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 Abstract: Autism spectrum disorder (ASD) is a complicated, interpersonally defined, static condition 
of the underdeveloped brain. Although the aetiology of autism remains unclear, disturbance of neuron-
glia interactions has lately been proposed as a significant event in the pathophysiology of ASD. In re-
cent years, the contribution of glial cells to autism has been overlooked. In addition to neurons, glial 
cells play an essential role in mental activities, and a new strategy that emphasises neuron-glia interac-
tions should be applied. Disturbance of neuron-glia connections has lately been proposed as a signifi-
cant event in the pathophysiology of ASD because aberrant neuronal network formation and dysfunc-
tional neurotransmission are fundamental to the pathology of the condition. In ASD, neuron and glial 
cell number changes cause brain circuits to malfunction and impact behaviour. A study revealed that 
reactive glial cells result in the loss of synaptic functioning and induce autism under inflammatory 
conditions. Recent discoveries also suggest that dysfunction or changes in the ability of microglia to 
carry out physiological and defensive functions (such as failure in synaptic elimination or aberrant mi-
croglial activation) may be crucial for developing brain diseases, especially autism. The cerebellum, 
white matter, and cortical regions of autistic patients showed significant microglial activation. Reac-
tive glial cells result in the loss of synaptic functioning and induce autism under inflammatory condi-
tions. Replacement of defective glial cells (Cell-replacement treatment), glial progenitor cell-based 
therapy, and medication therapy (inhibition of microglia activation) are all utilised to treat glial dys-
function. This review discusses the role of glial cells in ASD and the various potential approaches to 
treating glial cell dysfunction. 
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1. INTRODUCTION 

 Autism spectrum disorders (ASD) are a broad name for 
neurodevelopmental diseases that manifest primarily in in-
fancy and are marked by qualitative speech impairment, ab-
normal interpersonal interactions, and restricting behavioural  
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traits. Autistic disorders are characterised by abnormal neu-
ral network development and aberrant neurotransmission 
imbalance. Neurotoxic damage is caused by excess reactive 
oxygen species (ROS), reactive nitrogen precursors, cytokine 
production, and proteolytic enzymes. Both the growth of 
neural circuits and the management of oxidative stress rely 
on neuroglial cells, particularly astroglia, which is the prima-
ry source of ROS buffers. Microglia are the primary source 
of pro-inflammatory cytokines, whereas astroglia influence 
all aspects of the developing brain, maturity, and senescence 
[1]. These findings support a unique concept regarding the 
disturbance of homeostatic neuron-glia connections as a fun-
damental component in the pathophysiology of ASD. This 
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review highlights the association between the dysfunction of 
glial cells and ASD development and the various potential 
approaches to treating glial cell dysfunction. 
 In addition to neurons, glial cells play an essential role in 
mental activities, and a new strategy that emphasises neuron-
glia interactions should be applied [2]. Glial cells (including 
astrocytes, oligodendrocytes, and microglial cells) have a 
well-established role in supporting neurons, providing poten-
tial mechanisms for regulating neuronal communication. They 
help in regulating extracellular ion homeostasis, eliminate 
neurotransmitters from the synaptic cleft with the help of 
membrane transporters, make molecular substrates available to 
meet the requirement of energy by neurons and for the synthe-
sis of the neurotransmitter, and secrete a variety of neuromod-
ulatory molecules ranging from growth factors to cytokines, 
along with ATP and adenosine. Glial cells can then control the 
flow of information through neural networks located in the 
retina, CNS, and at synaptic junctions within muscle [3]. 

2. TYPES OF GLIAL CELLS AND THEIR FUNC-
TIONS 

 The functions of different types of glial cells, i.e., micro-
glial cells, astroglial cells and oligodendrocytes in brain de-
velopment, are summarised in Fig. (1). 

3. NEURON-GLIAL INTERACTIONS 

  Due to progress in genetic and imaging techniques, the 
complicated connection between neurons and glia and their 
cooperative roles in forming synapses is now becoming clear 
[4]. Several processes involved in the development of the 
brain, including neurogenesis, synapse formation, mye-
lination, proliferation, differentiation, and migration of neu-
rons and neuronal signalling, are all regulated by neuron-glia 
interactions. Most of what we know about neuron-glia inter-
actions is the influence of glial cells on neuronal develop-
ment. But, according to recent studies, these two cell types 
have a mutual impact [5]. 

 Microglia and neurons interact on several levels, from 
indirect interactions via soluble messengers to direct contacts 
of their membranes, with more advanced controlled func-
tions of both microglia and neuron towards minimising the 
distance between the membranes of these cells [6]. Synapses 
are the sites of some of the most well-studied microglia–
neuron interactions. During development, a period of intense 
synaptogenesis produces many synapses. Synaptic pruning, a 
mechanism dictating activity-dependent removal of super-
fluous synapses in which complement-dependent phagocyto-
sis of microglia is thought to play a crucial role, is then used 
to optimise neural networks. Microglia regulate neuronal 
growth and cellular survival, which helps shape the CNS 
during development [7]. The interactions between neurons 
and different glial cells are summarised in Fig. (2). Latest 
developments in microglial genetic targeting make it possi-
ble to explicitly tackle issues with signal transduction in mi-
croglial activation [8]. During autoimmune pathology, selec-
tive excision of TAK1 (TGF-activated kinase) in microglia 
decreased NF-κB, JNK, and ERK1/2 pathways, decreased 
microglial activation, CNS inflammation, and neuronal dam-
age, thereby suppressing the neuroinflammation [9]. 

 The role of astrocytes in the development, maintenance, 
and plasticity of neural networks has been a topic of exten-
sive investigation in recent decades. Astrocytes offer struc-
tural and metabolic support to neuronal networks, regulate 
the activity of neurons and neural plasticity, and assist in 
developing neuronal circuits. Furthermore, astrocyte-neuron 
interaction is essential for neuroprotection and is implicated 
in advancing neurological disorders in numerous cases [10]. 
Although astrocytes are poorly understood, the emerging 
study indicates that neurons act as modulators of astrocyte 
gene expression and differentiation [5]. One indicator of 
astrocyte activity is S100B. The elevated external levels of 
S100B, produced by injured astrocytes, may be a biomarker 
for transient brain injury, neurological distress, and perhaps 
neurodegenerative illnesses. 

 
 

Fig. (1). Glial cells - types and their functions. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
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 Oligodendrocyte-aided myelination of neurons is a sig-
nificantly intricate cell-to-cell interaction. Because their ax-
ons and myelin sheaths are nearby, it is hard to believe that 
there is no interaction between neurons and oligodendro-
cytes. Neuron-oligodendrocyte interaction is a reciprocal 
signalling system where oligodendrocytes receive signals 
from axons that regulate their myelination, and oligodendro-
cytes alter the form and conduction of axons [11]. 
 According to studies, radial glia (during CNS develop-
ment) and astrocytes (in the adult CNS) act as primary pre-
cursors and critical components of neurogenic niches due to 
the functional heterogeneity shown by glial cells during neu-
rogenesis, revealing previously unseen functions and new 
lineage associations between these cell types, as well as be-
tween neurons and glial cells. In this perspective, the glial 
lineage's double role actively forms and maintains neuron-
glial interactions [12]. Studying higher brain functions re-
quires knowledge of glial cell characteristics and neuron-
glial interactions [13]. 

3.1. Importance of Neuron-Glia Interaction in Brain De-
velopment 

 The interactions between neurons and glia are essential 
for regular brain activity during development and adulthood. 
The significance of glia in their bidirectional contact with 
neurons, their versatility in diverse diseases, regulation of 
neuronal activity, and phenotypic alterations in response to 
neuronal injury have all been highlighted by new research 
[14]. The molecular and cellular mechanisms that support 
these interactions need to be clarified. Increasing evidence 
reveals that changes in neuron-glia interactions are linked to 
the development of neurodegenerative disorders known as 
tauopathies. There is a relationship between glial activation 
and neuronal damage or healing [15]. 
 During brain development, neurons develop in the VZ 
and migrate into the growing neocortex, directed by nearby 
glial cells. After settling in, they proceed through terminal 
differentiation. Their extended axons and dendrites join with 
neighbouring neurons to form the final brain network sup-
ported by glial cells [16]. As a result of their activity, these 

genetically defined connections are modified in the last stage 
of development [17]. 
 Disturbance of neuron-glia connections has lately been 
proposed as a significant event in the pathophysiology of 
ASD because aberrant neuronal network formation and dys-
functional neurotransmission are fundamental to the pathol-
ogy of the condition [18]. Disruptions heavily influence the 
pathogenesis of different neurological diseases in neuron-
astrocyte connections. Abnormal glutamate receptor activa-
tion causes neuronal death, which is known as excitotoxicity. 
Cell death induced by glutamate may occur quickly, with a 
large influx of Na+ and Cl– and cell expansion, accompanied 
by a large influx of Ca2+ and stimulation of downstream cas-
cades, resulting in damage and, ultimately, death of neurons. 
Moreover, glutamate-induced damage may follow a sluggish 
path through the induction of apoptosis, which has been 
linked to pathophysiologies of several neurodegenerative 
disorders [19]. The various models for studying the neurogli-
al interactions are tabulated in Table 1 [20-31]. 
 
Table 1. ASD models with neuro-glial interactions. 

Type Model References 

Genetic 

TSC1 HT 
BTBR 

Shank3 KO [21] 
Scn1a HT [20] 

NLGN3 R451C KI [22] 
MeCP2 mutant [23] 

Shank2 KO [24] 
PTEN mutant [25] 
NLXN1 KO [24] 

[20] 
[21] 
[21] 
[20] 
[22] 
[23] 
[24] 
[25] 
[24] 

Pharmacological Valproic acid (VPA) [26] [26] 

Environmental 
Methyl mercury  

Maternal immune activation (MIA) 
 Polyinosinic: polycytidylic acid (poly I: C) 

[27] 
[28-30] 

[31] 

 
 

Fig. (2). Neuron-glial interaction. (A higher resolution/colour version of this figure is available in the electronic copy of the article). 
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4. NEURO-GLIAL INTERACTION DYSFUNCTIONS 
IN AUTISM 

 Most neurodegenerative diseases are described as 'pro-
teinopathies,' or toxic protein aggregates. Accumulation of 
proteins most commonly happens at synapses, resulting in 
dysfunctional synapses [32]. Autism is a complicated, inter-
personally defined, static condition of the under-developed 
brain that is of significant concern to practising paediatri-
cians because of an estimated 556 percent increase in paedi-
atric incidence from 1991 to 1997, surpassing that of spina 
bifida, Down syndrome, or even cancer [33]. Glial cells se-
crete gliotransmitters such as glutamate, GABA, and cyto-
kines, increasing inflammatory cytokines and disrupting neu-
rogenesis [34]. In the brains of people with autism, glial cells 
are constantly stimulated, and their genes which respond to 
inflammation, are turned on, according to new research [35]. 
Glutamate secreted by neurons is acquired by glial cells at 
excitatory synapses, transformed into glutamine, and then 
returned to neurons. The pathology of bipolar disorder is 
thought to be due to changes in this system [36]. 

 In recent years, the contribution of glial cells to autism 
has been overlooked. Astrocytes aid neuronal survival in 
normal physiological conditions by releasing growth factors 
and regulating the uptake/removal of excitotoxic neuro-
transmitters like glutamate from the synaptic milieu. Never-
theless, astrocytes can release certain factors during their 
activation because of injury or neuronal dysfunction that 
may modify inflammatory responses; they release pro-
inflammatory cytokines, metalloproteinases, and chemokines 
which can intensify immune reactions in the CNS. In the 
same way, microglia activation plays a vital role in neurogli-
al responsiveness to damage or dysfunction. Pathophysiolog-
ical responses may result in the activation of neuroglia, 
which exacerbates the degree of neuronal dysfunction ac-
companied by the irregular organisation of the cortex, like 
those seen in autism. The cerebellum, white matter, and cor-
tical regions of autistic patients showed significant microgli-
al activation [37]. In the brain and cerebrospinal fluid of sev-
eral autistic individuals, inflammatory markers, including 
interleukin 1 (IL-1), tumour necrosis factor (TNF), and 
CXCL8 (IL-8), are elevated. These markers are produced 
when microglia are activated. In reaction to the peptide neu-
rotensin (NT), normal microglia in culture produce IL-1 and 
CXCL8. The M1 phenotype is induced in microglial cultures 
when exposed to triggers including bacterial lipopolysaccha-
rides, TNF, IFN, necrotic nerve cells, polymerised Aβ, and 
alpha-synuclein (Fig. 3). The transcription of MHC-II (major 
histocompatibility complex type II) membrane glycoprotein, 
the release of pro-inflammatory mediators (TNF-α, IL-1β, 
IL-6 and IL12), and the generation of reactive oxygen spe-
cies (ROS) are all characteristics of the typical M1 pheno-
type. The mediators IL-4 and IL-13 that are released in vivo 
by Th2 lymphocytes can promote the equivalent M2 pheno-
type, which is neuroprotective, in primary microglia [38]. 

 This varied set of interactions may explain various clini-
cal symptoms among individuals. However, thorough mo-
lecular studies to understand the mechanics of this connec-
tion currently need to be completed. 

5. GLIAL PATHOLOGY IN AUTISM 

 Recently, the significance of neuroglial aspects in ASD 
has gained much attention because of the many lines of evi-
dence showing glia-specific changes in both animal models 
of ASD and individuals with the disorder [39]. Immune and 
neuroglial activity have received minimal attention in neuro-
pathological investigations of autism, and the most thorough 
postmortem study found gliosis and inflammatory altera-
tions. Such neuroinflammation may contribute to and result 
from abnormal CNS development and activity in ASD [40]. 
A growing body of data suggests that glial cell malfunction 
plays a role in the development of ASD [41, 42]. However, 
the findings of these studies are sometimes complicated and 
inconsistent, owing to the intricacy of the cellular and mo-
lecular pathways causing ASD. Autism has been linked to 
discontinuous modules of co-expressed genes M16, enriched 
for astrocyte markers and markers of activated microglia 
[43]. Glial-specific markers show abnormal transcription in 
the brains of autistic people. The markers employed to eval-
uate microglial cell count and activity are still up for discus-
sion since microglia cell-marker investigation is currently a 
new field of study. Through the release of regulatory cyto-
kines, the receptor TREM2 modulates the immunological 
response within the brain and is essential for triggering mi-
croglial phagocytosis. 
 The protein CX3CL1 (or fractalkine) works to cause mi-
croglial relocation and adhering during the phagocytotic pro-
cess. Its receptor, CX3CR1, encodes a protein binding site on 
the membrane of microglial cells to which CX3CL1 attaches. 
AIF1, commonly termed IBA1, distinguishes between rested 
and engaged microglial cells as it encodes a protein whose 
transcription is persistently increased during microglial acti-
vation. The expression of type III intermediate filament pro-
tein, GFAP (glial fibrillary acidic protein), depends on astro-
cytes and is upregulated in ASD people. According to re-
search, all microglial markers, including TREM2, DAP12, 
and CX3CR1, are expressed higher in the PrefrontalPrefron-
tal cortex (PFC). However, AIF1 failed to achieve statistical 
significance [44]. The astrocyte-specific marker, GFAP, was 
considerably overexpressed in both PFC and cerebellum in 
ASD brains. This pattern was most pronounced in the cere-
bellum, wherein GFAP activity was over two times greater 
in ASD brains than in normal brains. In the PFC and the cer-
ebellum of ASD people, there was a significant reduction in 
the transcription of the pan-neuronal marker NEFL. 
 Glial cell dysfunction leads to abnormal neuro-glial in-
teractions, which create a "hostile" environment that affects 
neuronal function. This can result in a systematic loss of 
neuronal function on a scale that seems proportionate to the 
degree of neurological impairment [45]. In ASD, neuron and 
glial cell number changes cause brain circuits to malfunction 
and impact behaviour [46]. Reactive astrogliosis and micro-
glial activation have been suggested to assist the pathophysi-
ology of ASD by exacerbating the inflammatory process 
produced by the immunological response. Nevertheless, de-
tailed molecular investigations of the pathways linking glial 
activation to ASD aetiology are still to be carried out. The 
capacity of glial cells to control the formation, development, 
maintenance, deletion, or functioning of new synapses may 
be disrupted by glial cell remodelling because brain circuits 
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Fig. (3). Microglial activation phenotypes. Abbreviations: MAPK = Mitogen-activated protein kinase; TNF= Tumor necrosis factor; IFN= 
Interferons; ROS= Reactive oxygen species; IL= interlukin; ↑ = increase or upregulation; ↓ = decrease or downregulation. (A higher resolu-
tion/colour version of this figure is available in the electronic copy of the article). 
 
Table 2. Causes and results of glial cells activation. 

S. No. Cell Cause of Dysfunction Abnormal Functions Results References 

1 Glial cells 

� As a result of ongoing neuro-
degeneration  

� Stroke 
� Trauma 
� Tumour  

� Secretion of gliotransmitters 
such as glutamate, GABA and 
cytokines 

� Abnormal neuro-glial interactions 
� Loss of neuronal function 
� Disruption of neurogenesis 

[34, 45] 

2 Astrocytes 

� Stroke 
� Tumour 
� Trauma 
� Neurodegenerative diseases 

� Pro-inflammatory cytokines 
secretion 

� Calcium signalling abnormali-
ties 

� Modulate inflammatory response 
� Intensify immune reactions in CNS 

[37, 53] 

3 Microglial cells 

� Changes in the distribution of 
CD200 or CD200R 

� Mediators and electric signals 
from the injured site 

� Tumour 
� Stroke 
� Trauma 
� Neurodegeneration 

� Pro-inflammatory cytokine 
secretion 

� Activation of inducible nitric 
oxide(NO)-synthase 

� Exacerbate the degree of neuronal 
dysfunction 

� Irregular organisation of the cortex 
[37, 48, 49] 

4 Oligodendro-
cytes 

� Neurodegeneration 
� Stroke 
� Trauma 
� Tumour 

� Production of reelin product � Reelin activity may lead to autism [55] 

 
are particularly vulnerable to lesions impacting glial path-
ways linked with synapse formation. The various reasons 
behind the activation of glial cells and their abnormal func-
tions are summarised in Table 2. 
 In vivo and in vitro, patient-derived iPSCs are practical 
tools for exploring the cellular and molecular pathways caus-
ing glial dysfunction. Glial progenitors and oligodendrocytes 
derived from the iPSCs of patient tissue have already been 
created and modelled from neural-derived cells of Rett Syn-
drome and ASD patients as proofs-of-concept [47]. 

5.1. Microglial Dysfunction in Autism 

 Microglial activation acts as a protective pathway in a 
healthy environment. Still, due to the intricate and multifac-
eted nature of microglial activation, minor differences can 
result in an amplified or poorly functioning activation, which 
is believed to exacerbate neurodegenerative pathology, ac-
companied by cytokines presenting at almost all disease 
stages. The CD200 glycoprotein, which prevents microglial 
priming and keeps microglia in a dormant state, is one of the 

�������	
���

��������	
��
�
����
�	����
����������
��

��	������
�	����

�����	���

�
�����	
���

���� ���� 

!�����	��





!�

�����	����
������
���"�
����#�

$%
�
&%'�#

(	�������
!��)


�����*�+�
��%


�����	���

�������*��
�,,��� �������������-�
�,,���

.��

��//�

���������
����-��

�

����0���� �

!�����	��





!#

��




552    Current Neuropharmacology, 2023, Vol. 21, No. 3 Unnisa et al. 

critical mediators whereby neurons influence glial activation. 
According to studies, it is possible to reverse the functioning 
of neurons in activating microglial cells by allowing cell 
culture to incubate in the medium containing the anti-CD200 
antibody. It shows a specialised role of neuronal-glial inter-
action in keeping glial cells inactive and can be accom-
plished upon binding CD200 with CD200R [48]. However, 
changes in the distribution of CD200 or CD200R, its glial 
receptor, can result in microglia overactivation and neuroin-
flammation, both of which are associated with neurodegen-
eration [49]. In general, neuroinflammation is defined by 
increased reactivity of microglia and astrocytes, increased 
production and secretion of cytokines and chemokines, and 
inducible nitric oxide (NO)-synthase (i-NOS) activation, as 
seen in ASD [50]. Recent discoveries suggest that dysfunc-
tion or changes in the ability of microglia to carry out physi-
ological and defensive functions (such as failure in synaptic 
elimination or aberrant microglial activation) may be crucial 
for developing brain diseases, especially autism. This has 
been confirmed by recent studies [51]. In male mice, exces-
sive translation only in microglia, not neurons or astrocytes, 
causes autism-like symptoms [52]. 

5.2. Astrocytes and Metabolic Dysfunction 

 Indeed, thorough examinations of neurodevelopmental 
disorders with identified genetic lesions (and their related 
rodent models) reveal that dysfunction of astrocytes during 
development causes disease pathogenesis. Fragile X's mental 
retardation, Rett syndrome, Alexander's disease, and others. 
Many of these investigations have discovered that astrocyte 
failure has significant noncell-autonomous consequences on 
neighbouring neurons; consequently, understanding the 
causes of astrocyte dysfunction will be crucial for future 
therapeutic approaches [53]. In a study, it was proved that 
astrocyte calcium signalling abnormalities could cause au-
tism-like behaviours in mice. Changes in astrocytes in autis-
tic patients and animal models have been observed on multi-
ple occasions. Unfortunately, the significance of astrocytes 
in autism is unknown [54]. The studies demonstrate the role 
of astrocytes in neuronal phenotype and validate earlier re-
search relating IL-6 to autism, offering potential therapeutic 
approaches for a subset of autism patients [55]. 
 The reelin product, generated by oligodendrocytes, has 
shown activity on one of its receptors in autism [56]. The 

action performed by dysfunctional glial cells in autism is 
summarised in Table 3. 

6. GLIAL THERAPY IN AUTISM SPECTRUM DIS-
ORDER 

 According to growing data, synaptic dysfunction plays a 
significant role in the development of autism, and synaptic 
function is regulated by glial cells. Given the evidence that 
glial cells play a role in ASD neuroinflammation, one theory 
is that reactive glial cells result in the loss of synaptic func-
tioning and induce autism under inflammatory conditions 
[57]. Replacement of defective glial cells (Cell-replacement 
treatment), glial progenitor cell-based therapy, and medica-
tion therapy (inhibition of microglia activation) are all uti-
lised to treat glial dysfunction. The various therapeutic  
approaches to treating glial dysfunction are summarised in 
Table 4. 

6.1. Cell-Replacement Therapy 

 The passive activity of glial cells reported a century ago 
has now been superseded by the discovery of significant glial 
activity for optimal CNS homeostasis. This breakthrough has 
moved neuroscience's attention from a neuron-centric to a 
glial-inclusive perspective. This perspective enables the de-
velopment of cell-replacement techniques that include both 
neuronal and glial cell replacement [58]. 
 In comparison to the substantial research that has been 
undertaken on oligodendrocyte replacement, the advent of 
astrocyte transplantation introduced a new route for the 
treatment of CNS disorders. Generation of extensive mye-
lination has been made possible after transplanting human 
oligodendrocytes into spinal cord injury or congenital mouse 
models of hypomyelination since the late 1980s and more 
recently with populations of human oligodendrocyte pro-
genitor cells separated from the developing or adult CNS, or 
human embryonic stem cells. On the other hand, the poten-
tial value of astrocyte-based therapeutics is far less recog-
nised. Furthermore, preliminary research revealed relatively 
minor benefits of astrocyte transplantation for treating severe 
spinal cord damage [59]. 
 Differentiating human ESCs into astrocytes employing 
two progenitor populations, Olig2+ versus Olig2- neural pro-
genitor cells, and then transplantation in rats reduces neu-
ronal loss and enhances behavioural recovery Olig2+-
astrocytes, which are more effective than the Olig2- popula-

Table 3. Functions of glial cells in their reactive state. 

Activated Microglia Activated Astrocytes Activated Oligodendrocytes 

Neurotoxic activity 
Irregular synapse connectivity 

LTP deficit 
Irregular immune response 

Reactive microgliosis 
Generation of reactive oxygen species 

Altered synaptogenesis 
Reactive gliosis 

Altered neurogenesis 
Irregular immune response 

Reduced homeostasis 
Irregular secretion of soluble factors 

Absence of neurotrophic support 
Calcium signalling dysfunction 

Impaired action potential 
Abnormal formation of the myelin sheath 

Production of reelin 
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tion, presumably because the Olig2+ population produces 
more BDNF. Surprisingly, synapsin-1 staining shows that 
Olig2+ astrocyte transplantation results in enhanced synapto-
genesis. These findings indicate that specific astrocytic 
populations transplanted into the brain could successfully 
stimulate neuronal recovery [60]. 

6.2. Glial Progenitor Cell (GPC) Based Therapy 

 Glial dysfunction may play such a prominent role in sev-
eral ailments that it may be possible to treat them with al-
logeneic GPCs, which act as precursors of both astroglia and 
oligodendrocytes [61]. GPCs, the progenitor, are mitotically 
proficient, distinguishing them from the considerably more 
significant population of mature, postmitotic oligodendro-
cytes [62]. GPCs, also known as oligodendrocyte progenitor 
cells or NG2 cells, have thus emerged as promising tools for 
repairing damaged or wounded CNS regions [63]. Function-
ally, they are equivalent to OPCs. On the other hand, these 
cells appear bipotential and can produce both astrocytes and 
oligodendrocytes until their final division [61]. A series of 
tests were conducted to see how effective intracerebrally 
injected hGPCs could be as therapeutic agents [64]. In terms 
of expressed genes and dominant signalling pathways, there 
were significant differences between fetal and adult human 
GPCs and rodent and human GPCs. This research doubts 
therapeutic techniques based only on data collected from 
rodents while emphasising the degree to which phylogenetic 
alteration of glial phenotype and function has accompanied 
evolution [65]. The differences between the behaviour of 
fetal and adult-derived glial progenitors suggest that they 
could be used to treat different diseases [66]. 
 Latest fate-mapping investigations have demonstrated that 
NG2 cells act as precursors of oligodendrocytes and co-exist 
with the OPC marker platelet-derived growth factor-α recep-
tor. Because of their ability to self-propagation and differentia-
tion into oligodendrocytes, NG2 cells could be a promising 
cellular treatment for dysfunctional oligodendrocytes [58]. 
 The role of Gabaergic signalling in neuron-glia interac-
tions is still being unravelled. However, it has been proposed 
that GABA activates glial cells, which regulate essential 
brain processes like neuronal activity, neuroprotection, and 
differentiation [67]. Cortical Gabaergic interneuron dysfunc-
tion is linked to various neurological diseases, including au-
tism and restoring these cells by a transplantation procedure 
is a practical and successful method for reversing symptoms 
[68]. Gabaergic interneurons are involved in the brain's bal-
anced excitatory and inhibitory neural circuitry, and their 
absence or malfunction has been linked to ASD. hGPCs de-
velop into functioning induced neurons (iN), which contain 
Gabaergic characteristics, express subtype-specific interneu-
ron markers, and have a complex neuronal structure with 
extended dendritic trees. The potential to induce Gabaergic 
interneurons from a renewable in vitro hGPC system could 
pave the way for the development of therapeutics for inter-
neuron diseases like autism [69]. Gabaergic interneuron dys-
function may support a variety of behavioural and psychiat-
ric disorders. High-purity Gabaergic interneurons derived 
from human embryonic stem cells (hESCs) or patient-
derived iPSCs are desirable for molecular studies of Gabaer-
gic neuronal dysfunction and drug discovery research [70]. 

6.3. Inhibition of Microglial Activation 

 Neuroinflammation, which contributes to neuronal dys-
function and, thus, autism, occurs because of the activation 
of microglial cells [71, 72]. Inhibiting microglial cell activa-
tion has been proposed as a possible therapeutic method in 
treating autism [73, 74]. Direct neurotoxicity, failure to 
maintain tissue homeostasis, and phagocytosis of aberrant 
proteins and apoptotic neurons are all tasks performed by 
activated microglia; these numerous functions are presuma-
bly performed by diverse phenotypes of activated microglia 
[71, 75-77]. The mechanism of microglial activation and 
inhibition by anti-inflammatory drugs is shown in Fig. (4). 
 According to studies, microglial cell activation has been 
linked to several neurodegenerative diseases, including au-
tism [78, 79]. In the ischemic penumbra, activation of mi-
croglial cells is inhibited by 1810034E14Rik. Furthermore, 
after overexpression of 1810034E14Rik, the mRNA and 
protein levels in activated microglial cell markers (CD16 and 
CD11b) were considerably reduced in MCAo-treated mice 
[80]. These findings showed that overexpression of 
1810034E14Rik reduced microglial activation and the in-
flammatory response following MCAo therapy [81, 82]. 
Both external and stress factors may stimulate mast cells and 
microglial cells in the brain (Fig. 5), disrupting amygdala 
neural connections and changing the usual "fear threshold." 
This pathway may partially explain the pathophysiology of 
ASD. Finding techniques to reduce amygdala inflammatory 
response may represent a cutting-edge treatment strategy for 
ASD. Bioactive compounds, like the flavonoid tetra methoxy 
luteolin, which has been shown to suppress the production of 
pro-inflammatory mediators from microglial cells, may be 
potentially used as therapy that focuses on this principle. 

 Indeed, evidence of neuroinflammation, accompanied by 
activation of microglia and astrocytes and elevated levels of 
pro-inflammatory cytokines, have been observed in the 
brains of ASD patients, supporting the hypothesis that im-
munological dysfunction may be involved in ASD [83]. In 
the hippocampus of VPA-treated mice, CBDV therapy was 
observed to restore microglia activation and subsequent 
structural alteration in the size of cell and soma shape [73, 
84-86]. 

 Minocycline inhibits microglia activation, modifies neu-
roinflammation pathways, including cytokine and chemokine 
networks (e.g., IL-6, IL-1β, and TNF-α), and inhibits metal-
loproteinase activity [87-91]. Corticosteroids are anti-
inflammatory medicines that decrease pro-inflammatory 
mediator release and impact microglia activation [92-95]. 

 Luteolin is an antioxidant that inhibits microglial activa-
tion and prevents neurotoxicity [96, 97]. It appears to work 
by inhibiting histamine, IL-6, IL-8, TNF, and tryptase pro-
duction in mast cells. It is thought to be safe, with few to no 
adverse effects. In animal model research, lutein has been 
proven to reduce autism-like behaviours in mice [98].  

 Suramin (a P2 receptor antagonist) prevents microglia 
activation when injected intrathecally [99, 100]. Celecoxib 
has been shown to inhibit the lipopolysaccharide-induced 
rise in activated microglia in newborn rats [101, 102]. 
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Fig. (4). Inhibition of microglial activation by anti-inflammatory drugs. (A higher resolution/colour version of this figure is available in the 
electronic copy of the article). 
 

 
Fig. (5). Microglia-mediated pro-inflammatory markers activation that contributes to ASD. (A higher resolution/colour version of this figure 
is available in the electronic copy of the article). 
 
Table 4. Therapeutic approaches used in glial therapy. 

S. No. Therapy Mechanism in ASD Results References 

1. Astrocyte transplantation 
Differentiation of hESCs into  

astrocytes using Olig2+ and Olig2- 

neural progenitor cells 

� Enhanced synaptogenesis 
� Improved behavioural recovery 
� Reduced neuronal loss 

[60, 103, 104] 

2. Glial Progenitor Cell 
(GPC) based therapy 

Self-propagation and differentiation 
into oligodendrocytes and astrocytes 

� Recovery in oligodendrocyte and astrocyte number 
� Repair of myelin abnormalities 

[105, 106] 

3. CBDV therapy Activation of the TRP channel 
� Restored microglial activation 
� Enhanced microglial phagocytosis 

[73, 107, 108] 

4. Minocycline Unknown 

� Inhibited microglia activation 
� Modified neuroinflammation pathways 
� Improved social behaviour 
� Restored phagocytic activity of microglia 

[109, 110] 

5. Luteolin 
Decreases the serum levels of TNF 

and IL-6 and inhibits microglial 
activation 

� Improved social interaction 
� Inhibition of neurotoxicity 

[111-113] 

(Table 4) Contd…. 
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S. No. Therapy Mechanism in ASD Results References 

6. Suramin Unknown 
� Enhanced social interaction 
� Minimized repetitive action 

[114, 115] 

7. Immunoglobulin Decreases levels of inflammatory 
cytokines 

� Improved phagocytosis by microglia 
� Improved communication ability 

[116, 117] 

8. Celecoxib Unknown 
� Reduced number of activated microglia 
� Improved social interaction 
� Minimized repetitive actions 

[118, 119] 

9. Spironolactone Through its anti-inflammatory and 
immunomodulatory action 

� Reduced secretion of inflammatory cytokines by microglia 
� Reduced repetitive actions and hyperactivity 

[120, 121] 

 
CONCLUSION AND FUTURE PROSPECTS 

 Further understanding of the significance of glial cell 
dysfunction in the development of autism needs to be estab-
lished. This might help in developing potential therapeutic 
strategies. Although several drugs and therapies are available 
to treat glial dysfunctions, further studies are required to de-
velop drugs that can completely treat the glial perspective of 
ASD. 
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GPC = Glial Progenitor Cells 

IL = Interleukin 
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