms, using 3D reconstructed images 
to accurately locate, segment, and classify tumors [72]. 
Perhaps in the future, AI-based radiomics can not only 
use images of diagnosed lung cancer patients for cura-
tive effect evaluation and survival prediction but also 
analyze image abnormalities in physical examination 

Table 3  Comparison of different algorithms in lung cancer immunotherapy prediction

DenseNet Densely Connected Convolutional Network, SResCNN Small Residual Product Network, CNN Convolutional Neural Network, TMB Tumor Mutation Burden, 
PD-L1 Programmed Death Ligand 1, RF Random Forests, ML Machine Learning, DNN Deep Neural Networks, ANN Artificial Neural Network, MLP Multilayer Perceptron, 
SVM support vector machine

Model Algorithm Category Strengths Weaknesses Example

DenseNet CNN Radiomics for TMB and survive 
prediction

Available for better performance 
with fewer parameters and com-
putational costs by dense connec-
tion and feature reuse

Worse performance than other 
algorithms under the same video 
memory usage

[5]

SResCNN CNN Radiomics for PD-L1 and survive 
prediction

Alleviate the network degradation 
problem caused by layer deepen-
ing and increased the generaliza-
tion ability of the network

Network layer redundancy
Insufficient effective depth

[14]

RF ML Radiomics for PD-L1 and survive 
prediction

Less likely to overfit
Suitable for uneven data sets with 
missing variables
Easier to explain
Higher accuracy

The larger the number of decision 
trees, the higher memory usage. 
Not suitable for situations with 
high real-time requirements

[22]

Lunit SCOPE IO DNN Pathology images for TIL and 
prognosis prediction

Extracting richer data features and 
larger capacity

Training process is difficult: gradi-
ent explosion, gradient disappear-
ance, etc.

[43]

LCI-RPV LR Multi-omics for PD-L1 and Pneu-
monia prediction

Suitable for linear variables
Easier to explain

Difficult to process nonlinear data 
or polynomial regression with cor-
relation between data features

[20]

MLP ANN Gut microbiome for survive predic-
tion

Suitable for nonlinear model and 
real-time learning process
Stronger elf-learning function

Slower training rate
Difficult to determine the param-
eters

[52]

SVM ML Combined biomarkers for effi-
ciency prediction

Suitable for high-dimensional 
space
High accuracy
Not suffer multicollinearity
Flexible selection of kernels for 
nonlinear correlation

Inefficient to train
Not suitable for plenty training 
examples

[46]
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populations, thus making a better function in lung can-
cer’s early screening and early diagnosis [73].

For the challenge of AI in lung cancer pathological 
images, pathologists are required to label more regions 
and more types of massive images for AI to optimize per-
formance [74]. However, for disease changes that cannot 
be qualitatively described, AI still cannot replace manual 
diagnosis.

While using Formalin-Fixed Paraffin-Embedded 
(FFPE) sections for routine immunohistochemical stain-
ing to give a diagnosis, some researchers have tried to 
push multiplex immunohistochemistry (mIHC) stain-
ing into the clinic, using automated equipment to obtain 
images of the co-expression of tumor cells and immune 
cells. Then, the immune infiltration situation is recon-
structed in 3D and the multi-dimensional data are ana-
lyzed by AI, which can better evaluate the TIL status of 
patients and predict the benefit ratio of immunotherapy. 
However, this technology has not been widely promoted 
from the scientific research level to clinical trials, and 
there is still a lack of unified norms and expert consensus. 
At the same time, due to the high cost and high technical 
requirements of pathological image scanners and analy-
sis software, the path for AI to replace pathologists for 
the diagnosis will be even longer.

However, AI has made some progress in the early 
diagnosis and screening of lung cancer, pathologi-
cal classification, immunotherapy efficacy and prog-
nosis evaluation. It is believed that with the deepening 
of research, AI will bring more benefits to lung cancer 
patients in the future.

Although ICIs have made great breakthroughs in can-
cer treatment, the low proportion of beneficiaries based 
on PD-1/PD-L1/CTLA-4, the high proportion of irAEs, 
and the high cost of treatment are the main problems 
to be solved urgently in current immunotherapy limited 
[75]. AI can not only predict the beneficiary population 
and reduce the proportion of adverse events through the 
joint use of markers but also use big data to develop new 
types of markers. Clarifying the mechanism of irAE is 
also the key to solving the problem. At the same time, it 
needs to be ascertained whether the poor effect of immu-
notherapy is related to the drug delivery approaches [76, 
77].

Meanwhile, the development of new ICIs is imperative. 
The number of approved cancer treatment drugs based 
on ICIs has been increasing, and it is also an enduring 
research hotspot [78]. Immunotherapy drugs targeting 
T cell immunoreceptors with immunoglobulin and ITIM 
domains, the lymphocyte activation gene 3, T cell immu-
noglobulin, mucin-domain 3 and immune checkpoint 
siglec-15 are in clinical trials or under development [74, 
79].

To conclude, AI combines, disassembles, and analyzes 
data in a "black box" manner, showing great promise in 
the predictive application of cancer immunotherapy. It is 
believed that with the rapid development of science and 
technology, more people will benefit from the application 
of artificial intelligence in medical treatment.

Abbreviations
ML	� Machine learning
AI	� Artificial intelligence
PD-L1	� Programmed death-ligand 1
PD-1	� Programmed cell death protein 1
TMB	� Tumor mutation burden
TME	� Tumor microenvironment
DL	� Deep learning
ICB	� Immune checkpoint blockade
UL	� Unsupervised learning
SSL	� Semi-supervised learning
KNN	� K-nearest neighbor
LR	� Linear regression
SVM	� Support vector machine
DT	� Decision tree
RF	� Random Forest
PCA	� Principal component analysis
CV	� Computer vision
NLP	� Natural language processing
CT	� Computer tomography
PET/CT	� Positron emission tomography/computer tomography
IHC	� Immunohistochemistry
ANN	� Artificial neural network
CVPR	� Conference on computer vision and pattern recognition
CNN	� Convolutional neural network
DNN	� Deep neural network
ICI	� Immune checkpoint inhibitor
CTLA-4	� Cytotoxic T lymphocyte-associated antigen-4
NSCLC	� Non-small cell lung cancer
irAEs	� Immune-related adverse events
WES	� Whole exome sequencing
OS	� Overall survival
NCCN	� National comprehensive cancer network
NB	� Naive Bayes
AUC​	� Area under the curve
SResCNN	� Small-residual-convolutional-network
DLS	� Deep learning score
ROC	� Receiver operating characteristic curve
QVT	� Quantitative vessel tortuosity
WSI	� Whole slide image
TIL	� Tumor infiltrating lymphocyte
TPS	� Tumor proportion score
TCGA​	� The Cancer Genome Atlas
qRT-PCR	� Quantitative real-time-polymerase chain reaction
sCEA	� Serum CEA
CAF	� Cancer-associated fibroblast
GGO	� Ground-glass opacity
pGGO	� Pure ground-glass opacity
LUAD	� Lung adenocarcinoma
GEO	� Gene Expression Omnibus
NLST	� National Lung Screening Trial
T-reg cells	� Regulatory T cells
TIME	� Tumor immune microenvironment
SMG	� Significantly mutated gene
CNV	� Copy number variation
DC	� Dendritic cell
CMG	� Costimulatory molecular gene
PFS	� Progression-free survival
DCB	� Durable clinical benefit
NDCB	� Non-durable clinical benefit



Page 16 of 18Gao et al. Journal of Hematology & Oncology           (2023) 16:55 

BT	� Boosting tree
GLM	� Generalized linear model
DL-ANN	� Deep learning artificial neural network
Deep CNN	� Deep convolutional neural network
TOE	� Tumor organismal environment
LANSCLC	� Locally advanced non-small cell lung cancer
DNAm	� DNA methylation
DDR	� DNA damage response
DNMTi	� DNA methyltransferase inhibitor
MS	� Mass spectrometry
MLP	� Multilayer perceptron
NLR	� Neutrophil to lymphocyte ratio
DCR	� Disease control rate
ECOG PS	� Eastern Cooperative Oncology Group performance status
PPV	� Positive predictive value
NPV	� Negative predictive value
CRP	� C-reactive protein
PLR	� Platelet-to-lymphocyte ratio
TSH	� Thyroid-stimulating hormone
CAD	� Computer-aided diagnosis
FFPE	� Formalin-fixed paraffin-embedded
mIHC	� Multiplex immunohistochemistry

Author contributions
Concept and design were contributed by TM. Data analysis and interpretation 
were contributed by QG. Manuscript writing, was contributed by all authors. 
Final approval of manuscript was contributed by all authors. All authors read 
and approved the final manuscript.

Funding
This study was supported by the Beijing Xisike Clinical Oncology Research 
Foundation (China) (Grant No. Y-HR2020MS-0156 to T.M.).

Availability of data and materials
All data are available in the main text or the supplementary materials.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors have agreed to publish this manuscript.

Competing interests
The authors declare no competing interests.

Received: 28 March 2023   Accepted: 17 May 2023

References
	1.	 Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer 

J Clin. 2022;72(1):7–33.
	2.	 Goldenberg SL, Nir G, Salcudean SE. A new era: artificial intelligence and 

machine learning in prostate cancer. Nat Rev Urol. 2019;16(7):391–403.
	3.	 Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. 

Gastrointest Endosc. 2020;92(4):807–12.
	4.	 Prelaj A, Boeri M, Robuschi A, Ferrara R, Proto C, Lo Russo G, et al. Machine 

learning using real-world and translational data to improve treatment 
selection for NSCLC patients treated with immunotherapy. Cancers. 
2022;14(2):435.

	5.	 He B, Dong D, She Y, Zhou C, Fang M, Zhu Y, et al. Predicting response 
to immunotherapy in advanced non-small-cell lung cancer using 
tumor mutational burden radiomic biomarker. J Immunother Cancer. 
2020;8(2):e000550.

	6.	 Wong D, Yip S. Machine learning classifies cancer. Nature. 
2018;555(7697):446–7.

	7.	 Jonsson A. Deep reinforcement learning in medicine. Kidney Dis. 
2019;5(1):18–22.

	8.	 Elemento O, Leslie C, Lundin J, Tourassi G. Artificial intelligence in cancer 
research, diagnosis and therapy. Nat Rev Cancer. 2021;21:747–52.

	9.	 Shao F, Shen Z. How can artificial neural networks approximate the brain? 
Front Psychol. 2022;13:970214.

	10.	 Yan W, Tang X, Wang L, He C, Cui X, Yuan S, et al. Applicability analysis 
of immunotherapy for lung cancer patients based on deep learning. 
Methods. 2022;205:149–56.

	11.	 Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtstrater C, Lahrmann U, et al. 
Accurate detection of tumor-specific gene fusions reveals strongly immu-
nogenic personal neo-antigens. Nat Biotechnol. 2022;40(8):1276–84.

	12.	 Strickler JH, Hanks BA, Khasraw M. Tumor mutational burden as a predic-
tor of immunotherapy response: is more always better? Clin Cancer Res. 
2021;27(5):1236–41.

	13.	 Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Ana-
plastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl 
J Med. 2010;363(18):1693–703.

	14.	 Mu W, Jiang L, Shi Y, Tunali I, Gray JE, Katsoulakis E, et al. Non-invasive 
measurement of PD-L1 status and prediction of immunotherapy 
response using deep learning of PET/CT images. J Immunother Cancer. 
2021;9(6):e002118.

	15.	 Chowell D, Yoo SK, Valero C, Pastore A, Krishna C, Lee M, et al. Improved 
prediction of immune checkpoint blockade efficacy across multiple 
cancer types. Nat Biotechnol. 2022;40(4):499–506.

	16.	 Li H, van der Merwe PA, Sivakumar S. Biomarkers of response to PD-1 
pathway blockade. Br J Cancer. 2022;126(12):1663–75.

	17.	 Han H, Silverman JF, Santucci TS, Macherey RS, d’Amato TA, Tung MY, et al. 
Vascular endothelial growth factor expression in stage I non-small cell 
lung cancer correlates with neoangiogenesis and a poor prognosis. Ann 
Surg Oncol. 2001;8:72–9.

	18.	 Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. 
Five-year outcomes with pembrolizumab versus chemotherapy for 
metastatic non-small-cell lung cancer with PD-L1 tumor proportion score 
≥ 50. J Clin Oncol. 2021;39(21):2339–49.

	19.	 Hondelink LM, Huyuk M, Postmus PE, Smit V, Blom S, von der Thusen JH, 
et al. Development and validation of a supervised deep learning algo-
rithm for automated whole-slide programmed death-ligand 1 tumour 
proportion score assessment in non-small cell lung cancer. Histopathol-
ogy. 2022;80(4):635–47.

	20.	 Chen M, Lu H, Copley SJ, Han Y, Logan A, Viola P, et al. A Novel radiog-
enomics biomarker for predicting treatment response and pneumotoxic-
ity from programmed cell death protein or ligand-1 inhibition immuno-
therapy in NSCLC. J Thorac Oncol. 2023;S1556–0864(23):00096–105.

	21.	 Hwang M, Canzoniero JV, Rosner S, Zhang G, White JR, Belcaid Z, et al. 
Peripheral blood immune cell dynamics reflect antitumor immune 
responses and predict clinical response to immunotherapy. J Immu-
nother Cancer. 2022;10(6):e004688.

	22.	 Vaidya P, Bera K, Patil PD, Gupta A, Jain P, Alilou M, et al. Novel, non-inva-
sive imaging approach to identify patients with advanced non-small cell 
lung cancer at risk of hyperprogressive disease with immune checkpoint 
blockade. J Immunother Cancer. 2020;8(2):e001343.

	23.	 Monaco L, De Bernardi E, Bono F, Cortinovis D, Crivellaro C, Elisei F, et al. 
The “digital biopsy” in non-small cell lung cancer (NSCLC): a pilot study to 
predict the PD-L1 status from radiomics features of [18F]FDG PET/CT. Eur 
J Nucl Med Mol Imaging. 2022;49(10):3401–11.

	24.	 Jiang Z, Dong Y, Yang L, Lv Y, Dong S, Yuan S, et al. CT-based hand-crafted 
radiomic signatures can predict PD-L1 expression levels in non-small cell 
lung cancer: a two-center study. J Digit Imaging. 2021;34(5):1073–85.

	25.	 Jiang M, Sun D, Guo Y, Guo Y, Xiao J, Wang L, et al. Assessing PD-L1 
expression level by radiomic features from PET/CT in nonsmall cell lung 
cancer patients: an initial result. Acad Radiol. 2020;27(2):171–9.

	26.	 Jin W, Luo Q. When artificial intelligence meets PD-1/PD-L1 inhibitors: 
population screening, response prediction and efficacy evaluation. Com-
put Biol Med. 2022;145:105499.

	27.	 Liu J, Zheng Q, Xiao M, Zuo Y, Bo X, Jin Y. Automated tumor proportion 
score analysis for PD-L1 (22C3) expression in lung squamous cell carci-
noma. Sci Rep. 2021;11(1):15907.

	28.	 Yang Y, Zhao Y, Liu X, Huang J. Artificial intelligence for prediction of 
response to cancer immunotherapy. Semin Cancer Biol. 2022;87:137–47.



Page 17 of 18Gao et al. Journal of Hematology & Oncology           (2023) 16:55 	

	29.	 Rakaee M, Adib E, Ricciuti B, Sholl LM, Shi W, Alessi JV, et al. Association of 
machine learning-based assessment of tumor-infiltrating lymphocytes 
on standard histologic images with outcomes of immunotherapy in 
patients with NSCLC. JAMA Oncol. 2023;9(1):51–60.

	30.	 Byeon HE, Haam S, Han JH, Lee HW, Koh YW. Intrinsic and extrinsic tran-
scriptional profiles that affect the clinical response to PD-1 inhibitors in 
patients with non-small cell lung cancer. Cancers. 2022;15(1):197.

	31.	 Wang J, Chen P, Su M, Zhong G, Zhang S, Gou D. Integrative modeling of 
multiomics data for predicting tumor mutation burden in patients with 
lung cancer. Biomed Res Int. 2022;2022:2698190.

	32.	 Bigelow E, Saria S, Piening B, Curti B, Dowdell A, Weerasinghe R, 
et al. A Random Forest Genomic Classifier for Tumor Agnostic Pre-
diction of Response to Anti-PD1 Immunotherapy. Cancer Inform. 
2022;21:11769351221136081.

	33.	 Ono A, Terada Y, Kawata T, Serizawa M, Isaka M, Kawabata T, et al. Assess-
ment of associations between clinical and immune microenvironmental 
factors and tumor mutation burden in resected nonsmall cell lung 
cancer by applying machine learning to whole-slide images. Cancer Med. 
2020;9(13):4864–75.

	34.	 Hanahan D, Coussens LM. Accessories to the crime: functions of cells 
recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.

	35.	 Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic 
influence of tumour-infiltrating lymphocytes in cancer: a systematic 
review with meta-analysis. Br J Cancer. 2011;105(1):93–103.

	36.	 Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contex-
ture in human tumours: impact on clinical outcome. Nat Rev Cancer. 
2012;12(4):298–306.

	37.	 Tong H, Sun J, Fang J, Zhang M, Liu H, Xia R, et al. A machine learning 
model based on PET/CT radiomics and clinical characteristics predicts 
tumor immune profiles in non-small cell lung cancer: a retrospective 
multicohort study. Front Immunol. 2022;13:859323.

	38.	 Zhao Z, Yin W, Peng X, Cai Q, He B, Shi S, et al. A machine-learning 
approach to developing a predictive signature based on transcriptome 
profiling of ground-glass opacities for accurate classification and explor-
ing the immune microenvironment of early-stage LUAD. Front Immunol. 
2022;13:872387.

	39.	 Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of (18)
F-FDG PET/CT images predicts clinical benefit of advanced NSCLC 
patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol 
Imaging. 2020;47(5):1168–82.

	40.	 Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial organiza-
tion and molecular correlation of tumor-infiltrating lymphocytes using 
deep learning on pathology images. Cell Rep. 2018;23(1):181–93.

	41.	 Lin H, Pan X, Feng Z, Yan L, Hua J, Liang Y, et al. Automated whole-slide 
images assessment of immune infiltration in resected non-small-cell lung 
cancer: towards better risk-stratification. J Transl Med. 2022;20(1):261.

	42.	 Wang S, Rong R, Yang DM, Fujimoto J, Yan S, Cai L, et al. Computational 
staining of pathology images to study the tumor microenvironment in 
lung cancer. Cancer Res. 2020;80(10):2056–66.

	43.	 Park S, Ock CY, Kim H, Pereira S, Park S, Ma M, et al. Artificial intelligence-
powered spatial analysis of tumor-infiltrating lymphocytes as comple-
mentary biomarker for immune checkpoint inhibition in non-small-cell 
lung cancer. J Clin Oncol. 2022;40(17):1916–28.

	44.	 Ren C, Li J, Zhou Y, Zhang S, Wang Q. Typical tumor immune microen-
vironment status determine prognosis in lung adenocarcinoma. Transl 
Oncol. 2022;18:101367.

	45.	 Qiu S, Wang Y, Rao H, Que Q, Wu Y, Zhu R, et al. Tumor microenvironment-
associated lactate metabolism regulates the prognosis and precise 
checkpoint immunotherapy outcomes of patients with lung adenocarci-
noma. Eur J Med Res. 2022;27(1):256.

	46.	 Zhai WY, Duan FF, Wang YZ, Wang JY, Zhao ZR, Lin YB, et al. Integrative 
analysis of bioinformatics and machine learning algorithms identifies a 
novel diagnostic model based on costimulatory molecule for predicting 
immune microenvironment status in lung adenocarcinoma. Am J Pathol. 
2022;192(10):1433–47.

	47.	 Zhu Z, Chen M, Hu G, Pan Z, Han W, Tan W, et al. A pre-treatment CT-
based weighted radiomic approach combined with clinical characteris-
tics to predict durable clinical benefits of immunotherapy in advanced 
lung cancer. Eur Radiol. 2023;33(6):3918–30.

	48.	 Tang FH, Xue C, Law MY, Wong CY, Cho TH, Lai CK. Prognostic predic-
tion of cancer based on radiomics features of diagnostic imaging: the 

performance of machine learning strategies. J Digit Imaging. 2023. 
https://​doi.​org/​10.​1007/​s10278-​022-​00770-0.

	49.	 Gong J, Bao X, Wang T, Liu J, Peng W, Shi J, et al. A short-term follow-
up CT based radiomics approach to predict response to immuno-
therapy in advanced non-small-cell lung cancer. Oncoimmunology. 
2022;11(1):2028962.

	50.	 Tian P, He B, Mu W, Liu K, Liu L, Zeng H, et al. Assessing PD-L1 expres-
sion in non-small cell lung cancer and predicting responses to immune 
checkpoint inhibitors using deep learning on computed tomography 
images. Theranostics. 2021;11(5):2098–107.

	51.	 Chen NB, Xiong M, Zhou R, Zhou Y, Qiu B, Luo YF, et al. CT radiomics-
based long-term survival prediction for locally advanced non-small cell 
lung cancer patients treated with concurrent chemoradiotherapy using 
features from tumor and tumor organismal environment. Radiat Oncol. 
2022;17(1):184.

	52.	 Liu B, Chau J, Dai Q, Zhong C, Zhang J. Exploring gut microbiome in 
predicting the efficacy of immunotherapy in non-small cell lung cancer. 
Cancers. 2022;14(21):5401.

	53.	 Luo R, Song J, Xiao X, Xie Z, Zhao Z, Zhang W, et al. Identifying CpG meth-
ylation signature as a promising biomarker for recurrence and immuno-
therapy in non-small-cell lung carcinoma. Aging. 2020;12(14):14649–76.

	54.	 Xu Z, Ge G, Guan B, Lei Z, Hao X, Zhou Y, et al. Noninvasive detection 
and localization of genitourinary cancers using urinary sediment DNA 
methylomes and copy number profiles. Eur Urol. 2020;77(2):288–90.

	55.	 Lei M, Luo C, Zhang J, Cao W, Ge J, Zhao M. A m(6)A methyltransferase-
mediated immune signature determines prognosis, immune landscape 
and immunotherapy efficacy in patients with lung adenocarcinoma. Cell 
Oncol. 2022;45(5):931–49.

	56.	 Wang H, Lu X, Chen J. Construction and experimental validation of an 
acetylation-related gene signature to evaluate the recurrence and immu-
notherapeutic response in early-stage lung adenocarcinoma. BMC Med 
Genomics. 2022;15(1):254.

	57.	 Liu Z, Lin G, Yan Z, Li L, Wu X, Shi J, et al. Predictive mutation signature 
of immunotherapy benefits in NSCLC based on machine learning algo-
rithms. Front Immunol. 2022;13:989275.

	58.	 Wiesweg M, Mairinger F, Reis H, Goetz M, Kollmeier J, Misch D, et al. 
Machine learning reveals a PD-L1-independent prediction of response 
to immunotherapy of non-small cell lung cancer by gene expression 
context. Eur J Cancer. 2020;140:76–85.

	59.	 Park Y, Kim MJ, Choi Y, Kim NH, Kim L, Hong SPD, et al. Role of mass 
spectrometry-based serum proteomics signatures in predicting clinical 
outcomes and toxicity in patients with cancer treated with immuno-
therapy. J Immunother Cancer. 2022;10(3):e003566.

	60.	 Patel AJ, Tan TM, Richter AG, Naidu B, Blackburn JM, Middleton GW. A 
highly predictive autoantibody-based biomarker panel for prognosis in 
early-stage NSCLC with potential therapeutic implications. Br J Cancer. 
2022;126(2):238–46.

	61.	 Wang L, Zhang H, Pan C, Yi J, Cui X, Li N, et al. Predicting durable 
responses to immune checkpoint inhibitors in non-small-cell lung cancer 
using a multi-feature model. Front Immunol. 2022;13:829634.

	62.	 Prelaj A, Galli EG, Miskovic V, Pesenti M, Viscardi G, Pedica B, et al. Real-
world data to build explainable trustworthy artificial intelligence models 
for prediction of immunotherapy efficacy in NSCLC patients. Front Oncol. 
2022;12:1078822.

	63.	 Benzekry S, Grangeon M, Karlsen M, Alexa M, Bicalho-Frazeto I, Chaleat S, 
et al. Machine learning for prediction of immunotherapy efficacy in non-
small cell lung cancer from simple clinical and biological data. Cancers. 
2021;13(24):6210.

	64.	 Mueller AN, Morrisey S, Miller HA, Hu X, Kumar R, Ngo PT, et al. Predic-
tion of lung cancer immunotherapy response via machine learning 
analysis of immune cell lineage and surface markers. Cancer Biomark. 
2022;34(4):681–92.

	65.	 Belum VR, Benhuri B, Postow MA, Hellmann MD, Lesokhin AM, Segal NH, 
et al. Characterisation and management of dermatologic adverse events 
to agents targeting the PD-1 receptor. Eur J Cancer. 2016;60:12–25.

	66.	 Sibaud V. Dermatologic reactions to immune checkpoint inhibitors: skin 
toxicities and immunotherapy. Am J Clin Dermatol. 2018;19(3):345–61.

	67.	 Lewinson RT, Meyers DE, Vallerand IA, Suo A, Dean ML, Cheng T, 
et al. Machine learning for prediction of cutaneous adverse events in 
patients receiving anti-PD-1 immunotherapy. J Am Acad Dermatol. 
2021;84(1):183–5.

https://doi.org/10.1007/s10278-022-00770-0


Page 18 of 18Gao et al. Journal of Hematology & Oncology           (2023) 16:55 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	68.	 Zhou JG, Wong AH, Wang H, Tan F, Chen X, Jin SH, et al. Elucidation of the 
application of blood test biomarkers to predict immune-related adverse 
events in Atezolizumab-treated NSCLC patients using machine learning 
methods. Front Immunol. 2022;13:862752.

	69.	 Heilbroner SP, Few R, Mueller J, Chalwa J, Charest F, Suryadevara S, et al. 
Predicting cardiac adverse events in patients receiving immune check-
point inhibitors: a machine learning approach. J Immunother Cancer. 
2021;9(10):e002545.

	70.	 Qaiser T, Lee CY, Vandenberghe M, Yeh J, Gavrielides MA, Hipp J, et al. 
Usability of deep learning and H&E images predict disease outcome-
emerging tool to optimize clinical trials. NPJ Precis Oncol. 2022;6(1):37.

	71.	 Goo JM. A computer-aided diagnosis for evaluating lung nodules 
on chest CT: the current status and perspective. Korean J Radiol. 
2011;12(2):145–55.

	72.	 Ghesu FC, Georgescu B, Zheng Y, Grbic S, Maier A, Hornegger J, et al. 
Multi-scale deep reinforcement learning for real-time 3D-landmark detec-
tion in CT Scans. IEEE Trans Pattern Anal Mach Intell. 2019;41(1):176–89.

	73.	 Huang S, Yang J, Shen N, Xu Q, Zhao Q. Artificial intelligence in lung can-
cer diagnosis and prognosis: current application and future perspective. 
Semin Cancer Biol. 2023;89:30–7.

	74.	 Xu Z, Wang X, Zeng S, Ren X, Yan Y, Gong Z. Applying artificial intelligence 
for cancer immunotherapy. Acta Pharm Sin B. 2021;11(11):3393–405.

	75.	 Nosaki K, Saka H, Hosomi Y, Baas P, de Castro G, et al. Safety and efficacy 
of pembrolizumab monotherapy in elderly patients with PD-L1-pos-
itive advanced non-small-cell lung cancer: Pooled analysis from the 
KEYNOTE-010, KEYNOTE-024, and KEYNOTE-042 studies. Lung Cancer. 
2019;135:188–95.

	76.	 Hu Y, Paris S, Bertolet G, Barsoumian HB, He K, Sezen D, et al. Combining a 
nanoparticle-mediated immunoradiotherapy with dual blockade of LAG3 
and TIGIT improves the treatment efficacy in anti-PD1 resistant lung 
cancer. J Nanobiotechnology. 2022;20(1):417.

	77.	 Hu Y, Paris S, Barsoumian H, Abana CO, He K, Sezen D, et al. A radioen-
hancing nanoparticle mediated immunoradiation improves survival and 
generates long-term antitumor immune memory in an anti-PD1-resistant 
murine lung cancer model. J Nanobiotechnology. 2021;19(1):416.

	78.	 Liu SM, Zheng MM, Pan Y, Liu SY, Li Y, Wu YL. Emerging evidence and 
treatment paradigm of non-small cell lung cancer. J Hematol Oncol. 
2023;16(1):40.

	79.	 Xiao X, Peng Y, Wang Z, Zhang L, Yang T, Sun Y, et al. A novel immune 
checkpoint siglec-15 antibody inhibits LUAD by modulating mphi polari-
zation in TME. Pharmacol Res. 2022;181:106269.

	80.	 Jin R, Liu B, Yu M, Song L, Gu M, Wang Z, et al. Profiling of DNA damage 
and repair pathways in small cell lung cancer reveals a suppressive role in 
the immune landscape. Mol Cancer. 2021;20(1):130.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	The artificial intelligence and machine learning in lung cancer immunotherapy
	Abstract 
	Introduction
	AI and ML
	The conceptions and applications of AI and ML
	The history of AI and ML

	AI in lung cancer PD-L1 and TMB prediction
	The role of PD-L1 and TMB in lung cancer immunotherapy
	The application of AI and ML in lung cancer PD-L1 and TMB
	Radiomics-based AI in PD-L1 and TMB prediction
	Pathology-based AI in PD-L1 and TMB prediction
	Multi-omics-based AI in PD-L1 and TMB prediction


	The application of AI and ML in lung cancer TME prediction
	Radiomics-based AI in TME prediction
	Pathology-based AI in TME prediction
	Multi-omics-based AI in TME prediction

	The applications of AI and ML in lung cancer immunotherapy prediction and adverse effects
	Radiomics-based AI in immunotherapy prediction
	Genomics-based AI in immunotherapy prediction
	Proteomics-based AI in immunotherapy prediction
	Microbiology-based AI in immunotherapy prediction
	Blood biomarkers-based AI in immunotherapy prediction
	AI in lung cancer immunotherapy adverse effects prediction

	Discussion and prospect
	References


