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Abstract: Chemotherapy is one of the main therapeutic modalities for cancer patients. Cisplatin (CDDP), as one of the

first-line drugs, is of great importance in the chemotherapy of various tumors. However, a significant percentage of cancer

patients are resistant to CDDP treatment. Due to the CDDP side effects on normal tissues, the diagnosis of CDDP

resistance is required to suggest the most efficient therapeutic strategies for cancer patients. Several molecular

mechanisms and signaling pathways are associated with CDDP response. The PI3K/AKT signaling pathway has a

pivotal role in the transmission of extracellular signals into the cells to regulate various pathophysiological processes

such as cell proliferation, migration, and drug resistance. In the present review, we summarized all of the studies

which have been reported on the role of PI3K/AKT pathway in regulation of CDDP response. It was shown that the

PI3K/AKT pathway is mainly involved in CDDP response in lung, ovarian, and gastrointestinal cancers. It was also

observed that the non-coding RNAs have a key role in CDDP response by regulation of PI3K/AKT pathway. This

review paves the way for suggesting a PI3K/AKT-related panel marker for the prediction of CDDP response in

different cancer patients.

Introduction

Cisplatin (CDDP) is a common first-line chemotherapeutic
drug for different cancers [1]. However, there are some
limitations to the application of cisplatin, such as drug
resistance and side effects. Therefore, combination therapy
can reduce the CDDP drug resistance and side effects [2].
Cisplatin binds with purine bases in DNA to interfere with
DNA repair and replication result in tumor cell apoptosis
[3]. CDDP also promotes the reactive oxygen species (ROS)
production that induces cell death through apoptosis and
necrosis. Cisplatin disturbs calcium homeostasis that affects
the function of mitochondrial enzymes to promote cell
death [2]. Although Cancer patients are initially CDDP
responsive, CDDP resistance and tumor relapse are
eventually observed in the majority of patients [4]. Various
molecular and cellular mechanisms are involved in CDDP

resistance, including increased drug efflux, increased DNA
repair, and upregulation of anti-apoptotic factors [5].
Therefore, it is required to clarify the molecular mechanisms
of cisplatin resistance to improve the clinical outcome in
cancer patients. PI3K/AKT signaling pathway is frequently
deregulated in different cancers [6]. PI3K can be activated
by tyrosine kinase receptors, and G-protein coupled
receptors to produce PIP3 that activates AKT. AKT also
activates various effectors such as the Mammalian target of
rapamycin (mTOR) and GSK3 to regulate cell metabolism,
proliferation, and motility [7]. The mTOR as a serine/
threonine kinase is considered the best-characterized AKT
substrate, which can be activated by phosphorylation.
Subsequently, mTOR activates ribosomal protein S6 kinases
(S6K) and suppresses 4E-BP, that results in elevated protein
translation [8]. PI3K/AKT/mTOR pathway is involved in
the sensitivity of tumor cells toward cisplatin [9,10]. It has
been reported that inhibition of AKT/mTOR promoted
CDDP-induced apoptosis in resistant cells [11]. AKT
promotes CDDP resistance via negative regulation of P53
[12]. P13K inhibitor also increases CDDP sensitivity by Bax
upregulation and cytC release [13]. PI3K/AKT activates
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GSK-3β that promotes β-catenin transfer to the nucleus to
upregulate target genes associated with multi-drug resistance
(MDR) [14]. ABC transporters such as ABCB1, ABCC1, and
ABCG2 can also be upregulated by PI3K/AKT pathway to
promote CDDP efflux and resistance [15,16]. PI3K/AKT
pathway regulates aerobic glycolysis to prepare energy and
increase the efficiency of ABC transporters for drug efflux
[17]. PI3K/AKT is a promising therapeutic target for clinical
tumor therapy. mTOR is one of the main effectors in
PI3K/AKT pathway that regulates various cellular processes.
Rapamycin analogs such as everolimus and ridaforolimus
are the mTOR inhibitors that are widely used as anti-cancer
agents [18]. In the present review, we have summarized all
of the studies that have reported on the role of PI3K/AKT
pathway in the regulation of CDDP response in tumor cells
(Fig. 1). It was observed that there is a complex network of
non-coding RNAs (Table 1) and protein-protein
interactions (Table 2) which are responsible for CDDP
response through the regulation of PI3K/AKT signaling
pathway.

Lung Cancer

PI3K/AKT/mTOR pathway has pivotal role in tumor
progression, drug resistance, and poor prognosis in various

cancers [71]. PTEN also induces autophagosome formation
by PI3K/AKT inhibition [72]. MicroRNAs (miRNAs) are a
class of non-coding RNAs that have pivotal roles in post-
transcriptional regulation by mRNA degradation or
translational inhibition [73,74]. There was miR-181
downregulation in CDDP -resistant Non-small-cell lung
carcinoma (NSCLC) patients compared with controls. MiR-
181 reduced cell growth and invasion, while promoting
autophagy in lung tumor cells via PTEN/PI3K/AKT/mTOR
axis [19]. MiR-1269b induced cell proliferation and CDDP
resistance by PTEN targeting that resulted in PI3K/AKT
signaling activation in lung tumor cells. There was also
significant miR-1269b up-regulation in NSCLC patients that
was correlated with CDDP resistance and survival [20].
PIK3CA as a subunit of PI3K has a pivotal role in
PI3K/AKT/mTOR activation. There was miR-10a
upregulation in circulating lung tumor cells that were
associated with poor prognosis by induction of CDDP
resistance. MiR-10a promoted CDDP resistance through
PIK3CA targeting in circulating lung tumor cells [21]. There
was a direct association between the levels of BC200
expression and clinicopathological features of the tumor,
including tumor stage and lymph node involvement in
NSCLC patients. BC200 knockdown significantly
downregulated the PI3K, AKT, and STAT3. It induced

FIGURE 1. All of the molecular mechanisms that affect the
Cisplatin response via PI3K/AKT signaling pathway (Created
with BioRender.com).
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NSCLC metastasis and regulated the cisplatin-induced
apoptosis via PI3K/AKT pathway [37]. MiR-133b reduced
lung tumor cell proliferation, while promoting apoptosis by
CCND1 downregulation and Bax upregulation, respectively.
It also downregulated the EGFR, p-STAT3, and p-JAK2 in
cisplatin-induced lung tumor cells. Therefore, miR-133b

reduced cell proliferation by EGFR targeting that mediated
PI3K/AKT in cisplatin-induced NSCLC cells [22].

Apoptosis consists of two converging cascades, including
extrinsic and intrinsic pathways [75]. Death ligands are
initiators of the extrinsic pathway by a death-inducing
signaling complex that results in caspase-8 activation.

TABLE 1

All of the non-coding RNAs that affect Cisplatin response using the regulation of PI3K/AKT pathway

Gene Mechanism Target gene Effect on the
tumor cells

Clinical
application

Samples Study Year

miR-181 Downregulation PTEN Increased CDDP
resistance

Diagnosis 6 patients A549 cell
line

Liu et al. [19] 2018

miR-1269b Upregulation PTEN Increased CDDP
resistance

Diagnosis 32 patients HA549,
SPCA1, H1299 H358,
PC9, A549 cell lines

Yang et al. [20] 2020

miR-10a Upregulation PIK3CA Increased CDDP
resistance

Diagnosis and
prognosis

6 patients A549, H1299
cell lines

Huang et al. [21] 2020

miR-133b Upregulation EGFR Increased CDDP
sensitivity

Diagnosis 24 patients A549 cell
line

Li et al. [22] 2018

miR-221/222 Downregulation PTEN Increased CDDP
sensitivity

Diagnosis A2780 cell line Amini-Farsani
et al. [23]

2018

miR-654-3p Upregulation PI3K/AKT Increased CDDP
sensitivity

Diagnosis 20 patients IGROV-1,
293T cell lines

Niu et al. [24] 2020

miR-21 Upregulation PTEN Increased CDDP
resistance

Diagnosis SGC7901 cell line Yang et al. [25] 2013

miR-95-3p Upregulation EMP1 Increased CDDP
resistance

Diagnosis and
prognosis

92 patients SGC7901,
AGS cell lines

Ni et al. [26] 2021

HOTAIR Downregulation
Upregulation

miR-34a Increased CDDP
sensitivity

Diagnosis and
prognosis

27 patients SGC7901,
MGC803 cell lines

Cheng et al. [27] 2018

FOXD1-AS1 Upregulation miR-466 Increased CDDP
resistance

Diagnosis BGC-823, MKN28,
MGC803, MKN45,
AGS cell lines

Wu et al. [28] 2021

miR-4295 Upregulation LRIG1 Increased CDDP
resistance

Diagnosis MKN-28, NCI-N87,
SGC-7901, MKN-45,
BGC-823 cell lines

Yan et al. [29] 2018

OIP5-AS1 Upregulation miR-340-5p Increased CDDP
resistance

Diagnosis MG63-CR and SAOS2-
CR cell lines

Song et al. [30] 2019

miR-497 Upregulation VEGFA Increased CDDP
sensitivity

Diagnosis 74 patients SAOS-2 cell
line

Shao et al. [31] 2015

miR-221 Downregulation PTEN Increased CDDP
sensitivity

Diagnosis 60 patients SOSP-9607,
SOSP-9901, MG63,
SAOS-2, U20S,
hFOB1.19 cell lines

Zhao et al. [32] 2013

miR-145 Upregulation AKT3 Increased CDDP
sensitivity

Diagnosis and
prognosis

30 patients EC109,
EC9706, KYSE-150,
KYSE-30, TE1 cell lines

Zheng et al. [33] 2019

MALAT1 Downregulation BRWD1 Increased CDDP
sensitivity

Diagnosis Hela and C-33A cell
lines

Wang et al. [34] 2018

miR-205-5p Downregulation PTEN Increased CDDP
sensitivity

Diagnosis MG63, SAOS2 cell
lines

Zhang et al. [35] 2019

DANCR Upregulation miR-33b5p,
miR-33a-5p,
miR-206,
miR-1-3p, and
miR-613

Increased CDDP
resistance

Diagnosis U87MG, U251MG,
LN18, U138MG cell
lines

Ma et al. [36] 2018
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TABLE 2

All of the proteins that affect Cisplatin response using the regulation of PI3K/AKT pathway

Gene Mechanism Effect on the tumor cells Clinical application Samples Study Year

BC200 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

76 patients H1299,
A549, SKMES1, PC9,
H358, SPCA1 cell lines

Gao et al. [37] 2019

Survivin Upregulation Increased CDDP
resistance

Diagnosis SW2, H82, U1285,
A549, MPM cell lines

Belyanskaya et al.
[38]

2005

Klotho Upregulation Increased CDDP
sensitivity

Diagnosis A549, H460 cell lines Wang et al. [39] 2013

XPC Downregulation Increased CDDP
sensitivity

Diagnosis A549 cell line Teng et al. [40] 2019

KLF5 Downregulation Increased CDDP
sensitivity

Diagnosis H1299, A549 cell lines Gong et al. [41] 2018

PAX6 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

92 patients A549, SPC-
A-1 cell lines

Wu et al. [42] 2019

GPX1 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

A549, H1975, H460,
H1650 cell lines

Chen et al. [43] 2019

USP17 Upregulation Increased CDDP
resistance

Diagnosis A549, H1299 cell lines Zhang et al. [44] 2020

HSPA12B Upregulation Increased CDDP
resistance

Diagnosis A549 cell line Chen et al. [45] 2018

HPIP Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

OAW42, PA-1, SKOV3
cell lines

Bugide et al. [46] 2017

HOXB4 Downregulation Increased CDDP
sensitivity

Diagnosis and
prognosis

MKN-28, NCI-N87,
SGC-7901, MKN-45,
BGC-823 cell lines

Li et al. [47] 2018

Rab25 Upregulation Increased CDDP
resistance

Diagnosis SKOV-3, ES-2 cell lines Fan et al. [48] 2015

CCL5 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

62 patients SKOV3 cell
line

Zhou et al. [49] 2016

PER2 Upregulation Increased CDDP
sensitivity

Diagnosis and
prognosis

SKOV3 cell line Wang et al. [50] 2020

ACLY Downregulation Increased CDDP
sensitivity

Diagnosis and
prognosis

47 patients A2780,
SKOV3, HEY cell lines

Wei et al. [51] 2021

CD133 Downregulation Increased CDDP
sensitivity

Diagnosis KATO-111 Cell line Lu et al. [52] 2019

Neogenin-1 Upregulation Increased CDDP
resistance

Diagnosis MKN-28, BGC-823,
MGC-803, SGC-7901,
MKN-45 cell lines

Qu et al. [53] 2018

PAK4 Downregulation Increased CDDP
sensitivity

Diagnosis 49 patients AGS,
MKN-45 cell lines

Fu et al. [54] 2014

HtrA1 Downregulation Increased CDDP
resistance

Diagnosis SW480 cell line Xiong et al. [55] 2017

MNAT1 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

78 Patients MG63,
U2OS, Well5, 143B cell
lines

Qiu et al. [56] 2020

XPD Upregulation Increased CDDP
sensitivity

Diagnosis and
prognosis

20 patients EC9706,
EC109 cell lines

Jian et al. [57] 2020

ALC1 Downregulation Increased CDDP
sensitivity

Diagnosis TE1, TE13, ECA109,
and EC9706 cell lines

Li et al. [58] 2019

RACK1 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

Eca109, EC9706 cell
lines

Liu et al. [59] 2018

(Continued)
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However, the intrinsic pathway is associated with the release
of cytochrome c from mitochondria that activates caspases.
Inhibitors of apoptosis proteins (IAP) are endogenous
caspases inhibitors in intrinsic and extrinsic pathways [76].
Survivin belongs to the IAPs that regulate cell proliferation
and suppress apoptosis [77]. AKT has a pivotal role in
regulation of PI3K signaling, which is implicated in cell
proliferation and metabolism [78]. It has been shown that
cisplatin resistance can be associated with cisplatin-induced
AKT activation that results in survivin induction in SCLC.
There was survivin upregulation in SCLC cells following the
cisplatin treatment [38].

Klotho is a transmembrane protein that functions as an
inhibitor of the IGF-1 pathway [79]. PI3K/AKT is also a
downstream cascade of IGF-1 pathway with pivotal roles in
regulation of apoptosis and CDDP response [80,81]. There
was significant klotho downregulation and p-AKT
upregulation in CDDP-resistant lung tumor cells. Klotho
upregulation significantly increased the Bax/Bcl-2 ratio in
CDDP resistant cells. Therefore, klotho alleviated the CDDP
resistance by regulation of PI3K/AKT pathway and Bax/Bcl-2
expression ratio in lung tumor cells [39].

Nucleotide excision repair is involved in the repair of
DNA damages caused by CDDP [82]. Xeroderma
pigmentosum complementation group C (XPC) is a key
detector of DNA damage [83]. It has been reported that
XPC silencing significantly reduced cell proliferation while
promoting apoptosis in A549/CDDP cells. XPC silencing
also significantly increased the Bax/Bcl-2 ratios in A549/
CDDP cells, while downregulated the p-AKT. Therefore,

XPC inhibition significantly induced apoptosis in CDDP-
resistant lung tumor cells [40].

ATP-binding cassette proteins (ABC) are trans-membrane
proteins involved in multi-drug resistance [84]. BCRP belongs
to the ABC protein family that pumps intracellular drug to
reduce intracellular concentration and increase drug
resistance [85]. Long noncoding RNAs (lncRNAs) are a class
of none-coding RNAs involved in regulation of miRNAs as
competing endogenous RNAs (ceRNAs) [86]. Deregulation of
lncRNAs is involved in cell proliferation, apoptosis,
migration, and drug resistance [87]. SNHG7 knockdown
increased cisplatin-sensitivity by downregulations of MRD1
and BCRP in NSCLC. There was also SNHG7 upregulation
in NSCLC tissues compared with normal margins which was
correlated with advanced-stage and CDDP-resistant. Since
SNHG7 silencing significantly downregulated the PI3K,
p-AKT, and p-mTOR in cisplatin-resistant NSCLC cells,
SNHG7 promoted cisplatin-resistance via MRD1 and BCRP
upregulations through PI3K/AKT pathway in NSCLC [88].

Hypoxia is commonly observed in solid tumors that
affects pathophysiological processes such as angiogenesis
and drug resistance [89]. Hypoxia inducible factor-1α
(HIF-1α) is a pivotal regulator of cell proliferation and
glycolysis during hypoxia response [90]. Krüppel-like factor
5 (KLF5) is a developmental transcription factor that
regulates the levels of HIF-1α expression [91]. There was a
significant KLF5 upregulation in hypoxic NSCLC cells.
KLF5 knockdown reduced the levels of P-gp and HIF-1α
expressions in hypoxic NSCLC cells. KLF5 knockdown
also suppressed HIF-1α-dependent glycolysis through

Table 2 (continued)

Gene Mechanism Effect on the tumor cells Clinical application Samples Study Year

PAK4 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

93 patients Hela, CaSki
cell lines

Shu et al. [60] 2015

PRRX1 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

MCF-7 cell line Luo et al. [61] 2020

Ghrelin Upregulation Increased CDDP
resistance

Diagnosis MDA-MB-231 cell line Zhang et al. [62] 2020

SPP1 Downregulation Increased CDDP
sensitivity

Diagnosis 16 patients C-33A
(Hela and CaSki) cell
line

Chen et al. [63] 2019

Par-4 Downregulation Increased CDDP
resistance

Diagnosis BXPC-3 cell line Tan et al. [64] 2014

mTOR Upregulation Increased CDDP
sensitivity

Diagnosis SW1990 cell line Li et al. [65] 2019

CDKL5 Upregulation Increased CDDP
resistance

Diagnosis 27 patients U87, U251
cell lines

Jiang et al. [66] 2020

SDC1 Upregulation Increased CDDP
resistance

Diagnosis and
prognosis

30 patients HepG2 cell
line

Yu et al. [67] 2020

HMGN5 Downregulation Increased CDDP
sensitivity

Diagnosis UBC5637, UM-UC-3,
T24 cell lines

Gan et al. [68] 2017

Derlin-1 Downregulation Increased CDDP
sensitivity

Diagnosis and
prognosis

150 patients SV-HUC-
1, BIU-87, J82, 5637
cell lines

Dong et al. [69] 2017

TDRG1 Upregulation Increased CDDP
resistance

Diagnosis 35 patients TCam-2
cell line

Gan et al. [70] 2016
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PI3K/AKT/mTOR inactivation that resulted in reduced
hypoxia-induced cisplatin resistance [41].

Epithelial-to-mesenchymal transition (EMT) is a
pathophysiological process in which the tumor cells lose
their epithelial properties to obtain the mesenchymal
phenotype [92,93]. Following the EMT, mesenchymal tumor
cells obtain invasive and metastatic features [94]. It has been
shown that there was PAX6 upregulation in NSCLC, which
was significantly associated with lower overall survival (OS).
PAX6 was involved in regulation of ZEB2 as a critical factor
in EMT-mediated self renewal, thereby promoting cisplatin
resistance in NSCLC. PAX6-ZEB2 also induced tumor
invasion via PI3K/AKT dependent downregulation of CDH1
in NSCLC [42]. AFAP1-AS1 is an oncogenic lncRNA that
encodes AFAP1 gene antisense [95]. There was AFAP1-AS1
upregulation in CDDP-resistant NSCLC tissues and cells.
AFAP1-AS1 silencing reduced cell proliferation and
migration via regulation of EMT process and PI3K/AKT
pathway. It significantly promoted EMT in CDDP-resistant
NSCLC cells. AFAP1-AS1 also inhibited apoptosis by
regulation of EZH2 to activate PI3K/AKT pathway which
increased CDDP resistance in NSCLC cells [96].

ROS is normally produced during cellular metabolism
that regulates cell proliferation and apoptosis. Apoptosis-
related ROS is a fundamental mechanism of CDDP [97].
ROS is produced by mitochondria due to the cisplatin
treatment [98]. Glutathione peroxidase 1 (GPX1) is an
antioxidant enzyme involved in ROS metabolizing. It has
been reported that there was GPX1 upregulation in NSCLC
cells. GPX1 inhibited cisplatin-induced ROS accumulation
that promoted PI3K-AKT pathway. GPX1 downregulation
promoted apoptosis via increased ROS accumulation and
AKT suppression in CDDP-resistant NSCLC cells [43].

Deubiquitinating enzymes (DUBs) are the inhibitors of
protein degradation by removing the ubiquitin chains [99].
Ubiquitin-specific protease 17 (USP17) belongs to the DUB
protein family that regulates cell migration, inflammation,
and tumor progression. USP17 regulates the Ras pathway to
affect cell migration and proliferation [100,101]. It has been
reported that CDDP increased the levels of USP17
expression. USP17 also induced the NSCLC cell
proliferation through PI3K/AKT activation [44]. HSPA12B
belongs to the HSP70 protein family that is directly
associated with CDDP resistance through p-IκBα and
p-AKT upregulations and caspase-3 downregulation in lung
tumor cells [45].

Ovarian Cancer

Cisplatin resistance can be developed by increased drug efflux,
increased detoxification, induced DNA repair, and reduced
drug-induced apoptosis [102]. Cancer stem cells (CSCs)
and EMT process are contributed with the chemoresistance
and tumor relapse in ovarian cancer patients [103].
PI3K/AKT/mTOR signaling has a pivotal role in regulation of
cell cycle, cell proliferation, and chemoresistance [104]. There
was E-cadherin downregulation, while N-cadherin and
Vimentin upregulations in cisplatin resistant ovarian tumor
cells compared with sensitive cells. EMT process was along
with increased levels of CSC markers in CDDP-resistant

ovarian tumor cells. Suppression of PI3K/AKT/mTOR
axis significantly inhibited the EMT and CSC features [105].
The hematopoietic PBX interaction protein (HPIP) is an
oncogene that activates PI3K/AKT, MAPK, and SHH
signaling pathways to promote tumor progression and
metastasis [106–108]. HPIP silencing inhibited AKT and
MAPK in ovarian tumor cells. HPIP promoted cisplatin
resistance of ovarian cancer cells. There was a direct
association between the levels of HPIP expression and higher
tumor grades. HPIP activated the PI3K/AKT pathway, which
resulted in E-cadherin downregulation, while stabilized Snail
in ovarian tumor cells [46]. The Homeobox (HOX) family of
transcription factors are pivotal regulators of developmental
processes and tumor progressions [109]. There was HOXB4
upregulation in CDDP-resistant ovarian cancer cells. Silencing
of HOXB4 increased CDDP sensitivity by PI3K/AKT
suppression that resulted in ABC transporters downregulations
in ovrian tumor cells [47].

Deregulation of miRNAs is one of the main reasons of
chemotherapeutic resistance by targeting the drug response
genes in various cancers [110]. As a tumor suppressor,
PTEN is involved in regulation of cell growth, migration,
and apoptosis [111]. It has been reported that there was a
significant miR-221/222 upregulation in ovarian tumor cells.
MiR-221/222 downregulation promoted apoptosis and
cisplatin sensitivity through PTEN targeting and subsequent
PI3K/AKT activation in ovarian cancer [23]. There was
significant miR-654-3p downregulation in CDDP-resistant
ovarian tumor cells. MiR-654-3p suppressed cell
proliferation and migration while promoting the CDDP
sensitivity by inactivation of PI3K/AKT pathway. It also
suppressed P-gp via QPRT targeting which may associate
with CDDP sensitivity in ovarian tumor cells [24]. Rab25
belongs to the GTPase protein family that has key roles in
cell proliferation, signal transduction, and cytoskeletal
organization [112]. PI3K/AKT signaling upregulated the
Rab25 to induce CDDP resistance in ovarian tumor cells [48].

Autophagy is associated with drug response via different
signaling pathways in tumor cells [113,114]. STAT3 has a dual
function in regulation of autophagy in which the nuclear
STAT3 positively regulates the transcription of autophagy-
related genes, while cytoplasmic STAT3 has a negative role
by interacting with FOXO1 and FOXO3 transcription
factors. The mitochondrial STAT3 also inhibits the oxidative
stress that is promoted by autophagy and maintains the
mitochondria from mitophagy-related degradation [115]. It
has been reported that STAT3 induced EMT while inhibited
the autophagy that resulted in tumor cell proliferation,
invasion, and cisplatin resistance through Slug and MAPK
in ovarian cancer. STAT3 also suppressed the autophagy
that resulted in cisplatin resistance following the activation
of the PI3K/AKT and MEK/ERK pathways in ovarian
tumor cells [116].

Cancer-associated fibroblasts (CAFs) as the main stromal
cells in the tumor microenvironment can also be affected by
the cisplatin treatment that can interfere with the normal
tissue homeostasis. CCL5 belongs to the CC-chemokine
family that has pivotal roles in drug resistance and
metastasis. STAT3 is a transcriptional modulator of
chemokines responses and growth factors that regulates cell
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invasion and chemotherapy resistance [117]. PI3K/AKT
signaling pathway can also be activated by CCL5 [118]. It
has been reported that CAFs promoted CDDP resistance via
CCL5 production in ovarian tumor cells. CCL5 induced
CDDP-resistance through the p-AKT and p-STAT3
pathways [49]. PER2, as a circadian factor, has critical role
during tumor progression by apoptosis induction [119,120].
It has been shown that PER2 increased CDDP sensitivity in
ovarian tumor cells by PI3K and AKT downregulations. It
also increased the levels of caspase 3 expressions that
resulted in apoptosis induction. There were significant
serum TNF-α and IL-6 downregulations in PER2
upregulated tumors before the CDDP treatment. Therefore,
PER2 reduced systemic inflammation to promote CDDP
sensitivity in ovarian cancer patients [50].

Growth hormone secretagogue receptor (GHSR) is
activated by Ghrelin that has a key role in tumor
progression [121]. Ghrelin is observed in acylated and
unacetylated forms in blood. The acetylated gherlin is the
most active while less abundant form that activates
secretagogue receptor type 1a (GHS-R1a). The unacylated
ghrelin is the most abundant while less active form that
functions independently of GHS-R1a [122]. Acetylated
gherlin promoted the cisplatin resistance and cell
proliferation in ovarian tumor cells. Gherlin mediates its
role through GHS-R1a and activation of PI3K/AKT pathway
that results in p53 and PUMA downregulations in ovarian
cancer [123]. ATP citrate lyase (ACLY) catalyzes the
conversion of the citrate and coenzyme A to acetyl CoA and
oxaloacetate (OAA) [124]. Acetyl-CoA has a critical role in
transcriptional regulation by histones acetylation. OAA is
also an important substrate for aspartate production that is
required for nucleotide synthesis and redox reactions [125].
There was significant ACLY upregulation in CDDP-resistant
ovarian tumor cells. ACLY knockdown reduced cell
proliferation, while promoted apoptosis in ovarian tumor
cells via CCND1 and CDK4 downregulations and P16
upregulation. Knockdown of ACLY reduced the cell
proliferation and CDDP resistance via p-AKT suppression
and P16–CCND1–CDK4 axis regulation in ovarian
cancer [51].

Gastric and Colorectal Cancers

Cancer stem cells are a subpopulation of tumor cells involved
in chemotherapeutic resistance and tumor relapse [126]. They
obtain drug resistance by upregulation of extrusion pumps
and DNA repair proteins. Therefore, conventional anti-
tumor agents are not effective in the elimination of CSCs
and they cause recurrence [127]. CD133 is a glycoprotein
involved in activation of the PI3K/AKT pathway through
PI3K-p85 [128]. It has been reported that there were CD133
upregulations in cisplatin-resistant gastric tumor cells
compared with sensitive cells. CD133 increased CDDP
resistance via PI3K/AKT/mTOR activation in gastric tumor
cells [52].

MiRNAs and lncRNAs have diverse functions in cellular
processes such as cell differentiation, proliferation, and
apoptosis. PTEN is a negative regulator of PI3K/AKT by
dephosphorylation of PIP3. MiR-22-3p promoted cisplatin

sensitivity though PTEN upregulation and PI3K/AKT
inhibition in gastrointestinal tumors [129]. There was a
significant miR-21 upregulation in cisplatin resistant gastric
tumor cells in comparison with sensitive cells. MiR-21
regulated the PTEN expression as a pivotal factor in drug
resistance [25]. There was a significant miR-95-3p
upregulation in CDDP-resistant compared with sensitive
gastric tumor cells. MiR-95-3p induced CDDP resistance,
cell proliferation, and migration through EMP1 targeting
that activated PI3K/AKT pathway in gastric tumor cells
[26]. Knockdown of HOTAIR reduced cisplatin resistance
and tumor growth through miR-34a upregulation that
resulted in suppression of the PI3K/AKT and WNT
signaling pathways in gastric tumor cells. There was also
HOTAIR upregulation in GC tissues compared with normal
margins [27]. MALAT1 induced cisplatin resistance of GC
cells. There was a significant correlation between the levels
of MALAT1 expression and poor survival in GC patients.
MALAT1 promoted GC proliferation and invasion by
p-PI3K and p-AKT upregulations and activation of
PI3K/AKT pathway in gastric tumor cells. MALAT1 was
also involved in CDDP resistance by regulation of Bcl-2 [130].

ZEB1 and ZEB2 are zinc finger EMT-transcription
factors [94]. Neogenin-1 (Neo1) is a transmembrane
receptor and member of the immunoglobulin superfamily
[131]. Neo1 promoted cell migration and cisplatin resistance
in gastric tumor cells. It also induced EMT process by
activation of the Rac1/PI3K/AKT axis that resulted in ZEB1,
CDH2, and VIM upregulations, while CDH1
downregulation in gastric tumor cells [53]. P21-activated
kinases (PAKs) have critical roles in regulation of
angiogenesis, EMT, and metabolic processes [132,133].
PAK4 is a key regulator of tumor cell migration that is
down stream effector of Met receptor [134]. It has been
reported that PAK4 promoted CDDP resistance by
activation of PI3K/AKT pathways in gastric tumor cells
[54]. There was significant UCA1 upregulation in gastric
tumor tissues compared with normal margins which was
correlated with lymph node involvement, distant metastasis,
and advanced tumor stage. UCA1 also induced CDDP
resistance through EZH2 targeting and PI3K/AKT
activation in gastric tumor cells [135].

4E-BP1 is a translational inhibitor and down stream
target of the PI3K/AKT/mTOR pathway [136,137]. FOXD1-
AS1 activated the PI3K/AKT/mTOR signaling via miR-466
sponging and subsequent PIK3CA release that resulted in
4E-BP1 hyperphosphorylation. Activation of 4E-BP1 also
induced eIF4E and eIF4G interaction that upregulated the
FOXD1 protein to promote CDDP resistance in gastric
tumor cells. Therefore, FOXD1-AS1 increased CDDP
resistance via translational regulation of FOXD1 in gastric
cancer [28]. EGFR is a key signaling pathway during tumor
progression that functions by various intracellular cascades,
such as MAPK and PI3K/AKT to promote cell proliferation
and invasion [138,139]. LRIG1 is a negative regulator of the
EGFR [140]. It has been shown that miR-4295 induced cell
proliferation, while suppressed the CDDP-induced apoptosis
in gastric tumor cells through LRIG1 targeting and
subsequent activation of EGFR/PI3K/AKT axis [29].
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HtrA1 belongs to the serine protease protein family
involved in cell proliferation, apoptosis, and embryogenesis
[141]. XIAP is an anti apoptotic factor that inhibits caspase-3,
caspase-7, and caspase-9 [142]. HtrA1 has a critical role in
XIAP targeting and degradation during the chemotherapeutic
responses [143]. It has been reported that HtrA1
downregulation increased CDDP resistance through XIAP
and PI3K/AKT activation in colon tumor cells [55].

Osteosarcoma

MRP1 and P-gp belong to the ATP-binding cassette (ABC)
transporters that are involved in drug resistance [144,145].
There was a significant OIP5-AS1 upregulation in the
cisplatin-resistant osteosarcoma (OS) cells compared with
sensitive cells. OIP5-AS1 silencing inhibited cell proliferation
and reduced cisplatin resistance in OS cells. Reduced
levels of OIP5-AS1 expression significantly inhibited the
PI3K/AKT/mTOR axis. OIP5-AS1 regulated the cisplatin
resistance through the PI3K/AKT/mTOR pathway via
miR-340-5p targeting and subsequent LPAATβ upregulation
in OS cells [30]. Cyclin-dependent kinase-activating kinase
(CAK) complex contains CDK7, Cyclin H, and MNAT1
[146]. It has been shown that there were MNAT1
upregulations in osteosarcoma tissues that were correlated
with poor prognosis. MNAT1 downregulation suppressed
osteosarcoma cell proliferation, invasion, and in-vivo
growth. It also promoted cisplatin resistance through PI3K/
AKT/mTOR activation [56].

There is a close correlation between the autophagy and
chemoresistance. Autophagy maintains the cellular
homeostasis by removing the damaged cellular components
via autophagosomes. Therefore, it maintains a balance
between the synthesis and degradation to protect the cells
during nutrient deprivation [147,148]. However, it can also
promote apoptosis due to the excessive proteins lack [149].
It has been reported that miR-22 regulated CDDP-resistance
via autophagy inhibition in osteosarcoma cells. MiR-22
suppressed CDDP induced autophagy and reduced drug
resistance through PI3K/AKT/mTOR axis in osteosarcoma
[150]. There was a significant miR-497 downregulation in
osteosarcoma tissues compared with normal margins. MiR-
497 downregulation promoted cisplatin resistance via
PI3K/AKT pathway by VEGFA targeting in osteosarcoma
[31]. PTEN dephosphorylates PIP3 to suppress AKT activity
[151]. It has been shown that miR-221 promoted cell
proliferation and CDDP resistance, while reduced apoptosis
via PTEN targeting and subsequent PI3K/AKT activation in
osteosarcoma cells. MiR-221 also regulated the levels of Bcl-2,
CCND1, and p27. There was also miR-221 upregulation in
osteosarcoma tissues [32].

Esophageal Squamous Cell Carcinoma

Tumor malignancy is associated with genome instability
which is the result of aberrant DNA repair, replication, and
chromosome segregation. Xeroderma pigmentosum
complementation group D (XPD) is a DNA helicase
involved in DNA repair that is caused by oxidative stress
[152]. There was a significant XPD downregulation in

esophageal squamous cell carcinoma (ESCC) tissue
compared with normal margins. XPD upregulation
significantly suppressed the cell proliferation and migration,
while increased CDDP sensitivity by suppression of the
PI3K/AKT pathway [57]. ABC transporters are among the
most important proteins involved in efflux of anticancer
drugs which reduce the chemotherapeutics efficacy.
Multidrug resistance-associated protein 1 (MRP1) is closely
associated with opposed chemotherapeutic outcomes [153].
It has been observed that miR-145 increased CDDP
sensitivity of ESCC cells through MRP1 and P-gp
downregulations following the AKT3 targeting and
subsequent PI3K/AKT inhibition. MiR-145 suppressed anti-
apoptotic factors including CCND1 and Bcl-2, while
induced Bax through PI3K/AKT inhibition in ESCC cells [33].

Amplified in liver cancer 1 gene (ALC1) belongs to the
chromatin remodeling enzymes involved in tumor cell
proliferation and metastasis [154]. There was ALC1
upregulation in ESCC cells. ALC1 knockdown reduced cell
growth and increased CDDP sensitivity in ESCC cells
through inactivation of PI3K/AKT pathway and subsequent
glycolysis suppression. ALC1 knockdown also upregulated
the caspase-3/7 and increased apoptosis in ESCC cells that
induced CDDP sensitivity in ESCC cells [58]. RACK1
belongs to the WD40 repeat protein family that functions in
protein anchoring and shuttling between cellular compartments.
It is also involved in transcriptional and translational regulations
[155]. As a scaffold protein, RACK1 binds with kinases and
membrane-bound receptors to regulate cell proliferation,
adhesion, and migration [156]. It has been observed that
RACK1 increased cell proliferation and resistance toward the
CDDP induced apoptosis in ESCC. RACK1 promoted CDDP-
resistance by PI3K/AKT activation and subsequent Bcl-2
upregulation in ESCC cells [59].

Cervical and Breast Cancers

PAKs are serine/threonine kinases characterized as the
effectors of Rac and Cdc42 [157]. They have pivotal roles in
tumor progression by regulation of the Ras-induced
metabolism, cell proliferation, angiogenesis, and EMT
[133,158]. PAK4 belongs to the PAKs family which is
involved in cervical cancer progression and cisplatin
resistance. There was a significant PAK4 upregulation in
cervical tumor tissues compared with normal margins which
were correlated with FIGO stage, grade, and lymph node
involvement. PAK4 also promotes the cisplatin resistance in
cervical tumor cells through PI3K/AKT pathway [60].
P-glycoprotein (P-gp) is encoded by ABCB1 which induces
chemoresistance [159]. Paired-related homeobox 1 (PRRX1) is
a transcriptional co-activator that promotes EMT process during
tumor progressions [160]. It was shown that PRRX1 reduced
chemosensitivity of breast tumor cells by P-gp upregulation.
PRRX1 also increased PI3K and AKT phosphorylations
following the PTEN suppression in breast cancer [61].

Ghrelin is a hormone produced by the stomach that is
involved in energy homeostasis via regulation of adipocyte
function and glucose metabolism. Ghrelin reduced the
CDDP sensitivity by activation of PI3K/AKT/mTOR
signaling, Bcl-2 upregulation, and caspase-3 downregulation
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in breast tumor cells. PI3K/AKT/mTOR axis regulated the
ghrelin-induced anti-apoptosis in breast tumor cells treated
with cisplatin [62]. Secreted phosphoprotein 1 (SPP1) is a
cytokine and cell-matrix adherence protein associated with
regulation of cell proliferation, apoptosis, and migration. It
has been observed that there was SPP1 upregulation in
cervical cancer tissues. SPP1 suppression reduced CDDP
resistance through inhibition of PI3K/AKT pathway [63].
BRWD1 is a developmental transcriptional factor that has a
pivotal role in chromatin remodeling and transcriptional
regulation. It has been shown that MALAT1 downregulation
induced the cisplatin sensitivity in cervical tumor cells
through regulating BRWD1 and cell apoptosis. The p-PI3K
and p-AKT were also up-regulated following MALAT1 over
expression [34].

Nasopharyngeal and Pancreatic Cancers

EMT is a cellular process that mediates differentiation of
epithelial to mesenchymal cells via suppression of adhesion
molecules, while upregulation of mesenchymal proteins. This
process facilitates separation of tumor cells from primary
tumors and invasion to the secondary sites [161]. EMT is
orchestrated by E-cadherin (epithelial factor) downregulation,
while Vimentin and N-cadherin (mesenchymal factors)
upregulations [162]. EMT has a critical role in regulation of
drug resistance [163]. PI3K/AKT signaling pathway is
involved in regulation of tumor invasion and drug resistance
[164]. PTEN is considered as a negative regulator of PI3K/
AKT pathways in which it dephosphorylates the PIP3 which
results in AKT inactivation and PI3K/AKT suppression
[165]. MiR-205-5p promoted the ECM degradation by
MMP-9 and MMP-2 up-regulations. It downregulated
Ecadherin, while upregulated the Vimentin, N-cadherin,
Slug, and Snail in nasopharyngeal tumor cells. Therefore,
miR-205-5p induced EMT through PTEN inhibition in
cisplatin-resistant NPC cells [35]. Prostate apoptosis
response-4 (Par-4) is a pro-apoptotic factor highly expressed
in apoptosis-induced prostate tumor cells [166]. It has been
shown that Par-4 downregulation promoted CDDP
resistance through stimulation of PI3K/AKT-dependent EMT
in pancreatic tumor cells [64]. mTOR is one of the main
effectors of PI3K/AKT that integrates the inputs from growth
factors [167]. It is also a sensor of nutrients and oxygen
[168]. It has been shown that the mTOR inhibited AKT
phosphorylation to increase the cisplatin sensitivity in
pancreatic tumor cells [65].

Other Cancers

AXL belongs to the receptor tyrosine kinase (RTK) protein
family that activates PI3K/AKT pathway to promote cell
proliferation and regulate tumor drug resistance [169,170].
It has been reported that there was an inverse association
between the levels of DANCR expression and CDDP
sensitivity in glioma cells. DNACR promoted cisplatin
resistance via miR-33b-5p, miR-33a-5p, miR-206, miR-1-3p,
and miR-613 sponging and AXL upregulation. DANCR
activated the PI3K/AKT/NF-κB axis by increased AKT and
IκBα phosphorylations [36]. Cigarette smoking increases

urothelial tumor aggressiveness by promoting tumor
proliferation and angiogenesis. Nicotine functions through
different receptors, such as nicotinic acetylcholine receptors
and/or EGF receptors [171]. It regulates PI3K/AKT pathway
in different cancer cells [172,173]. It has been reported that
nicotine promoted the CDDP resistance by PI3K/AKT/mTOR
activation [174].

Cyclin-dependent kinase-like 5 (CDKL5) is a positive
regulator of PI3K. There was CDKL5 upregulation in glioma
tissues compared with normal samples. CDKL5
upregulation promoted CDDP drug resistance, cell
migration, and proliferation in glioma cells via
phosphorylation of PI3K and AKT and subsequent PI3K/
AKT activation [66]. Syndecan 1 (SDC1) is a heparan
sulfate proteoglycan involved in cell attachment, signaling,
and cytoskeletal organization [175]. It has been reported
that there was SDC1 upregulation in advanced stage and
drug resistant liver tumors. There was also a correlation
between AKT activation and SDC1 upregulation, which
resulted in cisplatin resistance [67].

HMGN5 is a developmental transcriptional regulator
and chromatin remodeler [176]. There was an inverse
association between the levels of HMGN5 expressions and
CDDP sensitivity in urothelial bladder tumor cells. HMGN5
knockdown induced CDDP sensitivity through suppression
of PI3K/AKT signaling and subsequent cytochrome c,
caspase-3, and PARP upregulations that confirmed the
activation of the intrinsic apoptosis pathway [68]. Derlin-1
is a pivotal factor involved in the elimination and the
retrotranslocation of misfolded proteins from endoplasmic
reticulum [177]. There was Derlin-1 upregulation in
bladder tumor tissues and cells. Derlin-1 also promoted
chemoresistance through activation of PI3K/AKT/Bcl-2 axis
in bladder tumor cells [69]. Testis developmental related
gene 1 (TDRG1) induces seminoma cell proliferation and
invasion via activation of PI3K/AKT pathway [178]. It
positively regulated the p-mTOR and affected the cell cycle
progression in seminoma cells during CDDP treatment. TDRG1
regulated the CDDP sensitivity through the PI3K/AKT/mTOR
signaling and intrinsic apoptosis pathway in seminoma cells [70].

Conclusions

CDDP is a widely used first-line anti-cancer drug in various
cancers. Since, CDDP has severe side effects on different
normal organs and tissues in cancer patients; it is required
to determine the CDDP-resistant from sensitive tumors.
Therefore, clarification of the molecular mechanisms
involved in CDDP response provides novel therapeutic
strategies in chemo-resistant patients. In the present review,
we summarized all of the studies that have been assessed the
role of PI3K/AKT pathway in Cisplatin response. It was
shown that the PI3K/AKT signaling pathway regulates the
Cisplatin response via different cellular mechanisms such as
apoptosis, autophagy, DNA repair, ABC transporters, and
EMT process. The PI3K/AKT was mainly involved in
regulation of CDDP response in lung, ovarian, and
gastrointestinal tumors. It was also observed that the non-
coding RNAs are the pivotal regulators of Cisplatin response
via PI3K/AKT pathway. Non-coding RNAs mainly affected
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the PI3K/AKT pathway through the RTK and PTEN
regulations. This review paves the way of suggesting a PI3K/
AKT related panel marker for the prediction of Cisplatin
response in cancer patients. Since PI3K/AKT mainly promotes
the Cisplatin resistance in different tumors, suppression of this
pathway through the RTK, PI3K, and mTOR inhibitors or
specific miRNAs can be efficient methods to overcome the
CDDP resistance and improve the quality of life in cancer
patients. Moreover, the microRNAs that are involved in
regulation of CDDP response by targeting the PI3K/AKT
signaling can be introduced as the non-invasive markers for
the prediction of CDDP response among cancer patients. The
clinical non-invasive application of PI3K/AKT related
miRNAs also reduces the CDDP side effects and paves the
way to select the efficient therapeutic methods in a
personalized medicine that significantly improves the quality
of life and patient’s survival. A combination of PI3K/AKT
inhibitors with CDDP can also be a promising therapeutic
modality among the cancer patients who show the CDDP
resistance through PI3K/AKT signaling pathway.
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