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Abstract:Digital Pathology is becoming more and more important to achieve the goal of precision medicine. Advances in

whole-slide imaging, software integration, and the accessibility of storage solutions have changed the pathologists’ clinical

practice, not only in terms of laboratory workflow but also for diagnosis and biomarkers analysis. In parallel with the

pathology setting advancement, translational medicine is approaching the unprecedented opportunities unrevealed by

artificial intelligence (AI). Indeed, the increased usage of biobanks’ datasets in research provided new challenges for

AI applications, such as advanced algorithms, and computer-aided techniques. In this scenario, machine learning-

based approaches are being propose in order to improve biobanks from biospecimens collection repositories to

computational datasets. To date, evidence on how to implement digital biobanks in translational medicine is still

lacking. This viewpoint article summarizes the currently available literature that supports the biobanks’ role in the

digital pathology era, and to provide possible practical applications of digital biobanks.

Introduction

In the last decades, biobanking has emerged as one of the most
important tasks in cancer research, by providing samples and
data collection for appropriate analysis and experiments [1–
3]. In literature, a growing number of studies have been
carried out using human biological specimens and related
data processed by biobanks [4–8]. The analysis of diverse
sets of data stored in biobanks from a variety of sources
involving bioinformatics and omics sciences is extremely useful
in cancer research [2,9,10]. Biobanks can provide datasets
containing patients’ lifestyle and disease information matched
with different types of biological specimens, including tissue
samples and biofluids, and annotated pathological data [11–15].
However, biobanks face limits due to data gaining, storage, and
practice [16–19]. Despite the possibility to collect a high
number of data it is important to optimize all this information.
These difficulties are intrinsic to biobank data acquisition, but
machine learning technologies can help overcome the related
issues [20–22]. In this context, as the practice of precision
medicine is taking advantage of artificial intelligence techniques
(AI), biobanks are starting to evolve from biospecimen
collection repositories to integrated computational datasets [23].
Thus, AI and machine learning applications may significantly

impact biobanking in cancer research [24,25]. In this Viewpoint
article, we discuss the biobanks’ role in the digital pathology era,
along with future perspectives for AI and machine learning
applications in biobanking.

What Is a Biobank?

Biobanks represent biorepositories of various types of biological
samples and all associated data, aimed not only at storing a wide
variety of data for sample preservation but also at processing
them to provide the armamentarium for translational research
and clinical studies [3,26]. Samples that can be collected by
biobanks include tissues (normal and/or abnormal), biofluids
(e.g., blood, serum, plasma, urine, saliva, liquor, effusion, bone
marrow fluid portion, sperm, cord blood), stool, cells,
peripheral blood cells (PBCs), and nucleotides (e.g., DNA,
RNA, miRNA). All these biospecimens are integrated into
datasets containing the associated data (i.e., clinicopathologic,
genetic, and personal data). For this purpose, it is crucial to
complement samples with up-to-date available related data. To
proof the quality of the samples and procedures, biobanks
need appropriate accreditations (e.g., ISO 15189 and ISO
17025), and an operational quality management system to
guarantee consistent quality and results. Moreover, biobanks
periodically implement international guidelines (e.g., U.S.
National Cancer Institute) with standard operating procedures
(SOPs) for maintaining high-quality processes [27–29]. In the
first place, biobanks were established to preserve biospecimens
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over time [30]. To this end, the samples are usually stored in
cryogenic facilities, including either specific refrigerators or
warehouses. In addition, biobanks may collect matched
formalin-fixed paraffin-embedded (FFPE) tissues [31]. Of note,
tissues stored in biobanks may be originated from surgical
specimens’ leftover, minor surgery ultrasound-guided biopsies
[32]. All collected biological samples and related data follow a
well-defined standard operating procedure and are always
obtained after the patient sign the research pact agreement
[28]. Taken together, each component in the biobank
workflow is important to guarantee the quality of the sample,
and its reliability in data analysis (Fig. 1). A modern biobank
should be able to interact with different types of interlocutors,
including research groups, clinical units, political institutions,
biotech companies, and the pharma industry. Each time a
project requires a biobank to support the scientific objectives,
it is essential to provide well-preserved samples and data and
meet prescribed requirements. Data must be safe, accessible,
and traceable to manage simultaneously different projects.
Further, another critical aspect of biobanking management is
to have an integrated laboratory information management
system (LIMS) software that can automatically integrate all
clinical records [33–35]. To secure this integration, it is critical
to obtain the scientific participation agreement of all patients
for legal and ethical requirements [28].

The Digital Pathology Era

Advancements in AI applications have led to a transformed
practice in the healthcare system [24,36]. Nowadays, the
healthcare system is facing a biomedical big data issue, with
an extensive amount of data available to analyze that is
difficult to be manually processed [37]. Digital pathology
represents a new era for pathology practices. This technique
involves a full scanning of glass histological slide, into a

digitized image data called whole slide image (WSI). This
file can be stored in a database and easily available to any
researcher from a computer screen. In this approach, due to
the advances in AI, the use of digital microscopy is increasing
for either educational or research purposes [38–42]. Moreover,
WSI can be utilized in image analyses by integrating deep
learning models for identification and segmentation [43,44].
Taken together, digital pathology is significantly and rapidly
changing the pathology workflow [45,46].

Evolving Towards Digital Biobanks: Opportunities and
Critical Aspects

Given the central role of biobanks in modern research for data
acquisition and data-sharing, the integration of different types
of information should be investigated. This problem may be
addressed with the use of AI and machine learning models
[47]. However, there are too few examples of digitalized
biobanks worldwide, making this progress in its early journey
stage [17,48]. Still, scientists are starting training algorithms
on datasets for meaningful findings [49,50]. Specifically,
machine learning techniques have shown novel interesting
applications in processing data for predictive models, such as
detecting early signals of cancers [51]. For this, new staffing
models need to be implemented with widely different
expertise than the traditional biobank pathology technician.
In this respect, a multidisciplinary team of dedicated and
trained professionals would be required in order to embrace
the challenges provided by the evolution towards the concept
of digital biobank. Amon these, pathologists, molecular
oncologists, bioinformaticians, bioengineers, programmers
and IT specialists are needed to work in close collaborations
with biologists, biotechnologists, and laboratory technicians.
The recent increase in data collection has pointed out the
need to overcome manual handling to the use of machine

FIGURE 1. Traditional biobank workflow.

230 GIUSEPPINA BONIZZI et al.



learning models to run analyses. In this scenario, AI techniques,
and more specifically deep learning models, can bring several
advantages. Therefore, looking back at the literature, studies
underlined the impact of a computational approach to
improve patient safety [52], healthcare quality [53], and reduce
costs [54]. More in detail, biobanks can report significant
improvement in integrating data derived from samples (e.g.,
-omics data) with medical records, or other types (e.g.,
pathological data) [48]. Moreover, developing an available
online database of whole slide images for biobank specimens
might increase the sample’s accessibility to a broader audience
of researchers [55]. Interestingly, datasets would become visually
inspectable, leading to benefits in biospecimens’ preselection,
consultation, and reuse. In this context, incorporating digital
pathology into biobank standard operating procedures might
minimize the inspector variability associated with routine
pathologic evaluations in biorepositories [56]. On the other
hand, several critical aspects have to be considered to
implement AI techniques. Firstly, each piece of data has to be
fully digitalized to allow storage and processing. Besides data
still needs to be consented to by patients, deidentified, and
already managed in a way understandable for deep learning
models [48]. Deep learning models can bridge the gap between
biobanks and evolving concept of AI and translational research.
However, moving towards a purely digital biobank would
represent a quantum shift for biobanks to actually be the
research hub. Therefore, the main question is: Do Biobanks
have the resources to do this? It is a matter of fact that cutting-
edge digital technologies require human expertise, time to be
implemented, but most of all the infrastructures [57]. The “2.0
staff” required for digital biobanks should work in synergy with
machine learning algorithms, providing dedicated training to
work not only with biospecimens and data, but also with
algorithms. In this respect, the integration of existing software
would be germane to provide researchers, patients, and
stakeholders with accessible and organized data (Fig. 2).

Conclusion

Owing to the unprecedented opportunities provided in the
digital pathology era by big data collection and artificial
intelligence, every laboratory will have access to an increasing

amount of data. In this new scenario, biobanks will inevitably
represent a bridge between biological and digital data [23,58].
Many benefits are achievable in this process. A digital biobank
allows the integration of different expertise from remote,
making possible teleconsultation [59]. Indeed, when addressing
cancer research, a collaboration of a multidisciplinary board
becomes important for the discussion and interpretation of each
specific project [60]. In addition, biobanks continuously demand
improved efficiency in storage and sustainability [61,62]. To
accomplish these requirements, next-generation biobanking will
face the green hospital revolution, as a response to the growing
concern over resource wasting and environmental damage
[63,64]. Digital biobanks will decrease resource usage with the
dematerialization of data and samples and reduce energy use by
digitalizing data storage and tracking, still providing patients
with the best service. Finally, despite the current efforts in
biobanking standardization and harmonization for data
collection, we believe that future achievements lie in adding
digital pathology and artificial intelligence technology to the
existing repositories. To acknowledge biobanks as a
fundamental part of scientific research, only AI integration in
large datasets may be the requirement for improved biobanks’
standard operating procedures in the digital pathology era.
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